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ABSTRACT 

 

Myriad sources of uncertainty are characteristic of or impact all commercial and 

recreational fisheries, contributing uncertainty to the determination of stock status. In the 

face of these uncertainties, fisheries managers tend to reserve fishery resources from the 

management targets to allow for variability. Simulation analysis is a useful tool to 

complement and extend formal stock assessment models to better inform managers of the 

risk that a management strategy results in an overfished stock or overfishing occurs over 

some period of time. Three examples of simulation analysis are presented to address risk-

tolerance and development of management thresholds for three commercially important 

U.S. fisheries- Eastern oyster (Crassostrea virginica), Atlantic surfclam (Spisula 

solidissima) and summer flounder (Paralichthys dentatus).  The assessment and 

management of each of these species has been affected by various uncertainties that 

affect fisheries throughout the US including difficulty in estimating (and differentiating) 

natural and disease mortality, parameterization of the stock-recruitment curve, and the 

cost-benefit analysis of including complex sex-specific dynamics into assessment models. 

The following analyses provide frameworks from which risk-based assessments can be 

adapted to other fishery resources with similar uncertainties and support efforts to 

conduct risk-based assessments of management decisions.   



 

iii 

ACKNOWLEDGMENTS 

This research was supported by the NOAA Saltonstall-Kennedy Grant Program 

#NA18NMF4270200 and the National Science Foundation Industry/University 

Cooperative Research Center SCeMFiS (Science Center for Marine Fisheries) through 

membership fees under the direction of the Industry Advisory Board (IAB). SCeMFiS 

administrative support is provided by NSF awards #1266057 and #1841112. This project 

was also supported by the National Science Foundation Non-Academic Research 

Internships for Graduate Students (INTERN) Supplemental Funding opportunity. We 

recognize the many individuals over many years that have contributed to the data 

collection, monitoring, and modelling of the Eastern oyster, Atlantic surfclam and 

summer flounder, without whom this work would not have been possible. 



 

iv 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................ ii 

ACKNOWLEDGMENTS ................................................................................................. iii 

LIST OF TABLES ........................................................................................................... viii 

LIST OF ILLUSTRATIONS ............................................................................................. ix 

LIST OF ABBREVIATIONS ............................................................................................. x 

CHAPTER I - BACKROUND ........................................................................................... 1 

1.1 Introduction ............................................................................................................... 1 

1.1.1 Sources of Error in Estimation of Fishery Stock Status .................................... 1 

1.1.2 Simulation Analysis ........................................................................................... 2 

1.1.3 Dissertation Overview ....................................................................................... 3 

CHAPTER II - OYSTERS BEGET SHELL AND VICE VERSA: GENERATING 

MANAGEMENT GOALS FOR LIVE OYSTERS AND THE ASSOCIATED REEF TO 

PROMOTE MAXIMUM SUSTAINABLE YIELD OF Crassostrea virginica................. 5 

2.1 Introduction ............................................................................................................... 5 

2.2 Methods..................................................................................................................... 9 

2.2.1 Oyster Bed Groups ............................................................................................. 9 

2.2.2 Summary of Population Dynamics .................................................................. 11 

2.2.3 Mortality .......................................................................................................... 12 

2.2.4 Surface Area Calculations................................................................................ 14 



 

v 

2.2.5 Surface Area-Recruitment ............................................................................... 18 

2.2.6 Model Spin-up ................................................................................................. 19 

2.2.7 Simulating Fishing and Dermo Mortality ........................................................ 20 

2.2.8 Threshold Metrics ............................................................................................ 21 

2.2.9 Model Verification ........................................................................................... 22 

2.3 Results ..................................................................................................................... 23 

2.3.1 Model Verification ........................................................................................... 23 

2.3.2 Ratio of Live Shell to Total Shell .................................................................... 24 

2.3.3 Shell Rock ........................................................................................................ 25 

2.3.4 High-mortality.................................................................................................. 27 

2.3.5 Medium-mortality ............................................................................................ 29 

2.4 Discussion ............................................................................................................... 30 

2.4.1 Perspective ....................................................................................................... 30 

2.4.2 States of Sustainability ..................................................................................... 32 

2.4.3 Reference Points .............................................................................................. 35 

2.5 Area Management ................................................................................................... 37 

2.5.1 Application to Shell Planting ........................................................................... 38 

2.5.2 Precautionary Comments ................................................................................. 39 

2.6 Conclusions ............................................................................................................. 41 



 

vi 

CHAPTER III – ATLANTIC SURFCLAM BIOMASS AND DENSITY ARE 

RESISTANT TO CURRENT FISHING PRESSURE DESPITE UNCERTAINTIES IN 

MORTALITY AND RECRUITMENT ............................................................................ 43 

3.1 Introduction ............................................................................................................. 43 

3.2 Methods................................................................................................................... 46 

3.2.1 Assessment Model Structure............................................................................ 46 

3.2.2 Simulation Analysis ......................................................................................... 47 

3.2.3 Evaluation of risk ............................................................................................. 50 

3.2.4 Evaluation of Control Rule Consequences on Clam Density and Fishery 

Profitability ............................................................................................................... 51 

3.3 Results ..................................................................................................................... 52 

3.3.1 Stock Status of Operating Models ................................................................... 52 

3.3.2 Simulations and Forecast ................................................................................. 54 

3.3.3 Assessment of Overfished Simulations ........................................................... 55 

3.3.4 Occurrence of Overfishing ............................................................................... 59 

3.3.5 Fishery Profitability ......................................................................................... 60 

3.4 Discussion ............................................................................................................... 62 

CHAPTER IV – DO MANAGEMENT STRATEGIES GUIDED BY SEX-

AGGREGATED MODELS EFFECTIVE AT MANAGING A SEXUALLY-

DIMORPHIC STOCK? .................................................................................................... 68 



 

vii 

4.1 Introduction ............................................................................................................. 68 

4.1.1 Retrospective Error .......................................................................................... 69 

4.1.2 Uncertainty in Recreational Landings ............................................................. 70 

4.1.3 Objectives ........................................................................................................ 71 

4.2 Methods................................................................................................................... 71 

4.2.1 Assessment Model Structure............................................................................ 71 

4.2.2 Conversion to Stock Synthesis......................................................................... 72 

4.2.3 Simulation Analysis ......................................................................................... 74 

4.3 Results ..................................................................................................................... 76 

4.3.1 Model Comparison........................................................................................... 76 

4.3.2 Retrospective Analysis..................................................................................... 78 

4.3.3 Simulation Analysis ......................................................................................... 80 

4.3.3.2 Forecasts ................................................................................................... 82 

4.4 Discussion ............................................................................................................... 84 

4.4.1 Implications of Biomass Estimates .................................................................. 84 

4.4.2 Options for Future Model Development .......................................................... 85 

4.4.3 Concluding Remarks ........................................................................................ 87 

CHAPTER V – CLOSING COMMENTS ....................................................................... 88 

REFERENCES ................................................................................................................. 90 

 



 

viii 

LIST OF TABLES 

Table 2.1 Von Bertalanffy Parameters .............................................................................. 14 

Table 2.2 Correction Factors............................................................................................. 16 

Table 2.3 Beverton-Holt Parameters ................................................................................. 19 

Table 2.4 Model Verification ............................................................................................ 24 

Table 3.1 Forecasted Management Strategies .................................................................. 50 

Table 3.2 Operating Model Biomass Thresholds ............................................................. 54 

Table 3.3 Summary of Percent Overfished Simulations ................................................... 56 

Table 3.4 Details of Overfished Simulations .................................................................... 57 

Table 4.1 Forecasted Management Control Rules ............................................................ 75 

Table 4.2 Model Comparisons .......................................................................................... 77 

Table 4.3 Summary of Overfished Simulations ................................................................ 82 

 

 

 

 



 

ix 

LIST OF ILLUSTRATIONS 

Figure 2.1 Map of Delaware Bay oyster bed groups ........................................................ 10 

Figure 2.2 Live Ratio ........................................................................................................ 25 

Figure 2.3 Shell Rock Contours ........................................................................................ 27 

Figure 2.4 High-mortality Contours ................................................................................. 29 

Figure 2.5 Medium-mortality Contours ............................................................................ 30 

Figure 3.1 Schematic of Simulation Analysis................................................................... 49 

Figure 3.2 Summary of Operating Model Timeseries ...................................................... 53 

Figure 3.3 Forecasts of Base Estimation Model ............................................................... 55 

Figure 3.4 Overfished Simulation Timeseries .................................................................. 58 

Figure 3.5 Incidence of Overfishing in Simulations ......................................................... 60 

Figure 3.6 Regression of Observed Fishable Tows .......................................................... 61 

Figure 3.7 Simulated Percent Fishable Tows ................................................................... 62 

Figure 4.1 Timeseries of the Four Base SS Models.......................................................... 78 

Figure 4.2 Retrospective Analysis of SS Models ............................................................. 80 

Figure 4.3 Simulated Spawning Stock Biomass Estimates .............................................. 81 

Figure 4.4 Simulation Forecasts of Spawning Stock Biomass from EM Structures ........ 83 



 

x 

LIST OF ABBREVIATIONS 

  USM    The University of Southern Mississippi 

  M    Natural Mortality 

  F    Fishing Mortality 

  D    Disease Mortality 

  SSB    Spawning Stock Biomass 

  MSY    Maximum Sustainable Yield 

  FMSY    Fishing Mortality at MSY 

  BMSY    Biomass at MSY 

  SSBMSY    Spawning Stock Biomass at MSY 

  OFL    Overfishing Limit 

  ABC    Acceptable Biological Catch 

  HM    High-mortality Oyster Bed Group 

  MM    Medium-mortality Oyster Bed Group 

LM    Low-mortality Oyster Bed Group 

SR    Shell Rock Oyster Bed 

ESA    Effective Surface Area 

RHL    Recreational Harvest Limit 

SSC    Scientific and Statistical Committee 

 

 



 

1 

CHAPTER I - BACKROUND 

1.1 Introduction 

1.1.1 Sources of Error in Estimation of Fishery Stock Status 

Myriad sources of uncertainty are characteristic of or impact all commercial and 

recreational fisheries, contributing uncertainty to the determination of stock status and 

subsequent development of management targets (Rosenberg & Restrepo, 1994; 

Roughgarden & Smith, 1996; Punt et al. 2014). Environmental stochasticity and harvest-

implemented changes in spatial distribution or age-composition can lead to interannual 

variation in population dynamics. This variability is a type of process error and is 

generally described as noise in stock assessment models. Models account for this noise 

by applying a certain amount and distribution of uncertainty around parameter estimates 

(informed by fishery-dependent and -independent data), though this method is imperfect 

at capturing interannual variations in population dynamics and the eventual estimation of 

stock status (Hilborn, 1987). Observation error also contributes uncertainty to the 

estimation of stock status. Each data point, whether it be an observation of age-

composition, length-composition, on an abundance index, is not a census of the stock, but 

instead a snapshot with associated sampling error (Maunder & Piner, 2015). Stock 

assessment models use the sampling error to define a sampling distribution and likelihood 

function for each index or composition, though how well these are characterized (or not) 

has consequences on estimation of stock status and eventual management decisions. A 

third major source of uncertainty in fisheries is implementation error, where the 

designated management strategy is imperfectly executed on the stock (Butterworth & 

Punt, 1999). Implementation error increases uncertainty in forecasted stock status, an 
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important metric to evaluate future impacts of prospective management decisions. In the 

face of these uncertainties, fisheries managers tend to reserve fishery resources from the 

management targets to allow for variability (Hilborn, 1987).  

1.1.2 Simulation Analysis 

Simulation analysis is a useful tool to complement and extend formal stock 

assessment models to better inform managers of the risk that a management strategy 

results in an overfished stock or overfishing occurs over some period of time (Smith, 

1994; Butterworth et al. 2010; Punt et al. 2016). At the core of simulation analyses are 

operating models, models conditioned on the presumed underlying population dynamics 

of the stock (Hilborn & Walters, 1992). Multiple operating models can be developed to 

capture various plausible realities that span a range of uncertainties for the stock, 

including spatial structure, sexual-dimorphism, and time-varying fishery selectivity 

(Szuwalski & Punt, 2012; Punt et al. 2014). Simulations of the stock are generated from 

the operating model using the observed data and associated error distribution, producing 

realizations of the stock coincident with population dynamics specified in the operating 

model structure. When a simulation is assessed by the operating model that generated the 

simulation, the resulting stock status reflects the “true” status of that simulation.  

Depending on the goal of a simulation analysis, an estimation model can then 

evaluate stock status of each simulation for comparison with operating model results. 

Estimation models are generally less complex than the operating model, reflecting the 

complexity that an assessment model can support given the available data. Disparities in 

complexity between operating model and estimation model results can be evaluated to 

inform managers on what uncertainties are the most consequential for accurate estimation 
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of stock status. A simulation can then be forecasted according to harvest control rules and 

associated implementation error relevant to the fishery. If a simulation is forecasted with 

an estimation model, the resulting estimated stock status is compared to the status 

determined by the operating model. This process allows for the evaluation of 

management strategy performance in supporting management targets and the ability of 

the estimation model to effectively estimate stock status of a simulation. Duration of the 

forecast may be relevant to management cycle timelines (during which harvest control 

rules are reevaluated) or generation time of the stock to inform on long-term 

effectiveness of management decisions. Ultimately, relative importance of population 

dynamics or data uncertainty can be evaluated to decide on management strategies that 

conform to the risk tolerance policies of management councils (Punt et al. 2014). 

1.1.3 Dissertation Overview 

In the face of uncertainties, fisheries managers tend to make conservative 

management decisions and reserve fishery resources in favor of sustainability (Hilborn, 

1987), though how these decisions relate to the risk-tolerance policy of the management 

council is infrequently evaluated (though see Shertzer et al. 2008, Catalano & Jones, 

2013, Wiedenmann et al. 2016). The following three chapters present applications of 

simulation analysis to address risk-tolerance and development of management thresholds 

for three commercially important U.S. fisheries- Eastern oyster (Crassostrea virginica), 

Atlantic surfclam (Spisula solidissima) and summer flounder (Paralichthys dentatus).  

Historically, the assessment and management of each of these species has been affected 

by uncertainties characteristic of most US fisheries including difficulty in estimating (and 

differentiating) natural and disease mortality, parameterization of the stock-recruitment 
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curve, and the cost-benefit analysis of including complex sex-specific dynamics into 

assessment models. The following analyses provide frameworks from which risk-based 

assessments can be adapted to other fishery resources with similar uncertainties and 

support efforts to conduct risk-based assessments of management decisions.   
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CHAPTER II  - OYSTERS BEGET SHELL AND VICE VERSA: GENERATING 

MANAGEMENT GOALS FOR LIVE OYSTERS AND THE ASSOCIATED REEF TO 

PROMOTE MAXIMUM SUSTAINABLE YIELD OF Crassostrea virginica 

Note: this chapter has previously been accepted for publication in the Canadian 

Journal of Fisheries and Aquatic Sciences. Tables and citations are formatted in keeping 

with the conventions of this journal. 

Solinger, L. K., Ashton-Alcox, K. A., Powell, E. N., Hemeon, K. M., Hennen, D. R., 

Soniat, T. M. (2021). Oysters beget shell (and vice versa): Generating 

management goals for live oysters and the associated reef to promote maximum 

sustainable yield of Crassostrea virginica. Canadian Journal of Fisheries and 

Aquatic Sciences, DOI:10.1139/cjfas-2021-0277. 

2.1 Introduction 

The use of biological reference points for sustainable management of commercial 

fisheries is well ensconced in the management of U.S. federal fisheries, wherein 

achieving maximum sustainable yield (MSY) is the primary objective and biomass and 

fishing mortality rate at MSY (BMSY and FMSY, respectively) are the critical metrics. An 

expansive library of literature has been developed relating to the evaluation of these 

metrics and their proxies (e.g., Haltuch et al. 2008; Cordue 2012; Punt & Szuwalski 

2012; Zhou et al. 2012; Mangel et al. 2013; Rothschild & Jiao 2013) and the advantages 

and limitations of their implementation (e.g., Maunder 2003; Hartill et al. 2005; O’Leary 

et al. 2011; Finley & Oreskes 2013). Management strategy evaluations and related 

modeling approaches are exemplars for consideration of management options for the 

implementation of these metrics (e.g., Miller et al. 2010; Hilborn 2012; Stobart et al. 
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2013; Hennen 2015; Kjelland et al. 2015; Solinger et al. submitted). The evolution of 

reference-point based management for oysters has followed a different route than that for 

other stocks. This divergence is due to the relationship of the living oyster stock to the 

integrity of the reef (e.g., Harding et al. 2010; Southworth et al. 2010; Swannack et al. 

2014; Beck & La Peyre 2015; Soniat et al. 2019) and a strong influence of the estuarine 

salinity gradient on population dynamics (e.g., Bergquist et al. 2006; Tolley et al. 2006; 

La Peyre et al. 2009, 2016; Pusack et al. 2019), which together have historically limited 

the application of whole-stock reference points. Unlike most management challenges for 

commercially fished stocks, oysters require simultaneous management of the population 

dynamics and the dynamics of the shell bed (Powell et al. 2012a), thus management must 

inherently be area-based to compensate for the salinity-dependent physiology (Powell et 

al. 1997; La Peyre et al. 2009; Ascenio et al. 2016; Leonhardt et al. 2017), predator 

distributional patterns (Stauber, 1958; Garton & Stickle 1980; Dekshenieks et al. 2000; 

Johnson & Smee 2014), disease-induced variations in adult mortality rate (Andrews 

1988, Powell et al. 1996, Bushek et al. 2012, Powell et al. 2018), and the net downestuary 

flux of larvae (Narváez et al. 2012a,b, Soniat et al. 2012b). Only in the ecosystem context 

does the management of other fisheries approach such a complex amalgam (Link et al. 

2002; Zabel et al. 2003; Worm et al. 2009). 

Arguably, reference point-based management of an oyster fishery began with 

Haskin’s 40% rule (Fegley et al. 2003; Powell et al. 2018), which was historically applied 

to the Delaware Bay seed fishery in New Jersey and specified that fishing on a reef would 

cease when the volume of live oysters in a bushel of dredged material dropped to 40% of 

the total volume. Retrospective analysis of the period when this measure was used 
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(approximately 1950s to 1990) showed that the fishing mortality rate rarely exceeded 5% 

of market abundance (Powell et al. 2008) and the annual survey time series demonstrated 

that this was a period of sustainable management. At the onset of Dermo disease in 1990 

(Ford 1996; Bushek et al. 2012), this approach faltered and the consequent reduction in 

oyster abundance both voided application of the 40% rule and closed the seed fishery 

(Powell et al. 2008, 2009a). In the late 1990s, Klinck et al. (2001) developed the first 

reference point model, essentially a surplus production model that required the abundance 

of marketable oysters at the end of the year be no lower than the abundance present at the 

start of the year. The model permitted rebuilding by establishing the option of increased 

abundance at year’s end, but defining MSY and a rebuilding goal remained elusive 

(Powell et al. 2009b). Nonetheless, the constant-abundance reference point brought back 

a period of sustainable harvest in the Delaware Bay after Dermo made the 40% rule 

impracticable (Powell et al. 2008). Powell et al. (2018) introduced a more sophisticated 

surplus production model based on that of Klinck et al. (2001) and suggested that the 

landings established therefrom were close to maximum sustainable yield under the 

enhanced natural mortality rate produced by Dermo disease. 

The importance of shell-bed integrity to sustainable production of oysters has 

long been known, supported by a variety of shell addition and enhancement efforts over 

the last century (Woodward & Waller 1932; Smith et al. 2005; MacKenzie 2007; Harding 

et al. 2012). Whereas concerns over shell removal and reef degradation as a product of 

fishing have been well delineated (Lenihan & Peterson 1998; Powell et al. 2001; Woods 

et al. 2005; Beck et al. 2011), the importance of natural processes responsible for reef 

degradation and shell loss have only recently been acknowledged as a primary driver of 
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shell-bed integrity. Studies suggest that rates of taphonomic degradation for oyster shell 

are much higher than those for most bivalve species (Powell et al. 2006; Powell et al. 

2011a,b), and the transience of oyster shell is a persistent characteristic over a range of 

estuarine conditions (Powell & Klinck 2007; Mann et al. 2009a; Pace et al. 2020a). As a 

consequence of these findings, Soniat et al. (2012a, 2014) patterned a constant shell 

model after the constant abundance model of Klinck et al. (2001) in which surficial shell 

or cultch, not oyster abundance, was conserved yearly. This was the first effort to 

sustainably manage the oyster reef rather than solely the living oyster stock. 

In a review of reference point-based management of oyster fisheries, Powell et al. 

(2018) underscored the discordance between management aimed at stock sustainability 

and management aimed at cultch (surficial shell) sustainability. The oyster stock begets 

shell and vice versa, thus the concept of sustainability applied to one does not necessarily 

result in management that will be sustainable to the other. The underlying challenge is the 

inability to explain a broodstock-recruitment relationship (Powell et al. 2008) in the 

classic terms of the relationship between recruitment and spawning stock biomass 

(Rothschild 2000; Brooks and Powers 2007; Zhou 2007; Martell et al. 2008). As 

recruitment has consistently been enhanced by the planting of clean shell during the 

appropriate time of the spawning cycle, recruitment cannot be a function solely of 

spawning stock biomass and larval availability. Furthermore, the enhanced attractiveness 

of planted shell is impermanent. Ashton-Alcox et al. (2021) recently estimated that the 

degree of enhancement declined exponentially with a half-life of somewhat less than one 

year. This clearly demonstrates that substrate quality is substantively responsible for 

recruitment dynamics. This understanding has been advanced by Pace et al. (2020b) who 
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demonstrated larval preference for settlement on live oysters and the inner surface of 

boxes rather than loose shell, a predilection consistent with previous observations (e.g., 

Soniat et al. 2004; Tamburri et al. 2008; Powell et al. 2008, 2020b and references 

therein). Live oysters and box interiors are the newest naturally occurring surfaces and 

thus can be expected to provide settlement characteristics similar to planted shell.  

The confluence of these observations led Hemeon et al. (2020) to propose a new 

interpretation of the broodstock-recruitment relationship of Powell et al. (2008), where 

recruitment of oysters is a function of surface area quality, rather than spawning stock 

abundance and fecundity. Hemeon et al. (2020) defined for the first time a distinct 

relationship between live oyster and shell abundance in establishing sustainability with 

potential for the development of reference point-based management goals for both the 

live oyster stock and shell bed. Herein is proposed a new model joining these two 

processes from which are derived reference points that establish MSY criteria for 

management of cultch quantity and stock abundance using effective surface area as the 

primary metric establishing sustainability.  

2.2 Methods 

2.2.1 Oyster Bed Groups 

The data on which this study is based come from the annual stock assessment 

surveys for the New Jersey portion of the Delaware Bay. Survey details can be found in 

the stock assessment workshop reports housed at the Haskin Shellfish Research 

Laboratory in New Jersey (https://hsrl.rutgers.edu; see also Powell et al. 2008 and 

Hemeon et al. 2020). The oyster beds in the New Jersey waters of Delaware Bay have 

historically been divided into regional groups based on long-term trends in mortality and 

https://hsrl.rutgers.edu/
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productivity. The groupings used here are those used by Hemeon et al. (2020): low-

mortality (LM), medium-mortality (MM), Shell Rock (SR), and high-mortality (HM) 

(Figure 2.1).  

 

 

Figure 2.1 Map of Delaware Bay oyster bed groups 

From Hemeon et al. (2020), map of low-mortality (LM), medium-mortality (MM), Shell Rock (SR) and high-mortality (HM) oyster 

bed groups in the Delaware Bay. Values to the left of bed group designation are bbed area in hectaries (ha). 

 

These groups rest within the salinity gradient that drives mortality and 

productivity (Bushek et al. 2012). The low-mortality group was excluded from the 

following model simulations because recruitment in this region is limited to self-

recruitment and minimal upestuary transport of larvae, rather than available substrate for 

settlement (Narváez et al. 2012a,b; Munroe et al. 2013, 2014; Hemeon et al. 2020). The 

singularity of Shell Rock, a one-bed group, originates from its high productivity. This bed 

sits between a region of higher predation and disease intensity (HM) and a region of 
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slower growth and lower mortality (MM) (Kraeuter et al. 2007; Bushek et al. 2012). Bed 

areas for the three simulated groups are provided in Figure 2.1.  

Models for the medium-mortality, high-mortality, and Shell Rock groups were 

developed using data collected between 1953 and 2017. To capture multiple generations 

of oysters, the simulated population was run for 800 months, nearly 70 years, and model 

output was reported at each monthly interval. In the first 200 months, only natural 

mortality (M) and fishing mortality (F) were causes of mortality on oyster beds. Adult 

mortality due to disease, henceforth termed Dermo mortality (D) was added in month 

201. Fifteen thousand simulations were run for each bed group. 

2.2.2 Summary of Population Dynamics  

The model uses a simple approach to population dynamics for the living oyster 

population based on parameterization of growth, recruitment, and mortality. Mortality is 

split into three components: non-disease natural mortality, disease (Dermo) mortality, and 

fishing mortality, with size- and age-dependent selectivity for each type of mortality 

discussed later. “Dermo” mortality as it is defined here encompasses mortality sources 

that are associated with downestuary, higher salinity reaches of the estuary. Whereas 

Dermo is a primary source of mortality, other diseases such as MSX and predation on 

market-size oysters are subsumed under this designation. Unlike most surplus production 

models, the model does not invoke a standard broodstock-recruitment relationship. 

Rather, the “broodstock” is specified in terms of surface area suitable for larval 

settlement and this ‘effective surface area’ (Hemeon et al. 2020) is the sum of three 

contributing components, live oysters, boxes (dead oysters with articulated valves), and 

cultch (disarticulated surficial shell). This establishes a necessary relationship between 
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the living population and the supporting reef structure required for the species’ survival. 

In addition, the model includes a carbonate submodel that implements the dynamics of 

shell addition and loss, thereby completing the feedback loop between the living 

population, the reef structure, and the provision of new recruits to the population. The 

submodel specifies carbonate effective surface area for the three constituent types (live 

animal, box, and cultch) as well as the rates of addition and loss of carbonate for each of 

them. The model, then, is a fully integrated population dynamics-carbonate budget 

model. 

2.2.3 Mortality 

Mortality rates throughout the text and figures are specified as fractions or 

percentages per year, unless identified as specific rates in units of (time-1). As simulations 

are modeled at monthly increments, annual mortality rates are adjusted to evenly 

distribute over 12 months. The non-disease natural mortality rate (Ma) was based on 

analyses of Powell et al. (2006, 2008) and Bushek et al. (2012). Parameterization of M 

was consistent between bed groups and varied in a stepwise fashion according to age and 

length. Mortality of oysters <35mm is elevated relative to larger individuals (Powell et al. 

2008), thus a 90% mortality was enforced on individuals below this threshold size. 

Mortality then stabilized between eight and ten percent mortality for oysters >35mm until 

individuals reached 156 months of age (13 years). At 156 months of age, natural 

mortality was elevated to 50%, consistent with Powell et al. (2011c, 2012b) and Munroe 

et al. (2015). Maximum age was set to 240 months (20 years) following presumptions of 

Mann et al. (2009b). Hereafter, time is not included in the mathematical expressions 

involving mortality because mortality at age remained constant at each time step.   



 

13 

In each simulation, Dermo (D) and fishing (F) mortality were randomly selected 

from rates ranging from no fishing or disease mortality to mortalities that would lead to 

extinction. F was selected from a range of 0 to 55% mortality per year, which was 

applied evenly at monthly increments and remained constant throughout the simulation 

until the simulation either reached the terminal month or the simulated population 

became extinct. Fishery selectivity followed that of the commercial fishery in Delaware 

Bay, fully selecting for oysters >63mm, as only a small percentage of smaller animals 

were landed by the New Jersey fishery (Powell et al. 2005). Monthly fishing mortality at 

age was thus described by equation 1, where F is converted from annual to monthly 

mortality rate, a is age in months and FS is fishery selectivity.   

1 )  𝐹𝑎 =
𝐹

12
∗ 𝐹𝑆𝑎 

D was handled in much the same way as F, though the simulation was allowed to 

stabilize or crash under F over a period of 200 months before D induced additional 

mortality on the simulated population. For each simulation, D was randomly selected 

from a range of 0 to 55% annual mortality rate and was fully selected for oysters >40mm. 

D was constant from month 200 to 800 unless the simulated population became extinct 

before the terminal month. Annual Dermo mortality at age is described in the following 

equation, where DS is Dermo selectivity.  

2 )  𝐷𝑎 =
𝐷

12
∗ 𝐷𝑆𝑎 

Total monthly mortality at age (Za) in month 201 when natural, fishery, and 

Dermo mortality were all acting on the oyster population was then described by equation 

3.  
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3 ) 𝑍𝑎 = 𝑀𝑎 + 𝐹𝑎 + 𝐷𝑎 

A separate mortality metric was calculated to account for oyster mortality that 

would contribute to the shell stock, initially as a box, and eventually as cultch. Since the 

fishery removes oysters, fished oysters do not contribute shell to the reef to support future 

recruitment. Only natural (M) and Dermo (D) mortality contribute shell to the reef. 

Mortality at age contributing to available shell surface area is described by equation 4, 

4 )  𝑆𝑀𝑎 = 𝑀𝑎 + 𝐷𝑎 

where SMa is mortality contributing to shell surface area of the bed.  

2.2.4 Surface Area Calculations 

The surface area of each individual oyster was calculated by first generating the 

length at age of each oyster using the Von Bertalanffy growth equation 

5 )   𝐿𝑎 = 𝐿𝑖𝑛𝑓(1 − 𝑒−𝐾((𝑎/12)−𝑡0)) 

where La is length at age a in mm, Linf is the asymptotic maximum length in mm, K is the 

growth rate per year (adjusted to a monthly growth rate) and t0 is the theoretical age at 

length zero. Kraeuter et al. (2007) provide values for these parameters for Shell Rock and 

beds in the medium- and high-mortality groups (Table 2.1).  

Table 2.1 Von Bertalanffy Parameters 

Group Linf t0 K 

Shell Rock 125mm 0.2 years 0.23 / year 

High-mortality 125mm 0.2 years 0.2 / year 

Medium-mortality 140mm 0.2 years 0.23 / year 

Parameters determined in Kraeuter et al. (2007), used here in the von Bertalanffy growth equation to determine the length at age of 

oysters from each region.  
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Shell width was generated using the allometric equation  

6 ) 𝑊𝑎 = 𝑔 ∗ 𝐿𝑎
𝑏  

where Wa is shell width in mm at each respective age, g is the growth constant, La is shell 

length at age a, and b is the growth rate. Parameterization for g and b were derived from 

Powell et al. (2016) and remained constant across bed groups, at 2.71 and 0.71, 

respectively.  

Length and width values at age were used to generate the total surface area of 

each individual oyster, using the following equation from Hemeon et al. (2020)  

7 )   𝐿𝑆𝐴𝑎 = 𝐿𝑎 ∗ 𝑊𝑎 ∗ 2 ∗ 0.8 

where LSAa is surface area of a live oyster at age a in mm2. The equation includes two 

constants, (1) a multiplication factor of 2 to account for the the two oyster valves and (2) 

a shape correction factor of 0.8 to account for the ovoid shape (Kuykendall et al. 2015). 

LSAa is multiplied by the numbers at age in each month (Na,t) to generate the total 

effective live surface area at simulation time t (LSAa,t) contributing to the surface area-

recruitment relationship. 

8 )  𝐿𝑆𝐴𝑎,𝑡 = 𝐿𝑆𝐴𝑎 ∗ 𝑁𝑎,𝑡 

The number of oysters at each age is reported for each month of simulation. A 

portion of these experience natural or Dermo mortality and contribute to box and 

eventually cultch surface area. Fished oysters are removed from the population and do 

not contribute to the surface area-recruitment relationship. If an oyster dies due to either 

natural or Dermo mortality, the recently deceased oyster first becomes a box. As a box, 

both the interior of the shell and the exterior can be used for settlement, and the box 

effective surface area is calculated using equation 9. 
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9)   𝐵𝑆𝐴𝑎,𝑡 = 𝐿𝑆𝐴𝑎,𝑡−1 ∗ (1 − 𝑒−𝑆𝑀𝑎) ∗ 2 ∗ 0.8 ∗ 𝐶𝑏′ 

BSAa,t is box surface area at age a (corresponding to the age of the oyster at death) 

in mm2, calculated by accumulating the shell from LSAa,t that died from natural or Dermo 

mortality (SMa), then multiplying by two to account for the interior and exterior surface 

area of the shell, and finally multiplying by a correction factor for boxes, Cb’. Because not 

all surface area is equally conducive to recruitment, Hemeon et al. (2020) developed 

correction factors for box and cultch surface area (Cb and Cc) scaled to LSA. Two box 

correction factors are specified to respectively represent the inside and outside of boxes, 

as the inside is generally cleaner and more attractive to larval settlement. These two 

values are summarized, averaging the Cb and Cc values to obtain the box correction factor 

used here, Cb’ (Table 2.2).  

Table 2.2 Correction Factors 

Group Box Correction (Cb’) Cultch Correction (Cc) 

Shell Rock 0.73 0.40 

High-mortality 0.72 0.21 

Medium-mortality 0.675 0.53 

Correction factors for box and cultch in the three modeled groups. 

The accumulation of boxes is also traced through the simulation as oysters die, 

creating new boxes, while old boxes disarticulate. The total box surface area contributing 

to the surface area-recruitment relationship is then calculated for each month of 

simulation using the equation  

10 )  𝐵𝑆𝐴𝑡 = Σ(𝐵𝑆𝐴𝑎,𝑡) + (𝐵𝑆𝐴𝑡−1 ∗ 𝑒−𝜆𝑏) 

where BSAt is total box effective surface area in mm2 at time t, calculated as the sum of 

new BSAa,t and the BSA from simulation time t-1 that has not disarticulated by time t, the 
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disarticulation rate being λb. The disarticulation rate was generated from Ford et al. 

(2006), which estimated the half-life of boxes in the Delaware Bay at four and a half 

months. Limited information is available on the influence of salinity and other 

environmental factors on disarticulation rates, thus the rate was set as constant across 

regions. This value is similar to that used by Pace et al. (2020a) and Damiano and 

Wilberg (2019), but faster than Christmas et al. (1997).  

As boxes disarticulate, the disarticulated valves are added to the cultch effective 

surface area, calculated using the equation 

11 ) 𝐶𝑆𝐴𝑡 = (𝐵𝑆𝐴𝑡−1 ∗ (1 − 𝑒−𝜆𝑏) ∗ 𝐶𝑐/𝐶𝑏∗) + (𝐶𝑆𝐴𝑡−1 ∗ 𝑒−𝜆𝑐) − ((𝐿𝑆𝐴𝑡 + 𝐵𝑆𝐴𝑡) ∗

 0.18)) 

where cultch effective surface area in mm2 at time t, CSAt, comprises newly disarticulated 

boxes adjusted by the cultch correction factor (Cc), and cultch from simulation time t-1 

that has not decayed, according to decay rate, λc. The decay rate of cultch (λc) across 

regions was set to a 2.5-year half-life, consistent with Powell et al. (2006), Mann et al. 

(2009a), and Pace et al. (2020a). Values in Powell et al. (2006) cover a relatively wide 

range of half-lives, and the value used herein is at the lower end of that range, but within 

reasonable estimates of an average condition.  

Finally, cultch volume has historically been difficult to quantify from survey 

observations, as it is infrequently culled from live oyster and boxes that are collected in 

surveys. The Delaware Bay survey estimated that attached cultch accounted for 18% of 

the reported live oyster and box volume. Thus, cultch surface area was debited by 18% of 

the live oyster and box surface area in these simulations with expectation that this surface 

area was not accounted for in survey estimates of cultch weight. An important 
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presumption is that this underestimate would routinely be found in survey datasets, as 

shell is rarely culled from live oysters or boxes when cultch weights are recorded.  

 The total effective surface area (ESA) at time t is generated by the following 

equation 

12 )   𝐸𝑆𝐴𝑡(ℎ𝑎) = 𝐿𝑆𝐴𝑡 + 𝐵𝑆𝐴𝑡 + 𝐶𝑆𝐴𝑡 ∗  10−10(𝑚𝑚2) 

where LSAt, BSAt, and CSAt are summed and converted from mm2 to hectares (ha). This 

surface area is then available at time t to oyster recruits.   

2.2.5 Surface Area-Recruitment 

The number of recruits was determined in each month of simulation using a 

modified Beverton-Holt stock-recruitment curve, where instead of using spawning stock 

biomass to generate recruitment, the effective surface area available to newly recruiting 

oysters determined year-class success. This process is described in the following equation 

taken from Hemeon et al. (2020)  

13 )  𝑅𝑡 =  
𝑎𝑅(𝐸𝑆𝐴𝑡−𝑋)

1+𝑏𝑅(𝐸𝑆𝐴𝑡−𝑋)
 

where Rt is the number of recruits at time t, ESAt is total effective surface area at time t, 

and aR, bR, and X are model parameters (Table 2.3). To force the shell surface area-recruit 

relationship to go through or near zero, an X-axis shift (X) was developed by Hemeon et 

al. (2020) and is subtracted by ESAt to determine the number of recruits, effectively 

inserting the analogue of an Allee effect.  
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Table 2.3 Beverton-Holt Parameters 

Group aR bR X (axis shift) 

Shell Rock 0.73 0.40 211 ha 

High-mortality 0.725 0.21 275 ha 

Medium-mortality 0.675 0.53 876 ha 

Hemeon et al. (2020) parameters of the adjusted BEverton-Holt shell surface area-recruitment curve for the three simulated oyster bed 

groups.  

2.2.6 Model Spin-up 

The initial number of live oysters at age (LAA) was generated using the natural 

mortality rate (Ma) to distribute the starting population number (Nzero) across the 240 age 

classes. Values of Nzero at each bed group were somewhat arbitrarily selected between 

two and six billion oysters, values meant to ensure the population came to a stabilization 

point within the first 1000 months of simulation. The eventual point of stabilization did 

not vary based on values of Nzero, and instead was determined by population dynamics of 

the bed group. Equilibrium surface area values for live oyster, box and cultch 

components in month 1000 then fed into the next phase of spin-up.  

The number of oysters allocated from Nzero to age-class one represented the base 

number of recruits (R0) for the first 1000 months of spin-up. The number of oysters from 

ages 2 to 240 were calculated following the equation 

14 )  𝑁𝑎,𝑡 =  𝑁𝑎−1,𝑡−1 ∗ 𝑒−𝑀𝑎−1 

where the number of live animals at age a at time t is equal to the number of live animals 

from age a-1 at time t-1 that survived natural mortality associated with age a-1. Mortality 

is also the only mechanism for death in the following 1000 months of spin-up from t = 

1001 to t = 2000. LAA1000 informed on the population size and age distribution for the 
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second spin-up, and LSA1000, BSA1000, and CSA1000 were used to calculate the effective 

surface area (ESA) contributing to oyster recruitment at time 1000. With this, from time 

1001 to 1999, Rt was generated using the surface area-recruitment relationship described 

in equation 13.  

2.2.7 Simulating Fishing and Dermo Mortality 

For the following simulated time, the clock resets and results from spin-up t = 

2000 are now the initial population for a simulation beginning at t = 1. For the first 200 

months of simulation, the bed groups face only natural and fishing mortality, allowing the 

population to come to a new equilibrium with fishing mortality before Dermo mortality 

begins acting on the population. ESAt=1 from the model spin-up generates the number of 

recruits (age = 1), and number of oysters at age 2 – 240 are generated from the following 

equation 

15 )  𝑁𝑎(2−240),𝑡(1−200) =  𝑁𝑎−1,𝑡−1 ∗ 𝑒−𝑍𝑎−1 

where Za (See Equation 3) is the total mortality, with Dermo mortality (Da) set to zero. 

Over the course of 200 months the amount and distribution of live, box, and cultch 

surface area either stabilizes and comes into equilibrium with the higher total mortality 

rate or the simulated population experiences extinction from fishing mortality.  

At t = 201, D is added to total mortality, and the simulation is allowed to continue 

to t = 800, where again, the population has either experienced extinction from a 

combination of F and D, or is sustained to the terminal month, t = 800. Populations that 

survived to t = 800, or approximately 70 years, were described as maintaining sustainable 

levels of fishing and Dermo mortality. In addition to levels of F and D, other relevant 
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statistics to describe the theoretically sustainable populations including type, amount, and 

ratio of surface area, as well as catch, were extracted from t = 800.  

2.2.8 Threshold Metrics 

Three metrics were assessed for each region to determine population thresholds 

that sustained fishing pressure through gradients of Dermo mortality. These metrics 

represent thresholds that oyster fishery managers can use to evaluate the current status of 

a region, and suggest fishery regulations, stock biomass, and F relative to FMSY and BMSY. 

They also provide the option for setting rebuilding targets and threshold control points for 

B and F leading to fishery closure. The first metric is number of live oysters m-2 larger 

than 63mm, the size of full fishery selectivity in Delaware Bay (Powell et al. 2005). The 

oyster fishery is managed primarily by the number of bushels landed, each bushel having 

a known range of market size individuals (Powell et al. 2005), regardless of biomass. At 

time t = 800, live oysters >63mm were tallied, and this value was divided by the total 

region area (Figure 1) to generate density as number of market size oysters m-2.  

Mass of cultch m-2 was the second threshold to describe sustainable population 

characteristics. In t = 800, cultch surface area, in hectares was converted to kg m-2 using 

the following equation 

16 )  𝐶𝑢𝑙𝑡𝑐ℎ𝐾𝐺 = (𝐶𝑆𝐴) ∗
0.69𝑘𝑔

0.111𝑚2
 

where the constant 0.69 kg per 0.111 m2 (Kuykendall et al. 2015, Hemeon et al. 2020) is 

used to convert effective CSA from area (m2) to mass (kg). This is done largely to create a 

more realistic comparison with field data collected on oyster beds, as surface area is a 

metric rarely recorded in historical data. Finally, mass of cultch is divided by bed group 
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area (m2) and used to determine sustainability thresholds for cultch mass across the range 

of fishing and Dermo mortality levels.  

Finally, the ratio of live surface area to total effective surface area at t = 800 was 

reported. This metric is analogous to the original 40% rule of Haskin that produced 

sustainable harvests for several decades prior to the onset of Dermo disease in Delaware 

Bay (Powell et al. 2008), in that it compares a volume-based ratio of box and cultch 

surface area to that available from live oysters. For scale, the total effective surface area 

is also reported. 

2.2.9 Model Verification  

Simulations for each bed group were verified against fall survey data for 

Delaware Bay oyster beds collected annually since 1953 (Fegley et al. 2003, Powell et al. 

2008, Ashton-Alcox et al. 2018). Estimates for total number of live oysters, number of 

boxes, and volume of cultch are recorded in the survey and were subsequently converted 

to effective surface area in Hemeon et al. (2020). They are used for verification here. Box 

and cultch surface area were adjusted according to the correction factors in Table 2. The 

oyster population in Delaware Bay in the 1970s is considered to have been near carrying 

capacity (Powell et al. 2009a, 2012a) and fishing mortality was consistently ≤5% of the 

stock. The range of observed total effective surface area (ESA) from 1970–1979 in 

addition to the mean and standard deviation of ESA during this period, was compared to 

the terminal month of spin-up values from each regional model. During the 2000s, 

Delaware Bay oyster populations had declined due primarily to Dermo mortality, and the 

range, mean, and standard deviation of observed ESA from 2000–2009 were compared to 

the terminal month (t = 800) of each region model for simulations with F = 10% and D = 
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10%. These are reasonable estimates of Dermo and fishing mortality to represent this 

period in the Delaware Bay (Powell et al. 2012b, 2018).  

2.3 Results  

2.3.1 Model Verification  

Across model regions, spin-up and terminal month ESA values were well-within 

empirical ESA observations (Table 2.4). Shell Rock (SR) is the smallest bed group, and 

predictably had the lowest standard deviation during both the 1970s and 2000s, though 

model estimates were still within the first standard deviation of the mean within both 

periods. High-mortality (HM) beds demonstrated a large range in ESA during the 1970s, 

and the ESA after spin-up was just below the mean, well-within the range of observed 

values. The range of ESA contracted substantially during the 2000s when fishing and 

Dermo mortality were in effect, and the model simulation for high-mortality beds with F 

= 10% and D = 10% captured this decrease well, generating a terminal ESA of 788ha, 

above the mean though within the range of observed values.  Medium-mortality (MM) 

ESA also varied considerably during the 1970s, though spin-up values fell near the mean. 

Effective surface area at t = 800 was 1095ha, within the first standard deviation of the 

mean during the 2000s.  
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Table 2.4 Model Verification 

Group ESA1970s ESASpin-

Up 

ESA2000s ESA t = 

800 Mean SD Range Mean SD Range 

Shell Rock 1006  321 669 – 

1773 

1326 464  209 222 – 

869 

633 

High-

mortality 

2893  2735 1044 – 

8595 

2365 531  180 355 – 

826 

788 

Medium-

mortality 

3551 2120 1771 – 

8144 

3419 1682 673 886 – 

2735 

1095 

Comparison of Delaware Bay survey observations of effective surface area (ESA; in hectares) at Shell Rock, high-mortality and 

medium-mortality oyster beds to effective surface area estimated during model spin-up at t = 800. Values at t = 800 represent ESA 

coincident with Dermo and fishing mortality at 10%.  

2.3.2 Ratio of Live Shell to Total Shell  

Simulations of SR were the most resilient to varying Dermo and fishing mortality, 

with simulated populations only becoming extinct when Dermo and fishing mortality 

were most elevated. The ratio of live surface area (LSA) to total effective surface area 

(ESA) at Shell Rock ranged from 25% at the highest mortality rates to 56% at the lowest 

imposed mortality (Figure 2.2). Whereas the decline in the ratio of live-to-total effective 

surface area was relatively linear with Dermo and fishing mortality at SR, the HM and 

MM regions demonstrated an increased rate of decline in this ratio with elevated fishing 

mortality. At HM, the live-to-total effective surface area ratio ranges from 53% to 74%, 

declining by approximately 1% with each 1% increase in Dermo mortality, though ratios 

remain stable through 10% fishing mortality. At D = 15%, an increase in F from 5% to 

10% results in a reduction in live ratio of only 1%, while further increase in F from 10% 

to 15% reduces ratio of live-to-total effective surface area by 6%, demonstrating an 

accelerating decline in ratio with increased fishing mortality. Medium-mortality beds 
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exhibit a similar trend, though the range of the ratio of live-to-total effective surface area 

is lower, from 19% to 50%. Again, medium-mortality beds experience a 1% decline in 

this ratio with each 1% increase in Dermo mortality, though the ratio is relatively stable 

with fishing mortality up to 10%, at which point declines in live ratio increase and 

eventually lead to extinction. Fishing much above 20%, even in the absence of Dermo, 

results in extinction of the medium-mortality bed. 

 

Figure 2.2 Live Ratio  

Heat map showing contours of the ratio of live oyster surface area to total effective surface area at Shell Rock (left) the high-mortality 

beds (center) and the medium-mortality beds (right). All x-axes are fishing mortality (F) as fractions of the marketable stock and all y-

axes are Dermo mortality (D) as fractions of the stock. Dots indicate individual simulations of F and D that reached t = 800. Color 

bars indicating values of the ratio contour are shown to the right of individual graphs.  

2.3.3 Shell Rock 

Shell Rock was able to sustain higher levels of fishing mortality across a range of 

Dermo mortality rates than either HM or MM. The threshold for extinction was F = 36% 

and D = 55% (Figure 2.3). Catch peaked at 3.8 million landed oysters per month at F = 

25% when D = 5%. As Dermo increased, fishing at this level reduced overall catch by 

around half a million oysters with each 5% increase in Dermo mortality. At D up to 20%, 

fishing at F = 25% also generated the greatest catch for this level of disease, though the 
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increase was minimal compared to if the population were fished more cautiously at F = 

20%. Once Dermo reached 25%, fishing at F = 20% maintains or declines total landed 

catch and risks extinction if Dermo mortality is greater than expected or fishing at F = 

20% is improperly implemented. Consistent with a total natural mortality rate of 18-20% 

(Powell et al. 2018), D = 10% was used to develop threshold metrics of cultch kg/m2, 

number of market size oysters (>63mm) m-2 (hereafter referred to as oysters m-2) and 

total effective surface area (ESA). At D = 10%, catch is maximized at F = 25% and Shell 

Rock would require 2.1 kg m-2 of cultch, 29 oysters m-2, and 430ha of ESA to sustain this 

level of catch. Note that cultch mass has much greater sensitivity to F than D because 

fishing mortality removes shell from the stock while Dermo mortality continues to 

contribute shell. Oysters m-2 and ESA respond more evenly to both F and D because both 

sources of mortality result in death.  
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Figure 2.3 Shell Rock Contours 

Heat map showing contours of catch in numbers (top-left), kg of cultch m-2 (top-right), number of market size oysters (>63mm) m-2 

(bottom-left) and total effective surface area (bottom-right) for Shell Rock. Dots indicate individual simulations of F and D that 

reached t = 800. Color bars indicating values of the z-axis contour are shown to the right of individual graphs.  

2.3.4 High-mortality 

The threshold of extinction in the HM group was a total fishing and Dermo 

mortality of around 35%, though simulations were more sensitive to fishing than Dermo 

(Figure 2.4; note that x- and y- axis scales vary across heat maps in Figure 2.3 – Figure 

2.5). Whereas simulated populations remained viable with Dermo as high as 35%, fishing 

mortality above 24%, independent of Dermo mortality, resulted in extinction. At F = 

24%, catch declined substantially from the maximum of 5.1 million oysters at F = 15%. 

Following the analysis used for Shell Rock, D = 10% was used to develop threshold 
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metrics. In this case, catch is maximized at F = 15%, landing 3.5 million oysters. At HM, 

however, population stability is far more precarious, and an increase of F from 15% to 

20% at D = 10% results in extinction, whereas a reduction in fishing mortality from 15% 

to 10% results only in a modest decline in catch from 3.5 to 3.4 million oysters. At D = 

10% and F = 15%, HM sustains 0.22 cultch kg/m2, 9 oysters m-2, and 560ha of ESA. The 

volatility of catch, cultch, and number of oysters over a wide range of D and F, relative to 

Shell Rock, emphasizes the sensitivity of the high-mortality bed group to variations in 

exploitation rate. 
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Figure 2.4 High-mortality Contours 

Heat map showing contours of catch in numbers (top-left), kg of cultch m-2 (top-right), number of market size oysters (>63mm) m-2 

(bottom-left) and total effective surface area (bottom-right) for High-mortality region. Dots indicate individual simulations of F and D 

that reached t = 800. Color bars indicating values of the z-axis contour are shown to the right of individual graphs.  

 

2.3.5  Medium-mortality  

The medium-mortality region was far more sensitive to fishing than Dermo 

mortality (Figure 2.5). When F = 0%, Dermo mortality as high as 42% maintained a 

population to t = 800, while independent of D, fishing mortality above 23% resulted in 

extinction. Maximum catch at MM occurred at lower fishing rates than both HM and SR, 

at 4.5 million oysters with F = 10% and D = 5%. Despite low D, catch declines above 

and below F = 10%. Following SR and HM, D = 0.10 was used to develop threshold 
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metrics. Catch at D = 10% is maximized at F = 10%, landing three million oysters, with 

1.9 cultch kg m-2, 23 oysters m-2, and 1100ha of ESA.  

 

Figure 2.5 Medium-mortality Contours 

Heat map showing contours of catch in numbers (top-left), kg of cultch m-2 (top-right), number of market size oysters (>63mm) m-2 

(bottom-left) and total effective surface area (bottom-right) for Medium-mortality region. Dots indicate individual simulations of F 

and D that reached t = 800. Color bars indicating values of the z-axis contour are shown to the right of individual graphs.  

2.4 Discussion 

2.4.1 Perspective 

The importance of the Eastern oyster and its reef in the ecology, biodiversity, 

nutrient cycling, and provision of other ecosystem services in estuaries is well described 

(Peterson et al. 2003; Coen et al. 2007; Boothe & Heck 2009; Grabowski et al. 2012; 

Gedan et al. 2014; Kritzer et al. 2016; McCay et al. 2017; McAfee & Bishop 2019), 
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though sustainable management of this important resource has been rare (Hargis & 

Haven 1988; Jackson et al. 2001; Mann & Powell 2007; Camp et al. 2015). An exception 

was the 40% rule in the Delaware Bay, which successfully used supporting science to 

implement a simple reference point-based management strategy (Hargis & Haven 1988; 

Jackson et al. 2001; Mann & Powell 2007; Camp et al. 2015). Though successful for 

many decades, this management strategy proved inadequate upon the onset of Dermo in 

the 1990s. Declines in populations of Eastern oysters have been thoroughly characterized 

(Rothschild et al. 1994; Beck et al. 2009; zu Ermgassen et al. 2012; Powell et al. 2018), 

and some considerable portion of the decline over the last few decades is owed to Dermo 

disease which unduly impacts adult mortality rates with biased emphasis on adult oysters 

(Powell et al. 2013; Harding et al. 2013). Dermo increases the mortality rate, but the 

oyster cannot respond by increasing production of larvae (Powell et al. 2009a). 

Accordingly, population abundance must decline, even in unfished populations (Powell et 

al. 1996, 2018). The concomitant decline in surplus production imperils the stock if 

fishing is not carefully managed (Powell et al. 2009b; 2018).  

The most substantive scientific failure in supporting management throughout 

periods of decline has been the failure to understand the impermanence of oyster shell. A 

primary factor influencing the observed historical degradation of reefs was likely an 

imbalance between carbonate addition and loss, inescapably leading to loss of reef 

acreage that amplified with the emergence of Dermo (Smith et al. 2005; Mann & Powell 

2007; Mann et al. 2009a; Powell et al. 2012a). Mann and Powell (2007) and Powell and 

Klinck (2007) raised this issue as an urgent challenge to management and restoration and 

Soniat et al. (2012) proffered a focus on cultch management as a primary assessment tool 
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to achieve sustainability. None of these offered a way to link the population dynamics of 

the oyster with the carbonate budget sustaining the reef, however, and subsequently, 

Powell et al. (2018) was unable to provide a solution. 

A key to this problem came from a proposed link between recruitment and 

effective surface area (Hemeon et al. 2020), rather than the classic dependency of 

recruitment on spawning stock biomass or fecundity. This linkage stems from a wealth of 

previous observational, experimental, and practical evidence of the importance of “clean” 

shell for recruitment enhancement (Ashton-Alcox et al. 2021), including the preference 

by oyster larvae to settle on new shell, be it the living animal, new boxes, or planted shell 

(Pace et al. 2020a). Live oysters produce both recruits and the habitat necessary for them 

to settle, whether from inherent provision of new live shell or through death providing 

boxes and cultch. Effective surface area supports settlement of recruits that contribute 

both to the live population and to its habitat, first while alive, and ultimately by death as 

their shell continues to be part of the reef. This feedback loop between live oysters and 

effective surface area defines the integrated role of population dynamics and the 

carbonate budget to support surplus production and a sustainable fishery. Simulations 

presented herein define the ambit of sustainability for the oyster-reef system, including 

characteristics leading to maximum sustainable yield and conditions leading to 

population (and reef) extinction. 

2.4.2 States of Sustainability 

In these simulations, oyster bed groups consistently remained sustainable with 

Dermo mortality rates as high as 25% (total natural and disease mortality ~35%). These 

values are higher than sustainable fishing mortality rates, likely because the population 
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and reef can withstand greater Dermo mortality than fishing mortality as Dermo mortality 

continues to contribute shell to the oyster bed, whereas fishing does not. Fishing 

mortality removes live shell surface area and ultimately box and cultch surface area, 

thereby preventing the contribution of shell to the effective surface area-recruitment 

relationship. Consequently, susceptibility to fishing mortality was more variable across 

bed groups.  

The Shell Rock population was able to withstand the greatest fishing mortality 

without experiencing extinction before the terminal month. Shell Rock sits in an ideal 

region of the Delaware Bay that averages 15‰ salinity, a situation where salinity is not 

so high as to unduly increase adult mortality, nor too low to restrain growth rate or larval 

availability. Thus, growth and recruitment rates are high on Shell Rock and mortality 

rates tend to be lower than those on the more saline high-mortality beds (Powell et al. 

2008). Moreover, the value of cultch as effective surface area is relatively high (Table 

2.2), and the decline in live-to-total effective surface area ratio is not confounded by 

fishing mortality, instead remaining relatively linear with offsetting declines in Dermo 

mortality and increased fishing (Figure 2.2). These advantages foster resiliency not 

observed in either the high-mortality or medium-mortality regions. Sustainable fishing 

mortality was restricted to far lower values on the medium-mortality and high-mortality 

beds, with catch maximized between F = 10% to F = 15%, above which catch declined. 

Interestingly, maximum catch associated with D = 10% was similar across bed groups, 

ranging between three and four million oysters per month, despite bed-group-specific 

fishing mortality associated with maximized catch at D = 10%. This equivalency, 

however, disregards the vast acreage of the high mortality region in comparison to the 
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smaller medium-mortality region and smaller-still Shell Rock. The productivity per unit 

area necessary to support a similar catch is very different between regions. The balance 

between productivity and bed acreage, with acreage highest in the high-mortality region 

balancing the lowest per-m2 productivity, reiterates the importance in dynamics of larval 

supply, cultch quality, and adult mortality in determining spatial variability in reef 

productivity.  

However, the model assumes constant adherence to the effective surface area-

recruitment model without error which is likely to allow for greater sustained fishing 

mortality and catch than would be observed in true stock assessments. In reality, oyster 

recruitment is highly variable (Austin et al. 1996; Powell et al. 2008; Mann et al. 2009a), 

with increased variability at regions that are farther upestuary as events that transport 

larvae upestuary (thereby contributing recruits) are infrequent while upestuary beds 

contribute larvae downbay as part of the typical downbay larval drift. Model simulations 

did not invoke uncertainty in the recruitment-effective surface area relationship described 

in Hemeon et al. (2020). Given the narrow window of conditions leading to sustainability 

at MSY as shown in Figure 2.3 – Figure 2.5, precautionary management maintaining 

fishing mortality rate below FMSY would appear prudent. 

Furthermore, whereas each simulation was run for 800 months, or about 70 years, 

some simulations with Dermo and fishing mortality near extinction levels continued to 

decline slowly but did not reach extinction within the simulated time allotment. Though 

the time series could have been extended, 70 years captures 10+ generations of oysters 

(see Kraeuter et al. 2007, for typical age ranges), greater than the minimum 1-2 

generations suggested by Punt et al. (2016). These marginal simulations serve to capture 
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the boundaries of fishing mortality and Dermo mortality that can be sustained by an 

oyster population for a time, but these bounds are unlikely to sustain the population long-

term given natural stochasticity in population dynamics.  

2.4.3 Reference Points  

These simulations confirm the urgency of maintaining a low F under conditions of 

a natural mortality rate above ~10%, arguably the historical pre-disease rate for at least 

some estuarine regions. Powell et al. (2018) proffered a FMSY ~6%, near the level that 

has proven sustainable in Delaware Bay (Powell et al. 2009a,b) and well below historical 

catch levels in most oyster fisheries (e.g., Jordan et al. 2002; Jordan & Coakley 2004; 

Wilberg et al. 2013; Pine et al. 2015). The present set of simulations, based for the first 

time on an integrated model that projects sustainability of both the stock and the shell 

bed, reinforces the requirement of maintaining a low F with natural mortality rates that 

are above 10% per year in order to limit the otherwise inexorable decline in the shell base 

that eventually results in reef demise. Simulations show, however, that at low natural 

mortality (D = 0%), sustainable F rises from lower rates into the range of 10 - 15% per 

year in the medium-mortality and high-mortality regions. Survey data from the initial 

years of the Delaware Bay time series, prior to the introduction of MSX, show that F at 

20-25% resulted in population collapse (Powell et al. 2008), consistent with the results of 

these simulations. 

The present model establishes a mechanism to identify analogues to the 

commonly used reference points of today, BMSY and FMSY. Given a rate of Dermo 

mortality, MSY is specified in terms of the stock size (numbers m-2) and fishing 

mortality (F). These effectively represent BMSY (actually NMSY, as biomass is a poor 
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measure of oyster landings due to variable condition index [Soniat et al. 1989; Rheault & 

Rice 1996; Powell et al. 2016]) and FMSY at the point of highest catch yielding a 

sustainable stock. Finally, total effective surface area (live + box + cultch) represents a 

reference point for the sustainability of the reef, designated here as EMSY, which 

includes the requirement to sustainably manage the shell bed. Simulations show that 

EMSY represents a unique balance of available cultch, stock abundance, and the rate of 

box formation generated by natural mortality. Modern MSY-based reference points 

generally accept the Schaefer model of surplus production, wherein the biomass at MSY 

(where surplus production is maximized) is approximately one-half of carrying capacity 

(Maunder 2003; Mangel et al. 2013; Powell et al. 2018). The premise is primarily an 

outcome of the relationship of broodstock to recruitment (Brooks & Powers 2007; Brooks 

2013; Punt et al. 2013). Removal of the classic broodstock-recruitment relationship in the 

present model might be expected to jeopardize the primary basis for MSY, the parabolic 

shape of the surplus production to spawning stock biomass relationship. Interestingly, the 

parabolic form remains, likely due to the large influence of live animals on ESA and the 

requirement of live animals to support cultch ESA. Thus, the original rationale for 

modern-day reference points is retained and the analogy with FMSY and BMSY 

uncompromised, while the third necessary reference point, EMSY, is incorporated. 

The model also derives sustainability in terms of the ratio of live to total ESA. 

This augurs back to the first reference point used for oysters, the 40% rule implemented 

by Haskin for the New Jersey oyster beds of Delaware bay. This reference point is a 

volume-based reference point, and thus inherently ratio based. The opportunity is thus 

presented to use a simple ratio derived during surveys to evaluate both stock and reef 
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status, advocated by Mann et al. (2009a) and Soniat et al. (2018). This ratio may provide 

an approach for setting stock status in cases where survey time series data are 

insufficient. The challenge of managing data poor stocks is well described (Cope 2013; 

Dowling et al. 2015; Newman et al. 2015) and often imperils evaluation of oyster 

fisheries wherein short survey time series or insufficient data are collected to represent 

the status of both the living stock and the reef. 

2.5 Area Management 

Area management is essential for oysters due to the strong influence of the 

salinity gradient on growth, recruitment, and mortality, though it is challenging to 

accomplish as all metrics used to evaluate stock status must be local. Growth rate and 

mortality are inherently local, but recruitment in its classic form (broodstock-recruitment) 

is evaluated for either the whole-stock or within a connected component of the stock, 

though the region of connectivity is often hard to judge (Narváez et al. 2012a,b; Munroe 

et al. 2013, 2014). The new formulation overcomes this impediment as ESA is inherently 

local. Accordingly, area-based reference points can now be routinely obtained as all 

necessary metrics are locally derived. 

The formulations of Hemeon et al. (2020) show that ESA values for its 

components (live oysters, boxes, and cultch) vary along the salinity gradient. Generally, 

the value of cultch as a source of ESA increases upestuary, to the extent that cultch ESA 

is nearly as valuable as box or live ESA in low salinities but offers very poor substrate at 

high salinities. Given the estuarine influence, the question becomes the degree to which a 

location can be assigned to one of the regions defined by Hemeon et al. (2020). One 

possible option, given a data-poor condition, is to use natural mortality (D+M) as a key 



 

38 

decision tool if data resources are not sufficient to generate a formal ESA-recruitment 

relationship. 

2.5.1 Application to Shell Planting 

This model provides information about sustainable cultch mass, numbers of 

oysters, and the sustainable ratio of live oyster-to-total effective surface area. Shell-

planting, though not included here, could be incorporated into the model as well. The 

dynamics of shell-planting are important to understand, as this shell enters the population 

as new shell that is ideal for the enhancement of larval oyster settling (Ashton-Alcox et 

al. 2021). The enhancement factor of planted shell decreases with a half-life similar to the 

disarticulation rate of boxes, the inner valves of which are similarly attractive to larval 

settlement. Cultch quantity at MSY and the ratio of live oyster-to-total surface area are 

useful metrics to quantify the influence of shell-planting efforts that have had variable 

success throughout the continental U.S. (Abbe 1988; Mann & Powell 2007; Powers et al. 

2009; Kennedy et al. 2011; Harding et al. 2012). Although mass of cultch matters, and 

cultch can be planted, how this mass relates to the ratio of live oyster-to-total surface area 

is infrequently assessed (though see Ashton-Alcox et al. 2021). Differences in the 

stability of the ratio of live oyster-to-total surface area between regions coincide with 

sensitivity to fishing mortality, emphasizing the need to carefully evaluate outcomes to 

provide best results from finite funds supporting recruitment enhancement programs.  

Smothering an oyster bed with healthy cultch that overwhelms the relevance of 

live surface area would seem to be detrimental, especially as the value of new cultch 

decays over the initial years but remains as part of the shell bed for years beyond that. 

Complementary to shell planting, transplanting oysters from one region to another is 
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another method of reef rehabilitation that has proven effective in the Delaware Bay 

(Ashton-Alcox et al. 2013) and has expanded to the use of hatchery seed in other areas 

(Carlsson et al. 2008; Kennedy et al. 2011). Transplanting not only provides increased 

oyster abundance but also encourages recruitment through the provision of the most 

effective ESA, live oyster shell. Incorporating both shell-planting and transplanting into 

simulation analyses may help determine optimal levels of both enhancement methods to 

support cultch mass, maintain the ratio of live oyster-to-total surface area, and 

subsequently sustain an increased fishing effort. 

2.5.2 Precautionary Comments 

 The simulations considered here have used the relationships between ESA and 

recruitment obtained by Hemeon et al. (2020) for Delaware Bay. The degree to which 

these relationships vary beyond the Delaware Bay is unknown. For example, oysters in 

the Gulf of Mexico have a higher frequency of spawning (Ingle 1951; Hopkins et al. 

1954; Hayes & Menzel 1981; Hofmann et al. 1992; Choi et al. 1994), and it is likely that 

recruitment rate per ESA may be higher. This represents a critical uncertainty in exporting 

this model to regions differing substantively in oyster recruitment dynamics.  

The relationship between effective surface area and recruitment in each of the 

three regions simulated herein, contains what is basically an Allee effect, the magnitude 

of which is likely to vary given regionally-explicit recruitment dynamics (Kraeuter et al. 

2005; Moore et al. 2018; Aalto et al. 2019). The Allee effect specifies that at a certain 

non-zero value of ESA, recruitment ceases, the population subsequently goes extinct, and 

over sufficient time, the cultch degrades and the reef itself dies. The low value of 

degraded cultch in providing ESA strongly suggests that a practical extinction point likely 
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does exist. The Hemeon et al. (2020) dataset does not include low ESA values because 

Delaware Bay has been managed under successful reference points for more than half a 

century, so the ESA-recruitment relationship at low ESA remains obscure. These 

simulations focus attention on the incidence of mass mortality events in oyster 

populations (Munroe et al. 2013; Cheng et al. 2016; Grizzle et al. 2018; Gledhill et al. 

2020; Pace et al. 2020a,b) and the implications for recovery when a primary source of 

ESA, live oysters, no longer contributes to the ESA on the reef.  

Finally, this model rests on a well-established, multi-decadal time series from 

Delaware Bay that permits detailed estimates of ESA, ranges of natural and fishing 

mortality, and related metrics. Some of the model parameters are much less well 

constrained. That oyster shell has a relatively short half-life in comparison to other 

molluscan shells, save for mussels, is well established (Pace et al. 2020a); however, the 

range of values for the specific rate of shell loss is relatively large. Understanding the 

mechanisms that influence the rate of shell loss is a critical component in describing the 

carbonate budget of a reef and should receive focused research (Frérotte et al. 1983; 

Waldbusser et al. 2011; Subbas et al. 2018). The disarticulation rate for boxes is also 

uncertain, resting on a very small sample size that identifies a relatively wide range of 

box half-lives (Christmas et al. 1997; Pace et al. 2020a, as inferred from Ford et al. 

2006), yet boxes provide an important source of ESA. As boxes are also used for the 

direct measurement of mortality rate (Ford et al. 2006; Powell et al. 2008; Vølstad et al. 

2008; Summerhayes et al. 2009; Doering et al. 2021), well-constrained estimates of 

disarticulation rates are urgently needed. Parameterization of the box disarticulation rates 

used conforms with observations from direct measurements and time series data for 
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Delaware Bay. Alternate rates are likely to be required for application under other 

estuarine conditions. An additional poorly constrained parameter is the degree of 

survivorship from settlement to yearling age, with an important source of uncertainty 

being the tendency for the recruit index to be measured after substantive post-settlement 

mortality has occurred (e.g., Hopkins 1954; Newell et al. 2000). 

2.6 Conclusions 

Achieving sustainability has been elusive in managing the Eastern oyster fishery 

throughout much of its range. The world-wide demise of oyster reefs suggests that the 

Eastern oyster is not an unusual case. Underlying this management predicament is the 

assumed applicability of standard approaches to managing any commercial species. The 

oyster is unique in temperate estuaries, however, in requiring a supporting physical 

structure that it itself creates. Thus, sustainable management of the stock in the absence 

of proper management of the critical substrate upon which it depends and creates is 

inherently impossible over the long term. The tendency for the shell loss rate to be slower 

than the turnover rate of the oyster population generates an illusion of permanence that in 

fact, does not exist. The challenge has been to develop reference points that permit 

specification of rebuilding goals, optimal yield, and threshold control rules which include 

the necessary provision of a sustainable shell bed. The present model propounds a 

resolution to this dilemma in defining recruitment in terms of characteristics of the 

habitat as well as the stock. One of the singular revelations is the importance of the living 

populations not just to provide larvae for the coming generation but to provide habitat for 

settlement. Two corollaries are of immediate concern. The first is that maintaining the 

shell bed demands a population density and this coincident with a fishing mortality rate 
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well below that typical of an animal with a 10-20-year lifespan. The fishing mortality rate 

must be maintained well below 15% per year. The second is the likely presence of an 

Allee-like effect, in which a condition can be achieved where the reef continues to exist 

for a time, but recovery of the population is no longer a feasible option without external 

intervention in the form of reef rehabilitation efforts. Thus, precautionary management is 

critical as the cost of restoration and the time required for rebuilding involve much more 

than the need for one good recruitment event or one round of shell planting. The left-

skewed relationship between F, M, and surplus production, in which the decline in 

surplus production occurs much more rapidly at F>FMSY than at F< FMSY spotlights 

the need for routine and substantive precautionary management. What is argued here is 

that the science base for sustainable management is now present and can be implemented 

under strong reference-point criteria and that doing so can provide a cost-efficient option 

for restoring the Eastern oyster across its range. 
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CHAPTER III – ATLANTIC SURFCLAM BIOMASS AND DENSITY ARE 

RESISTANT TO CURRENT FISHING PRESSURE DESPITE UNCERTAINTIES IN 

MORTALITY AND RECRUITMENT 

Note: this chapter has previously been submitted to the journal Fisheries 

Research. Tables and citations are formatted in keeping with the conventions of this 

journal. 

Solinger, L. K., Hennen, D. R., Cadrin, S.X., Powell, E. N. (2021). Atlantic surfclam 

biomass and density are resistant to current fishing pressure despite uncertainties 

in mortality and recruitment. Fisheries Research, Submitted. 

3.1 Introduction 

Many sources of uncertainty impact determination of fishery management targets 

(e.g., acceptable biological catch) for all managed commercial and recreational fisheries 

(Rosenberg and Restrepo, 1994; Roughgarden and Smith, 1996; Punt et al., 2016). In the 

face of these uncertainties, fishery managers often make explicitly conservative 

management decisions and reserve fishery resources (Walters, 1984; Hilborn, 1987; 

Francis and Shotton, 1997), though how these decisions relate to the risk-tolerance policy 

of management councils is rarely evaluated (Shertzer et al., 2008; Wiedenmann et al., 

2017; Prager and Shertzer, 2019). Simulation analysis based on alternative operating 

models allows managers to evaluate alternative control rules and the relative importance 

of various sources of uncertainty to make management decisions that conform to the 

designated Council’s risk-tolerance policy.  

Atlantic surfclam (Spisula solidissima) is a historically important resource for the 

north- and mid-Atlantic commercial fisheries (McCay et al., 2011; Hofmann et al., 2018), 
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though uncertainties in population dynamics complicate determination of management 

targets (Munroe et al., 2016; Timbs et al., 2018; Hennen et al., 2018). The 2016 stock 

assessment determined that the surfclam stock was not overfished (SSB > SSBThreshold) 

and overfishing was not occurring (F > FMSY; NEFSC, 2017), though substantial 

uncertainty around the estimate of absolute spawning stock biomass (SSB) from the 

assessment model led the Mid-Atlantic Fishery Management Council (MAFMC) to 

decrease the acceptable biological catch (ABC) from 60,313 metric tons (mt) to 45,524 

mt (MAFMC, 2017) (this decision was later reversed). The fishery quota has long been 

set at 26,218 mt, below the ABC, as a result of economic constraints within the fishery. 

Despite the absence of a precise SSB estimate, relative biomass of the surfclam stock was 

estimable from the assessment, and biological reference points relative to biomass were 

based on the ratio of terminal to unfished SSB. The fishing mortality (F) reference points 

were more difficult to define in the absence of precise biomass estimates, but were 

ultimately derived from FMSY (fishing mortality at maximum sustainable yield) estimated 

outside the stock assessment model at 0.12 yr-1 (Hennen et al., 2018).  

Uncertainty in the absolute SSB can be largely attributed to fishery-independent 

survey estimates of catch per unit effort (CPUE). Relatively low dredge efficiency early 

in the timeseries (Hennen et al., 2012; NEFSC, 2017), uncertainty in the methodology 

used to calibrate dredge efficiency (Hennen et al., 2012; Poussard et al., 2021), patchiness 

of surfclam spatial distribution (Timbs et al., 2019), and range shifts influencing survey 

design (Jacobson and Hennen, 2019) led to a relatively uninformative timeseries of 

CPUE from 1982 to 2011. In 2012 a new fishery-independent sampling system began on 

a vessel with higher dredge-efficiency (Hennen, 2018) and an improved survey design 
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was implemented in 2016 (Jacobson and Hennen, 2019), though too few observations 

were yet available to the 2016 assessment to overcome historical sampling error for a 

more certain estimate of SSB.  

In addition to an uninformative survey CPUE timeseries, commercial dredges 

rarely select clams <120 mm, approximately an age-5 surfclam (Munroe et al., 2013; 

Chute et al., 2016; Kuykendall et al., 2017), limiting the information available for young 

individuals. As the broodstock-recruitment relationship is also uninformed, estimates of 

recruitment success (or failure) in stock assessment models are lagged and only become 

estimable when clams reach minimum size for gear-selectivity. Further uncertainty in 

future stock status persists, as steepness of the broodstock-recruitment curve and natural 

mortality are likely to vary with warming of the northwest Atlantic (Pershing et al., 2015; 

Saba et al., 2016; Friedland et al., 2020). This warming has instigated large-scale and 

rapid changes in recruitment, mortality, and stock distribution (Hennen et al., 2018). 

These uncertainties have led the MAFMC to make conservative management decisions 

for the surfclam fishery, though adherence to the MAFMC risk-tolerance policy has not 

been evaluated.  

We developed a simulation analysis for Atlantic surfclam to evaluate potential 

consequences of these uncertainties on management decisions and the efficacy relative to 

the risk-tolerance policy of the management council. Multiple operating models were 

created with alternative parameterizations of steepness of the broodstock-recruitment 

curve and natural mortality that reflected uncertainties in these population dynamics. 

Simulations were generated from the alternative model structures and forecasted with a 

series of harvest control rules. Forecasted status of simulated stocks was compared to 
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performance indicators that captured objectives of the management council (e.g., risk that 

a stock becomes overfished or overfishing occurs) and the commercial fishery (e.g., 

future availability of fishable surfclam patches).  To the latter point, the assessment 

model estimates spawning stock biomass and fishing mortality compared to thresholds of 

overfished and overfishing, but regional density of the biomass for the patchy stock is not 

informed by the assessment. The commercial fishery relies on a minimum clam density to 

permit landings of >1 cage hr-1 to remain profitable (1 cage = 32 surfclam bushels; 

Powell et al., 2015). Thus, while the stock may remain within management thresholds, 

the dispersion of the stock at lower biomass or higher fishing may beget an unprofitable 

fishery. Accordingly, a secondary objective for this work was to generate estimates of 

future availability of fishable surfclam patches from assessment model outputs. This 

estimation uses previously reported metrics of patchiness in surfclams throughout their 

range (Timbs et al., 2019) to evaluate the risk of stock reduction to unfishable levels, 

albeit still meeting stock sustainability thresholds for biomass and fishing mortality.  

3.2 Methods 

3.2.1 Assessment Model Structure  

Operating models were conditioned on the 2016 assessment model which was an 

application of Stock Synthesis version 3.24 (SS3.24; Methot and Wetzel, 2013; NEFSC, 

2017). The 2016 stock assessment for Atlantic surfclam included two SS models 

representing independent surfclam populations on Georges Bank and southwest of 

Georges Bank (termed Northern and Southern, respectively) due to limited data 

availability for the Northern region. Data and model structure for the Southern 

population, which supports the largest fraction of the surfclam fishery (NEFSC, 2017), 
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served as the basis of this simulation analysis. To utilize upgrades to forecasting, the 

Southern model was translated from SS v3.24 to v3.30 (Methot et al., 2019), though this 

translation did not alter model convergence or results.  

The Southern surfclam model incorporates the commercial fishery and three 

indices of abundance from the Northeast Fishery Science Center (NEFSC) dredge 

surveys. One index for survey trend and an associated scalar are available for the NEFSC 

research dredge which operated from 1982 to 2011. In 2012 the NEFSC survey 

transitioned to a modified commercial dredge.  Two observations from 2012 and 2015 are 

available to the Southern model from the modified commercial dredge. Surveys occurred 

approximately once every three years over the 1982-2015 time period. The commercial 

fishery provides landings in metric tons and length-compositions collected by 

randomized port-sampling. Length-composition data are also available for the research 

dredge and modified commercial dredge surveys, in addition to conditional age-at-length 

compositional data. Variance adjustment factors are used to moderate sample sizes of 

fleet-specific length-compositions. These factors were removed during generation of 

simulated data, but reinstated during subsequent model runs. A variety of growth and 

selectivity parameters are estimated in the assessment model, though natural mortality (M 

= 0.15) and steepness of the Beverton-Holt broodstock-recruitment curve (h = 0.95) are 

fixed parameters. Operating models changed the fixed value of M and h but otherwise 

maintained the assessment model structure.  

3.2.2  Simulation Analysis 

Six model structures were used to evaluate risk from potential management 

strategies given uncertainty in steepness and natural mortality. Three values of h (0.40, 
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0.70 and 0.95) and two values of M (0.15, 0.25 yr-1) were specified in alternative 

operating models (OM). For comparison, the stock assessment assumed M = 0.15 yr-1 and 

h = 0.95, and included a sensitivity analysis with h = 0.33 (NEFSC, 2017). Hennen et al. 

(2018) assumed h = 0.30 as a lower bound for sensitivity analyses. The lower bound on 

steepness used herein was raised to 0.40, informed by empirical estimates of steepness 

values ranging from about 0.40 to 0.99 for hard clam (Mercenaria mercenaria) 

populations in the Mid-Atlantic (Peterson, 2002; Kraeuter et al., 2005). Few estimates of 

natural mortality rate are available (Weinberg, 1999; Narváez et al., 2015), but rapid 

shifts in range suggest geographic variation in mortality rate (Kim and Powell, 2004; 

Weinberg et al., 2005; Hofmann et al., 2018). Maximum ages recorded regionally suggest 

local mortality rates in the core of the stock as high as 0.2 yr-1 and as low as 0.12 yr-1 

(Hennen et al., 2018). As these observations emphasize local increases in mortality rate, a 

higher mortality rate was preferentially examined, and natural mortality was set at 0.15 

yr-1 and 0.25 yr-1 (Hennen, 2018). The naming convention of operating models (and later 

estimation models) followed the format of H (steepness value) M (natural mortality 

value), such that the base operating model following the assessment model parameters of 

h = 0.95 and M = 0.15 yr-1 is named H0.95M0.15. 

All model structures were used as both operating models and alternative 

estimation models, so efficacy of management strategies were evaluated under 

circumstances where M and h parameters are incorrectly specified from the “true” value 

in the operating model. Each operating model (OM) generated one hundred simulations 

of a surfclam stock using a parametric bootstrap function internal to SS (Figure 3.1). This 

function first uses maximum likelihood estimation to generate expected data values from 
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input observations (Methot et al., 2019).  New observations that fit within the specified 

error distributions were generated using the expected data values and associated standard 

deviations. These new data simulations of the surfclam stock span the level of uncertainty 

reported for observations of catch, survey, length, and age compositions.  

 

Figure 3.1 Schematic of Simulation Analysis 

Simulations were conditioned from 1965 to 2015 and were forecasted under 

alternative management procedures for 30 years through 2045. To simulate stochasticity 

in recruitment, forecasted recruitment deviations were randomly generated from a normal 

distribution built with the 2016 assessment estimates of log recruitment deviations, N(0.0, 

0.68). The forecasted recruitment estimates were not bias-adjusted. Simulations were 

forecasted with five alternative management strategies applied without error to each 

simulation during the forecast period (Table 3.1). The forecasted simulation was then 

assessed by each of the six alternative estimation models (EMs), one of which fixed h and 

M to the same values of the operating model from which the simulation was generated. 

The EM with common values to the generating OM (EM = OM) gave the “true” stock 
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status of the simulation, whereas status estimated by all other EMs offered what 

managers would estimate if the assessment model incorrectly specified either or both h 

and M.  Six hundred simulations across the six operating models were generated and each 

was evaluated under 30 configurations of EM structure and management control rule. A 

total of 18,000 simulated forecasts were generated and assessed.  

Table 3.1 Forecasted Management Strategies 

Management 

Rule 
Catch or F Relevance to Fishery 

Quota Catch = 26,218 mt Long-term fishery-implemented quota 

ABC_Low Catch = 45,524 mt ABC assigned by MAFMC in 2016 

ABC_High Catch = 60,313 mt ABC assigned by MAFMC prior to 2016 

and again in 2018 

F0.12 F = 0.12 yr-1 MSY Proxy determined by Hennen (2016) 

F0.4 F = 0.4 yr-1 Hypothetical upper boundary on fishing 

mortality  
Management strategies evaluated for Atlantic surfclam. Catch is reported as metric tons (mt), and fishing mortality is total fishing 

mortality rate per year.  

3.2.3 Evaluation of risk 

The current assessment model states that SSBMSY is equal to 50% of the 

unexploited spawning stock biomass (SSB0), which is calculated in each model 

configuration at the beginning of the timeseries in 1965. The threshold that a surfclam 

stock becomes overfished is ½ of SSBMSY, thus a stock is overfished if SSB < ½ SSBMSY. 

Both SSBMSY and the Overfished Threshold are presented and compared to forecasted 

biomass estimates. The total number of simulations that became overfished during the 

forecasted period was reported for each combination of OM, EM, and management 

strategy. Estimates of FMSY generated by each of the OMs (hereon, SSFMSY) are reported, 

though the definition of overfishing used herein follows the MAFMC threshold from 

2016, FMSY = 0.12 yr-1, a proxy generated externally from the SS model by Hennen 



 

51 

(2016). Maximum F observed in forecasts for each OM, EM, and management strategy 

are reported and compared to the Overfishing Threshold, where overfishing is occurring 

if F > FMSY. The MAFMC states that the probability of overfishing should not exceed 

40% (MAFMC, 2020). This threshold was used to determine if the probability that a 

simulation became overfished or that overfishing occurred was within the risk-tolerance 

policy of the MAFMC.  

3.2.4 Evaluation of Control Rule Consequences on Clam Density and Fishery 

Profitability 

The commercial surfclam fishery relies on a catch rate of at least 1 cage hr-1 to 

maintain economic sustainability (NEFSC, 2017). The surfclam population is 

characteristically patchy, thus, the fishery relies on targeting dense patches of surfclam. 

One cage per hour equates approximately to a clam density of 0.22 clams m-2 under 

typical conditions and average gear efficiency (Powell et al., 2015). This level of clam 

density or greater is hereon described as “fishable”. Though total surfclam biomass may 

remain within management targets, thresholds for overfished and overfishing do not 

consider potential impacts of management strategies for maintaining a sufficient number 

fishable patches of clams to support the fishery. Observations of clam density m-2 are 

available from both the research dredge and modified commercial dredge surveys 

between 1997 and 2015. The 2016 assessment model estimated the ratio of unexploited 

biomass (SSByr / SSB0) in each of these years, and these estimates were used in a simple 

linear regression to predict the percent of fishable survey tows (those that yielded greater 

than 0.22 clams m-2). The estimated ratio of unexploited biomass for the final year of 
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forecast from each simulation was then used in this regression to estimate the forecasted 

percent of fishable tows available to support the economic sustainability of the fishery.  

3.3 Results 

3.3.1 Stock Status of Operating Models  

The six alternative operating models (OMs) estimated similar trends in surfclam 

biomass over time, though scale of biomass estimates varied with natural mortality 

(Figure 3.2). Initial SSB estimates for models configured with M = 0.25 yr-1 were nearly 

twice as high as those for OMs configured with M = 0.15 yr-1. Therefore, SSBMSY for 

OMs with M = 0.15 yr-1 were on the scale of 22 million mt while SSBMSY estimates for 

OMs with M = 0.25 yr-1 were nearly double, on the scale of 50 million mt (Table 3.2).  

Steepness had minimal impact on scale of biomass or estimates of recruitment deviation 

because biomass estimates remained high and above the point of the broodstock-

recruitment curve where recruitment decreases with decreasing spawning biomass. 

Estimated fishing mortality across OMs was relatively similar for the duration of the 

timeseries, never exceeding F = 0.03 yr-1, below the FMSY proxy of F = 0.12 yr-1 (Figure 

3.2). Some divergence between F estimates occurred after 2005, with models configured 

with M = 0.25 yr-1 estimating slightly higher (~0.01) fishing mortality. Estimates of 

SSFMSY output from each of the operating models ranged from 0.69 to 0.71 yr-1, more 

than 20 times the maximum estimate of fishing mortality throughout the timeseries 

(Figure 3.2). This high SSFMSY estimate was not approved as the overfishing definition in 

the 2016 stock assessment, and the Overfishing Threshold was instead calculated 

externally to the assessment model (NEFSC, 2017; Hennen, 2018). Similarly, OM-

derived SSFMSY estimates are not examined as prospective Overfishing Thresholds for 
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forecasted simulations, though their potential causes and implications are considered 

more thoroughly in the discussion.  

 

Figure 3.2 Summary of Operating Model Timeseries 

Summary of timeseries estimates from six alternative operating models. Lines represent the estimate, and shaded greys are the 

confidence intervals. Dark grey shading indicates where confidence intervals overlap between models. Plots are timeseries estimates 

of (A) spawning stock biomass in metric tons, (B) fishing mortality rate (yr-1), (C) ratio of current biomass to unexploited biomass 

(SSByr  / SSB0), and (D) log recruitment deviations from the specified broodstock-recruitment curve. Values in plot (C) are ratios and 

independent of scale, thus the common SSBMSY (½ SSB0) and Overfished Threshold (SSB < ¼ SSB0) are marked with horizontal lines. 
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Table 3.2 Operating Model Biomass Thresholds 

Model 
SSBMSY 

(million mt) 

Overfished Threshold 

½ SSBMSY (million mt) 

H0.4M0.15 23 12 

H0.4M0.25 58 29 

H0.7M0.15 22 11 

H0.7M0.25 54 27 

H0.95M0.15 (Base Model) 22 11 

H0.95M0.25 57 29 

Table of biomass thresholds estimated by the six alternative operating models. SSBMSY is defined as 50% of the unexploited biomass 

and reported in metric tons. The Overfished Threshold is ½ of SSBMSY. 

The ratio of unexploited biomass across OMs also demonstrates considerable 

coherence between trends in biomass estimates. All models estimate a sharp increase in 

biomass in the early 1980s and mid-1990s. The decline from these peaks occurs most 

quickly in models with high natural mortality. The three OMs with M = 0.25 yr-1 fall 

below the SSBMSY during the mid-2000s and finish the timeseries with the lowest 

estimated ratio of unexploited biomass, though all models remain above the Overfished 

Threshold. Finally, estimates of recruitment deviations show minor divergence at the 

beginning of the timeseries, though across models the timeseries of recruitment deviation 

estimates are largely coherent. Strong interactions between parameterizations of h and M 

were not apparent across the timeseries described in Figure 3.2, though H0.4M0.25 had 

the lowest ratio of unexploited biomass at the end of the timeseries. 

3.3.2 Simulations and Forecast 

Forecasts of simulations generated by the base OM, H0.95M0.15, assessed by the 

EM of the same parameterization, EM H0.95M0.15, and forecasted with each of the five 

alternative management strategies are presented in Figure 3.3 as an example of forecasted 

timeseries. As the OM and EM for these forecasts are the same, timeseries of biomass 
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estimates prior to the beginning of the forecast period are identical. At the beginning of 

the forecast period, divergence occurs based on recruitment deviations and forecasted 

management. Independent of management strategy, few simulations fall below the 

threshold for SSBMSY and no simulations fall below the Overfished Threshold in the 

forecasted 30 years.  

 

Figure 3.3 Forecasts of Base Estimation Model 

Timeseries of spawning stock biomass estimates for each of the 100 simulations generated by the OM H0.95M0.15 and assessed using 

the identical EM, H0.95M0.15. Each simulation was forecasted with five alternative management strategies that remained constant 

throughout the forecast period. 

3.3.3 Assessment of Overfished Simulations 

Simulations assessed with EMs H0.4M0.15, H0.4M0.25, and H0.7M0.15 were 

the only forecasts that fell below the Overfished Threshold determined by the respective 

EM model (Table 3.3). Not surprisingly, the most extreme management strategy of F0.4, 

fishing above the FMSY proxy of F = 0.12 yr-1, was responsible for the majority of 

simulations that became overfished across EMs. The total percent of simulations that 
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became overfished under F0.4 was 1.11%. Whereas EM H0.4M0.15 had the highest 

percentage of forecasts that became overfished at 0.67%, H0.4M0.25 was the only EM 

that forecasted each of the alternative management strategies to overfish in at least one 

simulation. 

Table 3.3 Summary of Percent Overfished Simulations 

 
EM 

Management Strategy  
% Total Quota ABC_Low ABC_High F0.12 F0.4 

H0.4M0.15 0.00% 0.17% 0.00% 0.00% 3.83% 0.67% 

H0.4M0.25 0.33% 0.17% 0.33% 0.83% 2.17% 0.64% 

H0.7M0.15 0.00% 0.00% 0.00% 0.00% 0.67% 0.11% 

H0.7M0.25 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

H0.95M0.15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

H0.95M0.25 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

% Total 0.06% 0.06% 0.06% 0.14% 1.11%   
Percent of simulations run through each EM and harvested according to each management strategy that forecasted SSB below the 

overfished threshold (Table 3.2) during the forecast period. Grey scale indicates an increasing percentage of overfished simulations. 

Each combination of EM and management strategy forecasted 600 total simulations generated by the 6 alternative OMs.   

No forecasted simulations became overfished for EMs H0.7M0.25, H0.95M0.15 

and H0.95M0.25, so Table 3.4 focusses only on the EMs that forecasted an overfished 

stock. Notice in Table 3.4 that the row for “% Total” matches respective values for each 

EM and Management strategy in Table 3.3, though here the OMs that generated 

overfished simulations are explored. Managing with F0.4 again results in the highest 

percentage of overfished simulations. Eight percent of simulations generated by OM 

H0.95M0.25, assessed by EM H0.4M0.15 and managed at F0.4 became overfished. This 

OM was also responsible for the highest percent of overfished simulations for EM 

H0.4M0.25 and H0.7M0.15. In general, OMs parameterized with M = 0.25 yr-1 had the 

highest overfished percentage across management strategies and EMs. The most diverse 

set of overfished simulations were seen with EM H0.4M0.25, most of which were 
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accounted for by OMs with M = 0.25 yr-1, though H0.4M0.15 also became overfished by 

F0.12 and F0.4 when assessed by EM H0.4M0.25. 

Table 3.4 Details of Overfished Simulations 

Model Management Strategy % Total 

EM OM Quota ABC_Low ABC_High F0.12 F0.4  

H0.4M0.15 

H0.4M0.15 0.00% 0.00% 0.00% 0.00% 3.00% 0.60% 

H0.4M0.25 0.00% 0.00% 0.00% 0.00% 6.00% 1.20% 

H0.7M0.15 0.00% 0.00% 0.00% 0.00% 1.00% 0.20% 

H0.7M0.25 0.00% 1.00% 0.00% 0.00% 3.00% 0.80% 

H0.95M0.15 0.00% 0.00% 0.00% 0.00% 2.00% 0.40% 

H0.95M0.25 0.00% 0.00% 0.00% 0.00% 8.00% 1.60% 

% Total 0.00% 0.17% 0.00% 0.00% 3.83%  

H0.4M0.25 

H0.4M0.15 0.00% 0.00% 0.00% 1.00% 2.00% 0.60% 

H0.4M0.25 1.00% 0.00% 1.00% 1.00% 4.00% 1.40% 

H0.7M0.15 0.00% 0.00% 0.00% 0.00% 1.00% 0.20% 

H0.7M0.25 1.00% 0.00% 0.00% 2.00% 2.00% 1.00% 

H0.95M0.15 0.00% 1.00% 0.00% 0.00% 0.00% 0.20% 

H0.95M0.25 0.00% 0.00% 1.00% 1.00% 4.00% 1.20% 

% Total 0.33% 0.17% 0.33% 0.83% 2.17%  

H0.7M0.15 

H0.4M0.15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

H0.4M0.25 0.00% 0.00% 0.00% 0.00% 1.00% 0.20% 

H0.7M0.15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

H0.7M0.25 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

H0.95M0.15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

H0.95M0.25 0.00% 0.00% 0.00% 0.00% 3.00% 0.60% 

% Total 0.00% 0.00% 0.00% 0.00% 0.67%  

Details of the three EMs that forecasted overfished stocks. Increasing grey scale indicates a greater percentage of overfished 

simulations. The OM from which the overfished simulations were generated are presented, with the total percent overfished from 

Table 3.3 (% Total) available at the bottom of each EM for reference. 

Estimation model H0.4M0.15 had the greatest total percentage of overfished 

simulations, most of which were managed with F0.4. Timeseries of forecasted simulations 

managed under the highest (F0.4) and lowest (Quota) harvest policies are displayed in 

Figure 3.4. Whereas many simulations fall below SSBMSY when fished at Quota, no 

simulation generated from any OM falls below the Overfished Threshold. The median 
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trajectory for the forecasted timeseries of each OM is increasing, though there is a clear 

disparity between OMs based on natural mortality. Operating models parameterized with 

M = 0.15 yr-1 have higher SSB estimates throughout the forecast. This persists when 

simulations were fished at F0.4. When simulations are fished at F0.4, immediate decline in 

median trajectory occurs at the onset of the forecast, and many more simulations fall 

below SSBMSY than when managed at Quota. Some simulations also fall below the 

Overfished Threshold and a few stocks crash to zero SSB.  

 

Figure 3.4 Overfished Simulation Timeseries 

Forecasts of EM H0.4M0.15 harvested according to the Quota of 26,218 mt (top) and fishing mortality of F = 0.4 yr-1 (bottom). 

Forecasted timeseries for all simulations generated by each OM are on the left, and the median forecasted SSB for simulations from 

each OM are on the right. SSBMSY and the Overfished Thresholds for EM H0.4M0.15 from Table 3.2 are displayed as horizontal lines. 

Note difference in y-axis scales across plots. 
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3.3.4 Occurrence of Overfishing 

The FMSY proxy presented in the 2016 assessment of FMSY = 0.12 yr-1 was 

used as the Overfishing Threshold. Overfishing is first examined for forecasts of 

simulations where EM = OM, representing the “true” fishing mortality estimate, then 

compared to fishing mortality estimates from all simulations assessed with each EM. 

Fishing mortality unsurprisingly is driven by management strategy, and F0.4 results in 

overfishing in 100% of simulations (Figure 3.5). Managing with F0.12 resulted in 

overfishing of 69 – 84% of simulations. The percent of simulations experiencing 

overfishing was greatest in simulations with high natural mortality, and this carried 

through to simulations managed with ABC_High. Between 2 and 4% of high mortality 

simulations experienced overfishing from managing at ABC_High, while low mortality 

simulations remained below the Overfishing Threshold. Overfishing occurred in slightly 

differing proportions between simulations assessed by EM = OM and all simulations 

forecasted with each EM, though no clear pattern or direction of these differences was 

observed. Estimation model H0.4M0.25 estimated overfishing of <1% of simulations 

managed with ABC_Low, though managing at quota estimated no overfishing across 

EMs.  
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Figure 3.5 Incidence of Overfishing in Simulations 

Maximum fishing mortality yr-1 observed during the forecast of a simulation. Top plot separates models by OM, representing the 

“true” fishing mortality. Bottom plot is maximum fishing mortality estimated by EMs. If simulations from a management strategy and 

EM passed the Overfishing Threshold of FMSY = 0.12 yr-1, the percent of simulations that did so is displayed. 

3.3.5 Fishery Profitability 

The annual percent of fishable tows observed by the NEFSC survey ranged from 

20% to 45% and was significantly related to estimated ratio of unexploited biomass 

(SSByr / SSB0) from the 2016 stock assessment (p < 0.01, r2 = 0.80; Figure 3.6).  Because 

estimation models are an interpretation of the stock while operating models act as the true 

realization of the generated stock, forecasted estimates of percent fishable tows are only 

displayed for simulations assessed with the EM of the same configuration to the 

generating OM. Across models, forecasted estimates of percent fishable tows were in line 
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with observations by the NEFSC survey, between 25 and 50% (Figure 3.7). Estimated 

percent of fishable tows for H0.4M0.15 declined the most with increasing fishing 

mortality, suggesting low steepness could compound with low natural mortality to limit 

proportion of fishable tows. Percent fishable tows from high mortality models responded 

less to increasing fishing pressure, though lowest percent across models was generally 

observed at F0.12 and F0.4.  

 

Figure 3.6 Regression of Observed Fishable Tows 

Each point indicates the percent of NEFSC survey tows that were “fishable”, defined as capturing more than 0.22 clams m-2 (Powell et 

al., 2015) in each year the survey was performed between 1997 and 2015. The x-axis is the ratio of unexploited biomass (SSByr / 

SSB0)  in each corresponding year estimated by the 2016 stock assessment. 
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Figure 3.7 Simulated Percent Fishable Tows 

Percent of fishable tows estimated from the ratio of unexploited biomass (SSByr / SSB0) in the terminal year of forecast for each 

simulation where EM = OM. 

3.4 Discussion 

Despite uncertainty in natural mortality and steepness, the Atlantic surfclam 

Southern stock appears to be robust to overfishing across a variety of management 

strategies. The Atlantic surfclam quota has remained stable since the 1980s and below the 

ABC because of economic constraints within the fishery. In the simulations presented 

here, across all model specifications, fishing at Quota never permitted fishing mortality to 

rise above the assessment proxy for FMSY = 0.12 yr-1 and fewer than 1% of simulations 

forecasted with ABC_Low breached this threshold. ABC_High and F0.12 led to 

overfishing in many simulations, especially those with high natural mortality. 

Management strategies F0.12 and F0.4 fell outside of the risk-tolerance policy of the 

MAFMC, overfishing the stock in reference to FMSY = 0.12 yr-1 in more than 40% of 

simulations across OM and EM structures.  

Managing at F0.4 was also the strategy that caused the most simulations to become 

overfished, especially for stocks with high natural mortality or if the assessment model 
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overestimated steepness. For example, although 3% of simulations generated by OM 

H0.4M0.15, assessed by the identical EM H0.4M0.15 and forecasted with F0.4 became 

overfished, no EM with steepness greater than 0.4 perceived this overfished state. To a 

lesser extent, this is true for H0.4M0.25 as well. These simulations suggest that while the 

broodstock-recruitment curve is not well understood for surfclam, if the steepness is in 

fact low, assessments parameterized with high steepness may not detect an overfished 

state. Though estimation models with steepness values of 0.4 or 0.7 predicted some 

overfished simulations, fewer than 40% of simulations became overfished, within the 

MAFMC risk-tolerance policy. 

Across OM and EM structures, managing with F0.4 was responsible for the 

greatest proportion of overfishing and the most overfished simulations. However, it is 

also important to note that F0.4 is an extreme management strategy used herein to 

juxtapose the comparatively conservative quota and ABCs. The surfclam fishery is a high 

volume, relatively low value fishery, that depends on high CPUE to meet economic 

requirements. The fishery is not constrained by the current quota and unlikely to pursue 

fishing at such volumes that would decrease profit margins, a consequence of fewer 

fishable tows predicted in forecasts of this management strategy. Simulating management 

at F0.4 does add credence to the external development of FMSY proxies for surfclam, 

however. FMSY based on the stock assessment has never been used for surfclam 

management. Rather, FMSY has been based on a population simulation conducted outside 

of the stock assessment framework (Hennen, 2018). One of the primary reasons for this is 

that the surfclam stock has been near or above SSBMSY throughout the observed 

timeseries and consequently unable to inform on the broodstock-recruitment relationship 
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at low stock size. In addition, the 2016 surfclam stock assessment was highly uncertain in 

scale. An FMSY value from the assessment (i.e., SSFMSY) would also be highly uncertain, 

and potentially inappropriate for management. Managers therefore chose to set the F 

threshold based on F values from a selected portion of the timeseries during which 

fishing was thought to have little measurable effect on the indices of stock abundance (a 

period of relatively low intensity fishing). The current F threshold for management is an 

expansion of the average F over this period (Hennen, 2018).  

Results presented here reinforce the reasons behind the external derivation of 

FMSY and the potential risk of using SSFMSY output from the assessment model as the 

management threshold. Despite differences in scale of absolute biomass across OMs, 

SSFMSY estimates varied little between operating models independent of steepness or 

natural mortality, ranging between 0.69 and 0.71 yr-1. These high estimates could be a 

result of delayed selectivity in the fishery. As mentioned previously, while Atlantic 

surfclam fully mature by age-2 (Chintala and Grassle, 1995), the fishery begins to select 

for clams around age-5. With spawning biomass outside of the fishery selectivity, SS 

converges on a high estimate of SSFMSY, one that is much larger than any historical 

estimates of fishing mortality. Given the number of simulations that became overfished 

when fishing at F0.4, setting a threshold for overfishing at SSFMSY = 0.70 yr-1 could lead 

to an overfished stock before overfishing is detected by management, especially with the 

consideration of uncertainty around steepness.  

The issue of fishery selectivity carries through to natural mortality and the 

uncertainty in scale of absolute biomass of the surfclam stock. Operating models with 

high natural mortality estimated nearly double the unexploited stock size as the low 



 

65 

mortality counterparts. Punt et al. (2021) explained why natural mortality can contribute 

uncertainty to biomass estimates. As with the commercial fishery, the surfclam survey 

largely observes clams age-5 and older, making it difficult to estimate the unexploited 

equilibrium age distribution of younger clams. Higher natural mortality increases the rate 

of decline in numbers at age, requiring a greater equilibrium number of age-0 clams to 

support the observed numbers of age-5+ individuals. Given early maturity, the larger 

number of young clams contributes to the greater spawning stock biomass. Above age-5 

when age-distribution data is more available, equilibrium age distributions between 

operating models with M = 0.15 yr-1 and 0.25 yr-1 largely correlate, which may explain 

why estimates of F are similar across operating models, though scale of biomass varies.  

The prospective influence of ocean warming on increasing natural mortality rates 

across some portion of the surfclam stock (Monroe et al., 2013; Narvaez et al., 2015; 

Monroe et al., 2016; Hofmann et al., 2018) fuels concerns for how changes in natural 

mortality may alter the actual or perceived scale of biomass and uncertainty in future 

assessments. Atlantic surfclam are sensitive to temperatures exceeding 21°C (Munroe et 

al., 2013), and modern warming of the northwest Atlantic is thought to be a driver of 

mortality events at the inshore and southern extents of the stock (Kim and Powell, 2004). 

Furthermore, increased observations of recruitment events further north and offshore of 

their typical range suggest a changing distribution (Hofmann et al., 2018). These events 

are coincident with declines in patchiness (Timbs et al., 2019) and maximum size over 

much of the geographic range (Munroe et al., 2013, 2016) with potential consequences to 

regional mortality and economics of the commercial fishery (Powell et al., 2015, 2016).  
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Profitability of the commercial surfclam fishery is dependent on the number and 

density of clam patches, a long-understood constraint that (at least in part) led the 

industry to impose a quota cap to prevent the reduction in clam density below what is 

economically stable (Adelaja et al., 1998; Rountree, 2015). This quota has been and 

continues to remain below the Council’s ABC management control rule and has likely 

contributed to the sustainability of the Atlantic surfclam stock, a fishery that the stock 

assessment has never designated as overfished nor noted the occurrence of overfishing 

(NEFSC, 2017). These results demonstrate that the quota and ABCs are conservative to 

the risk-tolerance policies of the MAFMC, though in the face of global warming and 

potential shifts in surfclam distribution, alternate management approaches such as 

rotating closures may need to be explored to insulate the fishery from unexpected 

declines (Kuykendall et al., 2017).  

While fishery economics may falter from decreases in fishable patches before an 

overfished status is determined, our results suggest that if population and fishery 

dynamics persist in a largely status-quo manner for the foreseeable future (save for 

moderate recruitment variation), proportion of fishable patches will remain high enough 

to support the current commercial fishery. However, the timeseries of NEFSC survey 

tows demonstrate that while the fishery has remained relatively consistent since the 

1990s, clam density and biomass has fluctuated over that same period. Environmental 

conditions are likely to affect population dynamics of the surfclam stock inconsistently 

throughout their distribution, reinforcing the difficulty of forecasting the stock in a 

dynamic and warming ocean. This work demonstrates that even with uncertainties in 

steepness and natural mortality, the surfclam stock is unlikely to become overfished or 
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experience overfishing from currently implemented management strategies. However, 

consequences of overestimating steepness in forecasts demonstrate that variation in 

steepness or mortality could result in misrepresentation of an overfished stock under high 

fishing pressure. Population dynamics of surfclam are stochastic and that stochasticity is, 

at least in part, related to environmental conditions that are rapidly changing in the 

northwest Atlantic. Future evaluations are needed to determine how the population varies 

in forecasts when population dynamics parameters are allowed to vary in a multi-year or 

decadal fashion. Variable growth or temporal variability in the rate of range recession 

inshore and expansion offshore could be the uncertainties of focus in future simulation 

analyses and management.  
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CHAPTER IV – DO MANAGEMENT STRATEGIES GUIDED BY SEX-

AGGREGATED MODELS EFFECTIVE AT MANAGING A SEXUALLY-

DIMORPHIC STOCK? 

4.1 Introduction 

Summer flounder (Paralichthys dentatus) supports a large commercial and 

recreational fishery along the US Eastern seaboard, and management of this fishery has 

historically been contentious (Terceiro, 2001, 2011, 2018). Some of the animus has risen 

from difficulty modeling complex population dynamics parameters (notably sex-specific 

growth, mortality and spatial distribution [Maunder & Wong, 2011; Maunder, 2012; 

Henderson et al. 2014]) to effectively describe the stock and estimate outcomes of 

management decisions. Though it is known that summer flounder exhibit sexual 

dimorphism (Morson et al. 2012), spatio-temporal variation of summer flounder 

distribution inshore, offshore, and throughout the US-Atlantic coast (Buchheister et al. 

2010; Henderson et al. 2014) has made it difficult to adequately describe the sex-specific 

complexities in a single, coastwide stock assessment model (Terceiro, 2018). Despite the 

extensive distribution of summer flounder and evidence of environmental selection (Hoey 

& Pinsky, 2018), genetic homogeneity persists throughout their range, suggesting a single 

spawning stock that justifies managing with a coastwide assessment model (Irwin et al. 

2022). While models incorporating some of these complexities in population dynamics 

have been presented and discussed at benchmark assessment meetings, the assessment 

model has remained sex-aggregated, due at least in part to insufficient evidence that 

additional sex-specific complexity has compensated with reduced uncertainty in stock 

assessment model estimates (NEFSC, 2019).  
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4.1.1 Retrospective Error 

Whereas the current structure of the assessment model has been selected over 

alternative models and approved by the Scientific and Statistical Committee during 

research track assessments, retrospective errors in estimates of recruitment, SSB 

(spawning stock biomass), and F (fishing mortality) have underscored uncertainty in how 

well the model structure describes current stock status (Terceiro, 2018; NEFSC, 2019). 

Retrospective analyses have consistently demonstrated positive inconsistencies in 

terminal year estimates of SSB and recruitment, in which updated estimates of 

contemporary estimates are revised downward. Meanwhile, F has negative retrospective 

inconsistencies, in some years by as much as -0.20 yr-1.  

When adjusted for internal retrospective error, the estimates of SSB and F are 

within 90% confidence intervals of previous assessments (NEFSC, 2019), though 

efficacy of management decisions guided by this adjustment may have consequences on 

long-term yield (Deroba, 2014). Although retrospective patterns were minimized in the 

2018 assessment, in part due to recalibration of recreational landings data from 1982 – 

2017 (NEFSC, 2019), SSB and F are the basis from which managers determine if a stock 

is overfished or overfishing is occurring, and the directionality of retrospective errors in 

the 2018 assessment favored the estimation of a sustainable stock. Among the unresolved 

issues is the severe bias towards large females in the recreational fishery landings (ref). 

Because the assessment model is sex-aggregated and retrospective errors were resolved 

with the recalibration of historical recreational landings, further consideration needs to be 

given to how uncertainty in the female-dominated recreational fishery may contribute to 
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retrospective errors and the degree to which sex-specificity might affect stock status 

inferred from the aggregated assessment model.  

4.1.2 Uncertainty in Recreational Landings 

Recreational landings have been monitored and estimated since 1982. The NMFS 

Marine Recreational Fishery Statistics Survey (MRFSS) estimated recreational landings 

and discards from 1982 to 2003 and was then replaced by the Marine Recreational 

Information Program (MRIP) which has operated since 2004. In 2018 the historical 

timeseries of MRFSS/MRIP estimates were recalibrated to account for new survey 

methods that were fully implemented in 2018. This recalibration led to substantial 

changes in estimates of historical recreational fishery landings and discards. On average, 

recreational landings estimates increased by 84% (~3,300 mt) and discards by 70% (521 

mt). The recalibrated MRIP estimates now suggest that the recreational harvest limit 

(RHL) was exceeded in each year since 2000. Despite the apparent historical overharvest 

(relative to annual RHL), the new MRIP estimates increased the assessment model 

estimate of SSB, and subsequently the RHL was increased in 2019 from 2,300 mt to 

5,200 mt (ASFMC, 2018; ASFMC, 2019; NEFSC, 2019).  

Female flounder account for 90% of recreational landings (Morson et al. 2017), 

due in part to the sexual dimorphism of summer flounder. Females tend to be larger 

(Langan et al. 2019), live longer (Maunder & Wong, 2011), and are observed at higher 

ratios in shallow inshore waters where the recreational fishery operates (Morson et al. 

2015), though Morson et al. (2017) noted that males dominated recreational discards. 

Minimum size limits in both the recreational and commercial fishery inherently exclude a 

greater portion of the males than females from fishery harvest. As the ratio of female 
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flounder is skewed in recreational landings, and recreational landings are highly uncertain 

(Hicks & Shnier, 2016), it is imperative to account for how management decisions 

informed by a sex-aggregated assessment model may impact the future spawning 

potential of the summer flounder stock.  

4.1.3 Objectives 

Here, a simulation analysis is conducted to evaluate the potential consequences of 

using a sex-aggregated assessment model to describe the sexually-dimorphic summer 

flounder fishery. A provisional sex-specific model is developed to an alternative sex-

aggregated assessment model. Retrospective patterns in SSB, F, and recruitment are 

presented to compare with errors observed by previous assessment models. Simulations 

generated by the sex-specific operating model and forecasted with sex-aggregated 

estimation models may inform on the risk of managing summer flounder with a sex-

aggregated assessment model.  

4.2 Methods 

4.2.1 Assessment Model Structure 

The Age Structured Assessment Program (ASAP; a forward-computing age 

structured model; Legault & Restrepo, 1998) is currently used to model the summer 

flounder stock (NEFSC, 2019). The stock is modeled from 1982 to 2019 with four fishing 

fleets and 26 age-specific survey indices. Age compositions for flounder are aggregated 

by sex and modeled from age-0 to -7+, where individuals older than seven are aggregated 

into this plus group. The four fishing fleets are commercial landings, commercial 

discards, recreational landings and recreational discards. Of the 26 survey indices, seven 

are coastwide federal surveys and the remainder are state or academic surveys conducted 
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over a smaller spatial range. Three of the federal indices are trawl surveys (Fall, Winter 

and Spring) and two are larval SSB surveys. Matrices of natural mortality, maturity, and 

weight-at-age are specified for each year, consistent with observations of interannual 

growth variability in summer flounder (Nys et al. 2016). Finally, fleet-specific 

selectivity-at-age is divided over time-blocks that represent historical shifts in 

management.  

4.2.2 Conversion to Stock Synthesis 

The underlying structure of the 2019 assessment in ASAP (NEFSC, 2019) was 

used to develop a sex-specific operating model (OM) in stock synthesis (SS) version 3.30 

(Methot et al. 2019). SS is a flexible likelihood-based statistical catch-at-age model that 

can emulate a statistical catch-at-age model like ASAP with sex structure and has internal 

bootstrapping and forecasting functions that make it ideal for running simulation 

analyses. Li et al. (2021) demonstrated that when configured in the same manner, both SS 

and ASAP model structures produced similar results from simulated data. Thus, the 

ASAP assessment model structure was used to configure a sex-aggregated SS model. The 

sex-aggregated SS model then formed the basis of comparison between both the ASAP 

assessment model and sex-specific SS model.  

Wherever possible, the ASAP model configuration was maintained to support 

comparison with the currently accepted stock assessment, though some changes were 

necessary to account for differences in parameter requirements between model structures. 

The state and academic survey indices were excluded from the SS model because of their 

restricted spatial extent, incoherent trends between surveys, and difficulty in determining 

the extent that sex-specific data was subsampled for each survey. Sex-specific 
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information was also unavailable for the federal larval surveys. Thus, for a more direct-

comparison between the sex-aggregated and sex-specific SS models, only the four fishing 

fleets and three NEFSC trawl surveys were incorporated into SS models.  

Matrices for age-specific maturity and natural mortality were reduced to the most 

recent ten-year averages. Average maturity-at-age from 2009-2018 was calculated from 

the ASAP assessment model and fixed as the vector of maturity in SS. Sex aggregated 

natural mortality was set to the assessment average of M = 0.25 yr-1. A double logistic 

selectivity pattern was open to estimation for all fleets, and time-varying selectivity was 

allowed for each of the fisheries.   

A sex-specific model was then constructed using the sex-aggregated model 

structure. Alternative male- and female-only assessment models were presented at the 

2016 stock assessment model workshop (NEFSC, 2016), which provided sex-specific 

landings-at-age data from 1982 – 2016 for the four fishing fleets and three NEFSC trawl 

surveys. The average ratio of fleet- and sex-specific landings-at-age from 2006 – 2015 

was used to parse fleet-specific landings-at-age from 2016 to 2019. Length data was also 

available for the fisheries, though these data were down-weighted to zero in the SS 

models. In part, this is because length-compositions cannot be included in ASAP, so by 

down-weighting lengths the SS models further mirrored the ASAP structure. In addition, 

allowing length-compositions to be modeled by SS led to issues in model convergence in 

both the sex-aggregated and sex-specific SS models, therefore length-compositions are 

included in the model framework, though are turned off to estimation for the purposes of 

these simulations. Natural mortality followed the parameters used in the male- and 
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female-only ASAP models, where male and female natural mortality were set to 0.30 and 

0.20 yr-1, respectively, informed in part by Maunder and Wong (2011).  

Estimates of unexploited recruitment (R0), unexploited spawning stock biomass 

(SSB0), and SSB at maximum sustainable yield (SSBMSY) generated by each of the SS 

models are reported and compared to values generated by the 2019 ASAP assessment 

model. Retrospective analyses were also conducted for each of the SS models to examine 

if any of the patterns previously observed in the ASAP assessment were observed in these 

model configurations.  

4.2.3 Simulation Analysis 

An operating model (OM) was conditioned on results from the provisional sex-

specific SS model with time-varying selectivity. Simulations were generated using the SS 

bootstrap function, which uses maximum likelihood estimation to simulate new 

observations of available data constructed from the error and associated distribution of 

each observation (Methot et al. 2017). Ten simulations of the summer flounder dataset 

were generated from the OM model, which were then assessed by both the sex-specific 

OM and alternative sex-aggregated estimation model (EM) structure. Each simulation 

was then forecasted with four management strategies that either represent recent 

management decisions for the commercial and recreational fishery or FMSY-proxy 

reference points from recent assessments (Figure 4.1). Error in recreational harvest was 

also examined to consider the impacts of implementation error historically observed in 

the fishery. Recreational harvest in each year was randomly selected around the 

recreational harvest limit of 3,700 mt, with error allowance of 2,000 mt above or below 

the assigned harvest. Finally, a forecast of Zero Fishing was implemented to ensure 
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forecasts and simulations were operating properly. Simulations were forecasted for 30 

years, representing more than two generations of summer flounder. This offers a long-

term reference to how management decisions would perform for the sex-specific stock, 

and how the stock would be interpreted by sex-aggregated model configurations.  

Table 4.1 Forecasted Management Control Rules 

Management 

Rule 

Catch or F Error Relevance to Fishery 

No Error Commercial Quota = 

5,600 mt; 

Recreational Harvest 

Limit = 3,700 mt 

No 2019 Commercial Quota, 

Recreational Harvest 

Limit 

Implementation 

Error 

Commercial Quota = 

5,600 mt; 

Recreational Harvest 

Limit = 3,700 mt 

+/- 2,000 mt 2019 Recreational 

Commercial Quota, 

Harvest Limit plus error 

F35_Low F = 0.309 yr-1 No 2013 estimated F 

associated with 35% of 

Maximum Spawning 

Potential 

F35_High F = 0.448 yr-1 No 2019 estimated F 

associated with 35% of 

Maximum Spawning 

Potential 

No Fishing F = 0 No Check of Forecast 

Performance 
Management strategies forecasted for summer flounder. Error in the recreational fishery catch was randomly selected in each year 

between 0 and 2,000 mt metric tons above or below the recreational harvest limit.  

Forecasted spawning stock biomass for each of the simulations was then 

compared to SSBMSY and the overfished threshold (1/2 SSBMSY) of the sex-specific 

operating model. However, in sex-specific SS models, only female biomass contributes to 

the calculation of spawning stock biomass, where SSB in a sex-aggregated model 

accounts for biomass of all spawning individuals, both male and female. Brooks et al. 

(2008) found that management targets calculated with female-only or sex-aggregated 
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biomass similarly estimated the true reference point for a stock in a simulation study. 

Therefore, the sex-specific OM estimate of SSBMSY was used as the threshold to 

determine if a forecasted simulation was overfished for simulations assessed by both the 

sex-specific OM and sex-aggregated EM, though note that SSB of sex-aggregated 

forecasts are higher than sex-specific counterparts because all aggregated spawning 

biomass, independent of sex, contributes to the spawning stock biomass.  

4.3 Results 

4.3.1 Model Comparison 

The two stock synthesis model configurations are abbreviated as SS_Sex (sex-

specific operating model) and SS_Agg (sex-aggregated estimation model). Though R0 

values were similar across both SS models, estimates of SSB0 for the sex-aggregated 

model was nearly double the sex-specific counterpart because in sex-specific models SS 

only attributes female biomass to the calculation of SSB (Table 4.2). Though estimates 

from the Sex_Agg model were most similar to ASAP, SSB0 was lower than ASAP for 

both SS configurations. Unexploited values between ASAP and SS models were 

dissimilar, though values were more coherent in the timeseries of SSB (Figure 4.1). From 

1982 to the early 2000s the sex-aggregated timeseries tracs along the ASAP estimates of 

SSB. Fishing mortality estimates between the SS models were also strongly coherent, 

with peaks in fishing mortality in the early 1990s that tapered into the early 2000s. While 

recruitment estimates for the ASAP model are consistently higher than the SS models, 

trends in recruitment are similar until 2016.  
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Table 4.2 Model Comparisons 

 Model Structure  
 

ASAP SS_Agg SS_Sex 

R0 (millions) 50.5 23.01 22.51 

SSB0 (mt) 145,924 108,273 53,972 

SSBMSY (mt) 26,583 18,310 9,591 

SSBThreshold 

(mt) 

13,291 9,155 4,796 

Comparison between the two SS models and ASAP. Unexploited recruit numbers (R0, in millions), unexploited spawning stock 

biomass (SSB0. in metric tons), estimates of SSB at maximum sustainable yield (SSBMSY, in metric tons), and the overfished threshold 

are compared between the ASAP assessment and SS models. Note that sex-specific SS models calculate SSB using only spawning 

female biomass while biomass from all mature individuals contributes to SSB in sex-aggregated models.  
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Figure 4.1 Timeseries of the Four Base SS Models 

Plots are timeseries of (A) spawning stock biomass estimates in metric tons, (B) total biomass estimates in metric tons, (C) estimated 

fishing mortality per year, and (D) estimated number of recruits in millions. Annual fishing mortality estimates were not available 

from the 2019 assessment document, thus the ASAP model values are not shown for plot C. Shaded grey are confidence intervals 

around estimates. Note that sex-specific SS models calculate SSB using only spawning female biomass while biomass from all mature 

individuals contributes to SSB in sex-aggregated models. 

 

4.3.2 Retrospective Analysis 

Retrospective patterns in spawning stock biomass were most visible for the sex-

aggregated model (Figure 4.2). Terminal year estimates of SSB had a pattern of positive 

retrospective inconsistencies for the sex-aggregated model, though this pattern was most 
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overt between 2011 and 2015. The sex-specific SS model also demonstrated this pattern, 

though it was less consistent. Alternatively, retrospective errors in fishing mortality were 

greater for the sex-specific model. Fishing mortality had a pattern of negative 

retrospective inconsistencies in the terminal year, though it appears that estimates of 

fishing mortality resolve to the eventual estimate within one year. No discernible pattern 

in retrospective errors could be identified in estimates of recruitment across model 

configurations.  
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Figure 4.2 Retrospective Analysis of SS Models 

Retrospective error in (top) Spawning stock biomass in metric tons, (B) fishing mortality yr-1, and (C) number of recruits in millions. 

Terminal years of retrospective models extend from 2011 to 2019. Note that sex-specific SS models calculate SSB using only 

spawning female biomass while biomass from all mature individuals contributes to SSB in sex-aggregated models. 

4.3.3 Simulation Analysis 

The operating model (OM), SS_Sex, generated 100 sets of simulated data. Model 

convergence was achieved with 88 of these simulated data sets, and only those converged 

simulations were run through the sex-aggregated estimation model, SS_Agg. The 
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simulated biomass timeseries from the sex-aggregated EM mirrored the dynamics 

observed in the base model runs (Figure 4.3). The sex-aggregated model estimated higher 

SSB than the sex-specific OM because biomass from all mature individuals contributes to 

the SSB in a sex-aggregated model, while only female biomass contributes to SSB in the 

sex-specific model. All simulations assessed by both the sex-aggregated EM and sex-

specific OM remained above both the SSBMSY and ½ SSBMSY overfished threshold 

generated by the operating model, SS_Sex. Note that because the SSB thresholds were 

generated by the sex-specific OM, simulations assessed by the sex-aggregated model 

were more likely to remain above these thresholds because biomass from all mature 

individuals contributed to the SSB.  

 

Figure 4.3 Simulated Spawning Stock Biomass Estimates 

Each of the 88 simulated timeseries from the operating model, SS_Sex, were assessed by the alternative estimation model, SS_Agg. 

Note that 100 simulations were generated, though only 88 of those simulations converged. Thresholds of SSBMSY and ½ SSBMSY, the 

overfished threshold, for the operating model are shown. Note that sex-specific SS models calculate SSB using only spawning female 

biomass while biomass from all mature individuals contributes to SSB in sex-aggregated models. 
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4.3.3.2 Forecasts 

Management strategies No Fishing, F35_Low and F35_High resulted in no 

simulations becoming overfished across EM model structures (Table 4.3; Figure 4.4). 

Though managing with F35_High resulted in lower biomass than either No Fishing or 

F35_Low, the equilibrium biomass from these forecasts was the nearest to SSBMSY. 

When simulations were managed without error in the commercial quota and recreational 

harvest limit, 19% of simulations experienced population collapse, though the sex-

aggregated EM only detected 3% of these collapses. When implementation error was 

added to harvest, 31% of simulations collapsed, and 11% of these were detected by the 

sex-aggregated model. Of the simulations that sustained throughout the forecasted period, 

more than 50% of simulations were overfished during some period of the forecast, though 

between four and 11% were detected by SS_Agg (Table 4.3). An overfished state was 

less likely to be detected by the sex-aggregated model when implementation error 

affected adherence to the management strategy.  

Table 4.3 Summary of Overfished Simulations 

OM = SS_Sex 

  Management Strategy   

EM 
No 

Fishing 
F35_Low F35_High 

No 

Error 

Implementation 

Error 

% 

Total 

SS_Agg 0.0% 0.0% 0.0% 11.2% 4.2% 3.0% 

SS_Sex 0.0% 0.0% 0.0% 53.6% 52.6% 21.2% 

% 

Total 
0% 0% 0% 32.4% 28.9% 

  

 

Details of the number of simulations that became overfished in forecasts relative to ½ SSBMSY of the operating model, SS_Sex. 

Overfished simulations are separated out by the estimation model which assessed the forecasts and management strategy that was 

applied in forecasts.  
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Figure 4.4 Simulation Forecasts of Spawning Stock Biomass from EM Structures 

Forecasted spawning stock biomass estimates for simulations generated by the operating model SS_Sex, assessed by each EM model 

configuration in SS, and forecasted with each of the five examined management strategies. Note that sex-specific SS models calculate 

SSB using only spawning female biomass while biomass from all mature individuals contributes to SSB in sex-aggregated models. 
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4.4 Discussion 

4.4.1 Implications of Biomass Estimates 

Modeling summer flounder sex-specific dynamics has been an ongoing effort, and 

these simulations describe both why it is important and why it is difficult. The sex-

specific and sex-aggregated models presented here demonstrate that in many ways a sex-

aggregated model captures trends in biomass, fishing mortality, and recruitment. 

Estimates of spawning stock biomass for the sex-specific model were approximately half 

of those from the sex-aggregated counterpart, though this differential is due to how stock 

synthesis calculates SSB in sex-specific models. In sex-aggregated models, biomass from 

all spawning individuals contribute to the SSB, where in sex-specific models, only the 

female spawning biomass contributes to SSB. In general, SSB generated only with 

female biomass is effective at generating management targets so long as reduction in 

male biomass is not likely to reduce fertilization rate (Brooks et al. 2008). However, as 

female-only SSB was nearly half of the aggregated SSB, and females are overrepresented 

in recreational landings, generating management thresholds with sex-aggregated SSB 

may have implications if reduction in biomass of female flounder could subsequently 

reduce spawning potential. In forecasted simulations, fishing at the current quota led to 

more than 50% of the sex-specific simulations to become overfished. Meanwhile, the 

sex-aggregated model predicted less than 10% of these overfished states when 

implementation error was in effect. However, as the SSB from sex-aggregated 

simulations could not be disaggregated into male and female biomass, this may not be an 

adequate comparison to thresholds set by a sex-specific model. Nonetheless, these 

forecasts demonstrate the need to understand how adequately a sex-aggregated model 
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that generates management targets with a sex-aggregated SSB can describe a sex-specific 

population with sexual-dimorphism that carries over to differential fishery selectivity 

between sexes.  

More than 60% of summer flounder are mature at age 1, and 100% by age 3 

(Morse, 1982; Maunder & Wong, 2011). In part because of size limits, the commercial 

and recreational fisheries generally begin targeting flounder at age-2, which means that 

the fishery largely lands individuals from the spawning stock. As females tend to be 

larger (Langan et al. 2019), minimum size limits bias landings of female flounder 

(ASFMC, 2021; Morson et al. 2017). Females are also found in higher ratios at shallow 

depths where the recreational fishery operates, perhaps responsible for the bias in landing 

of females in the recreational fishery (Morson et al. 2015). Considering the reliance on 

the spawning stock to meet minimum size limits, if the spawning stock is overestimated 

in the sex-aggregated model it is possible that current harvest limits could overfish the 

stock.  

4.4.2 Options for Future Model Development  

The provisional sex-aggregated, time-varying SS model was meant to capture the 

configuration of the ASAP assessment model. While timeseries of SSB between SS_Agg 

and ASAP were relatively similar, SS estimates of unexploited recruitment were nearly 

half those of ASAP and unexploited biomass was about two-thirds. Despite the 

incongruence, this model was the best of many configurations that were tested, and there 

are lessons to be learned from those efforts.  

One of the biggest struggles in transferring the model from ASAP to SS was the 

different manners in which each model structure reads parameter lines. For example, the 
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ASAP model uses matrices with dimensions for the number of years and ages to specify 

weight-at-age in each year. This is one of many time-varying attributes of the ASAP 

model, and not all could be incorporated. Ultimately, emphasis was placed on time-

varying selectivity because of clear changes in size-limits from management at various 

points in the time series. To provide for this emphasis, growth parameters remained 

constant throughout the time series. This is one avenue in the future, however, that could 

lead to better agreement between ASAP and SS realizations of the summer flounder 

stock.  

Another concern that remains between the ASAP and SS models is the terminal 

year estimates of recruitment. Where ASAP estimates higher recruitment throughout the 

timeseries (relative to SS models), the patterns are similar. From 2016 to 2019, however, 

ASAP estimates much higher recruitment than SS. One cause could be misfitting of the 

stock-recruitment (S-R) curve. The S-R curve has never been well-described (though see 

Maunder [2012]). Fitting of the S-R curve was tested during preliminary model runs by 

opening steepness to estimation. The model continued to estimate a steepness between 

0.95 and 1, a value that suggests recruitment is independent of spawning biomass (though 

recruitment may rely more on the environment [O’Leary et al. 2019]). However, this 

value is also used in the assessment, and would not explain the divergence in recruitment. 

Future edits to the SS model may consider including some or all of the larval survey 

indices provided by federal, state and academic surveys, which may be responsible for 

unrealized recruitment at the end of the SS timeseries.  

Finally, while discordance between ASAP and SS models cannot be attributed to 

length-compositions, as ASAP does not allow for the inclusion of length-compositions 
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and therefore the length observations were down-weighted to zero, future model 

development may focus on including length compositions. Management, especially of the 

recreational fishery, focusses heavily on size-limits with the goal to allow fish to reach a 

mature size and contribute to the spawning stock before being subjected to fishing 

pressure. This management tactic has been partially responsible for the disproportionate 

landing of large females in the recreational fishery, prompting some to argue for slot-

limit or cumulative size-limit management instead (Powell et al. 2010; Morson et al. 

2017). As SS allows for length, and summer flounder exhibit sexual-dimorphism in 

length, it may prove advantageous to incorporate length compositions in a sex-

disaggregated model of summer flounder.  

4.4.3 Concluding Remarks  

Summer flounder has historically been an important recreational and commercial 

resource for the US North- and Mid-Atlantic, though complex population dynamics have 

made the species difficult to sample, model, manage and forecast. One of the persisting 

concerns in the management of summer flounder is the sex-specific dynamics in both the 

population and the fishery. The models presented herein help describe that concern, 

especially with relation to spawning stock biomass. In the absence of adequate data and 

resources to generate a sex-specific assessment model, it is important to continue 

evaluating the fishery biases on summer flounder, and how that may be overlooked in a 

sex-aggregated model.  
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CHAPTER V  – CLOSING COMMENTS 

 

Fisheries modeling has always faced uncertainties, and simulation analysis will 

not resolve those uncertainties. What simulation analysis does allow for is the accounting 

for uncertainty in fisheries management. With the right tools, fisheries can be sustainably 

managed despite uncertainty. In this dissertation three species representing important 

commercial fisheries on the US East and Gulf coast were examined. First, a model was 

constructed to generate MSY-based reference points for both the Eastern oyster reef and 

fishery. This model provided rebuilding goals that allow managers to account for 

uncertainty in natural, disease and fishing mortality. With this framework, shell planting 

and seed fishing can be incorporated to anticipate impacts of management decisions on 

the reef.  

A second simulation analysis, for Atlantic surfclam, used the stock assessment 

model as a framework from which current management control rules could be assessed 

and related to risk-tolerance policies of the management council. Forecasts accounted for 

uncertainty in population dynamics parameters and concluded that while the fishery is 

unlikely to become overfished or experience overfishing, the density of clam patches may 

impact the fishery before the stock reaches management thresholds.  

Finally, the impact of modeling summer flounder, a species which exhibits sexual 

dimorphism, with a sex-aggregated model was examined. Using the current commercial 

quota and recreational harvest control rule, forecasts applied to simulations of a sex-

specific assessment model. The sex-aggregated assessment model did not detect an 

overfished stock, though more than 50% of the operating model simulations became 
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overfished under current regulations. Disparity in estimates of spawning stock biomass 

between sex-aggregated and sex-specific models may lead to overharvest that is 

undetected by a sex-aggregated model.  

These three examples of simulation analysis contribute to efforts to evaluate 

uncertainty in fisheries models and inform managers of how harvest policies and 

thresholds could impact fishery resources in the near-term future. These analyses provide 

frameworks from which risk-based assessments can be adapted to other fishery resources 

with similar uncertainties and support efforts to conduct risk-based assessments of 

management decisions.   
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