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ABSTRACT 

Large-scale collection of pedestrian facility (crosswalks, sidewalks, etc.) presence 

data is vital to the success of efforts to improve pedestrian facility management, safety 

analysis, and road network planning. However, this kind of data is typically not available 

on a large scale due to the high labor and time costs that are the result of relying on 

manual data collection methods. Therefore, methods for automating this process using 

techniques such as machine learning are currently being explored by researchers. In our 

work, we mainly focus on machine learning methods for the detection of crosswalks and 

sidewalks from both aerial and street-view imagery. We test data from these two 

viewpoints individually and with an ensemble method that we refer to as our “dual-

perspective prediction model”. In order to obtain this data, we developed a data collection 

pipeline that combines crowdsourced pedestrian facility location data with aerial and 

street-view imagery from Bing Maps. In addition to the Convolutional Neural Network 

used to perform pedestrian facility detection using this data, we also trained a 

segmentation network to measure the length and width of crosswalks from aerial images. 

In our tests with a dual-perspective image dataset that was heavily occluded in the aerial 

view but relatively clear in the street view, our dual-perspective prediction model was 

able to increase prediction accuracy, recall, and precision by 49%, 383%, and 15%, 

respectively (compared to using a single perspective model based on only aerial view 

images). In our tests with satellite imagery provided by the Mississippi Department of 

Transportation, we were able to achieve accuracies as high as 99.23%, 91.26%, and 

93.7% for aerial crosswalk detection, aerial sidewalk detection, and aerial crosswalk 

mensuration, respectively. The final system that we developed packages all of our 
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machine learning models into an easy-to-use system that enables users to process large 

batches of imagery or examine individual images in a directory using a graphical 

interface. Our data collection and filtering guidelines can also be used to guide future 

research in this area by establishing standards for data quality and labelling. 
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CHAPTER I - INTRODUCTION 

1.1 The need for automated pedestrian facility data collection 

Collecting crosswalk presence data at scale is vital for improving the safety and 

convenience of roadways for pedestrians. Such information is necessary for finding 

pedestrian related crash causing factors, identifying locations that would benefit from 

additional crosswalks, and evaluating the connectivity of the pedestrian network. 

Recognizing the importance of crosswalk presence data to safety, thirty-seven U.S. State 

Departments of Transportation (DOTs) have prioritized improving pedestrian facility 

inventory, particularly concerning crosswalks, as an important action item in their 

Strategic Highway Safety Plans. In a recently published guidebook on measuring 

multimodal network connectivity [1], it is emphasized that ‘‘results are only informative 

to the extent that they measure the ‘right’ network—the one that pedestrians are likely to 

use in real life.’’ This “right” network is composed of crosswalks and sidewalks that are 

present in the real world. However, the data about the presence of crosswalks is often not 

available or collected on a large scale. A National Cooperative Highway Research 

Program (NCHRP) synthesis on the availability of pedestrian infrastructure data 

concluded that 31 of the 40 responding DOTs report collection of pedestrian 

infrastructure data and only 12 of the 31 states have made the data available to the public. 

Regarding crosswalk presence data, only 11 states reported collection of such data. 

The limited availability of crosswalk data at scale could be caused mainly by 

challenges inherent in the current data collection approaches, including field data 

collection and manual digitization based on aerial images [2]–[4]. Human errors, high 

cost for time and labor, safety concerns for data collectors, and the corresponding 
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concerns about standardizing, updating, and maintaining data could raise the hesitation of 

decision makers to undergo large-scale collection of this complex and repetitive yet 

essential data. To address these data collection challenges, promising automated methods 

have been studied by researchers via employing computer science techniques to 

automatically collect crosswalk presence data from aerial view or street-view images (see 

Table 1.1). Aerial view imagery includes images taken from an airplane, drone, or 

satellite, and provides pictures of the area from an overhead angle. Street-view imagery is 

taken on the street by cameras mounted on a vehicle (e.g., Google Street View and Bing 

Streetside View) or from cellphones. The idea of these automated methods is that, by 

using image processing algorithms, crosswalk presence can be detected automatically 

from images of locations of interest. 

1.2 Literature review and related studies 

There are several studies that have previously explored the automated detection of 

pedestrian facilities. However, many limitations can be found in these existing automation 

methods, such as the use of small training datasets, a lack of ground truth checking for 

occluded candidates, and utilizing obsolete algorithms (classical image processing 

techniques). Table 1.1 gives an overview of some other studies along with the accuracy 

rates they report and a summary of the limitations that they face. Note that, due to 

differences in the type of data being collected (different geographic areas, resolutions, 

dataset sizes, etc.), it is not possible to directly compare these results. However, we believe 

that our results are comparable to the best methods given our overall high performance in 

our tests (see chapter IV). Also, it should be noted that our goals for this project (discussed 

in section 1.3) did not involve optimizing the performance of all of the methods that we 
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implemented. The remaining subsections here go into more specific details by comparing 

other aspects of our work (such as model combination strategies and architecture) to similar 

published studies.  

Table 1.1 A summary of related studies that explore automated crosswalk detection 

Image 

Types 

Researchers Year Objects 

Detected 

Methods Accuracy 

rates 

Limitations 

Aerial 

Images 

Riveiro et al. 

[5]  

2015 Zebra 

crossings 

Image 

segmentation  

83.33% - Small training 

dataset size 

- No ground truth 

verification 

- Traditional 

algorithm 

Luo et al. 

[6] 

2019 Sidewalks CNN 

classification 

92.6%-

97.22% 
-no occlusion 

handling 

-image extraction 

using automated 

zooming in GIS 

software is likely 

slow for large areas 

 

Chen et al. 

[7]  

2021 Crosswalks Image 

segmentation 

and CNN 

object 

detection 

97.71% -no occlusion 

handling 

-Heavily tuned 

parameters with no 

blind test 

Street side 

images 

Wang et al. 

[8] 

2014 Crosswalks  Support 

Vector 

Machine 

classifier 

78.90% - Small training 

dataset size 

- No ground truth 

verification 

- Traditional 

algorithm 

Poggi et al. 

[9] 

2015 Crosswalks CNN 

Classification 

88.97% - Small training 

dataset size 

- No ground truth 

verification 

Ahmetovic 

et al. [10] 

2016 Zebra 

crossings 

 Image 

segmentation 

93% - Individual roads 

(not a network) 

- No ground truth 

verification 

 

R.F. Berriel 

et al. [11] 

2017 Crosswalks CNN 

Classification 

94.12% - No ground truth 

verification 

Dual 

perspective 

Ning et al. 

[12] 

2022 Sidewalks Image 

segmentation 

85.69%-

89.49% 

(F1) 

-occlusion handling 

but no data filtering 

guidelines 

-segmentation only 
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Among all of these limitations, handling occluded crosswalks has been recognized 

as the most challenging one that greatly impedes the development and application of these 

automated methods in real world situations [9], [13]. The crosswalk in an image could be 

partially or entirely occluded by cars, trees, pedestrians, etc. Figure 1.1 illustrates several 

examples of occluded crosswalks in aerial view images. Occlusion often causes the 

omission of a crosswalk [5], [13], [14], erroneous recognition of “crosswalk-like” 

markings, or even malfunction of the algorithm [5]. However, the detection of crosswalks 

that are mostly or even entirely occluded remains a difficult problem.  

 

Figure 1.1 Example images of heavily occluded crosswalks in our aerial imagery data 

1.2.2 Previous crosswalk data collection methods 

According to a related study [15], there are two approaches commonly used to 

collect crosswalk data, including field investigation and computer-based digitization. In 

the first approach, data collectors will go out in the field to observe and measure the 
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facilities manually. They record the measurements either on paper or on handheld devices 

for future digitization. The second approach is more advanced since data collection 

would be conducted mainly on a computer using aerial images and video logs. However, 

it still requires additional field investigation for ground truth verification whenever the 

object of interest is occluded in the aerial images. For example, researchers in [16] were 

able to manually review satellite imagery of roughly 6,400 intersections in San Francisco 

and found that crosswalks are present at 58% of these locations. One researcher 

performing this analysis required 90 hours to complete the task. This amount of time is 

likely too high for any department of transportation or planning department to dedicate to 

such a task on any regular basis. The amount of time they give for processing this one 

city (~47 square miles) is comparable to the amount of time that we have estimated for 

our system to process satellite imagery of the entire area of Forrest County in Mississippi 

(see section 4.7). Furthermore, they only focus on intersections and do not consider 

midblock crossings. However, our method scans the entire Satellite image and includes 

all roadway surfaces. Our time estimate would be much lower if we focused only on 

roadways, and midblock crossings would still be included.  

The high level of human labor involvement of these two types of approaches 

inevitably leads to specific limitations. First, errors may be introduced by human data 

collectors becoming fatigued from traveling in the field or from looking at computer 

screens for long periods of time. Second, time and labor cost for travel to data collection 

sites is non-negligible for field data collection. Once the size of the network is fixed, 

there is not much space to lower this cost. Third, there are safety concerns associated 
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with exposing data collectors to hazardous traffic conditions. These limitations motivated 

our study and are compelling reasons for automated methods to be studied.  

1.2.3 Previous automated crosswalk detection studies 

In practice, pedestrian facility data are mainly collected manually. However, in 

research settings there have been some attempts to automate the detection of crosswalks 

[5], [8]–[10], [13], [14], [17]–[28]. A comprehensive review of these studies was 

conducted based on thirty-seven journal papers found by searching the literature for 

“crosswalk classification” or “crosswalk detection” and also by inspecting the reference 

lists of the identified papers. The majority of the existing studies (92%) in our initial 

review were motivated by the single goal of assisting visually impaired people to 

navigate safely at urban intersections. The remaining projects aimed for improving driver 

assistance systems, advancing road management [5], enhancing image processing 

methods [28], and working on a broader range of goals related to navigation systems and 

autonomous vehicles [13]. Ahmetovic et al. argued that, since the zebra crosswalk is the 

most visible to drivers and grants right-of-way to pedestrians, it is a highly preferable 

location for street crossing in terms of safety [17]. As a result, zebra crosswalks became 

the target object in most of the previous studies, except in [19], [21] where both zebra 

crosswalks and two-stripe crosswalks were studied. Another factor which constrained the 

research of detecting types of marked crosswalks other than zebra crosswalks could be 

the limitations of detection methods that are based on classical image processing 

methods. A high-contrast texture in the image pattern is usually preferred by these 

methods. Therefore, the zebra crosswalk pattern is much more visible to these algorithms 

than other marked crosswalks [21]. Generally, images from either aerial view or street 
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view were used separately as the sole data source, and most of the existing crosswalk 

detectors were based on images only in street view due to their high resolution and clear 

view. Only very recently, a few studies began to use aerial view imagery for crosswalk 

detection due to its potential for use in collecting data at large scale [10], [11]. Different 

from these previous studies, our method aims to detect not only zebra crosswalks but also 

other types of marked crosswalks. In addition, images in aerial view and street view are 

combined as dual perspective sources to create an increasingly informed crosswalk 

detection system. Ultimately, the goal of this study is to lay the foundation of building an 

inventory of crosswalk presence data at large scale. 

1.2.4 Overview of previous crosswalk detection models 

Our review of the literature revealed that the models typically used for automated 

crosswalk detection can be classified into three categories. The first category includes the 

traditional approach which is based on simple image processing techniques, such as line 

detection [5], [10], [28]and image segmentation [19], [20]. Edges and patterns in an 

image can be extracted and analyzed to determine if these elements belong to a 

crosswalk. The performance of image processing-based approaches heavily relies on the 

quality of the image that is to be detected. Thus, this approach is appropriate for images 

that are high-resolution, taken within a certain short distance from a specific angle, 

contain the whole pattern, and use a specified orientation. The second category of models 

is based on machine learning algorithms, such as the AdaBoost-algorithm [23], Cellular 

Neural/Nonlinear Network Universal Machine (CNN-UM) [24], and Support Vector 

Machine (SVM) [8], [14], [22]. These algorithms were trained using features extracted 

from images containing a crosswalk to learn knowledge about what kind of images are 
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likely to contain a crosswalk. With this knowledge, the algorithms were able to classify a 

new image as either “having a crosswalk” or “not having a crosswalk”. Features used to 

build and train the algorithms were still extracted by using image processing techniques. 

Machine learning-based models using pre-designed and hand-engineered features share 

one critical limitation, which is that they cannot handle crosswalks affected by factors 

other than those that have already been considered in the selection of the features.  

Thus, these models only perform well when detecting crosswalks sharing specific, 

similar features, such as special orientations, illumination conditions, and very limited 

occlusion. Dealing with diverse situations with many unknown features in real-world 

images becomes one of the biggest challenges. Recently, a third category of methods has 

emerged to address this challenge. These approaches are based on deep learning 

technologies, such as training a Convolutional Neural Network (CNN) to detect 

crosswalks automatically from images [9], [11], [13]. Compared to the other approaches, 

deep learning-based approaches are able to learn the appearance of crosswalks directly 

from images without requiring the manual selection and extraction of features 

beforehand. Thus, they are more appropriate for handling real-world conditions under 

which images of crosswalks could contain clutter, shadows, saturation effects, distortion, 

occlusion, and any other unknown features. Based on these considerations, our method 

will also be based on CNN models but with additional advancements, including dual-

perspective data sources. We will introduce the details about our implementation of these 

techniques starting in section 3.1. 
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1.2.5 Comparison with previous sidewalk detection studies 

While there are some studies that focus on sidewalk detection as a classification 

problem, our literature review found far more studies that engaged in “sidewalk 

extraction” or other methods of identifying the sidewalk network from aerial imagery. 

Starting with the methods that are most similar to our approach, sidewalk classification 

methods that use aerial imagery can process wide areas at once and identify the presence 

or absence of sidewalks in a given image. This is typically done by dividing a larger 

aerial image into smaller slices that can be processed by a neural network. In our work, 

we chose to explore sidewalk detection specifically as an image-level classification 

problem. We discuss this as one of the main contributions of this project in section 1.3. 

Other studies focus on detecting sidewalks (mostly using segmentation methods) from 

the street-view perspective. We found that, instead of supporting pedestrian facility 

detection by supplementing aerial imagery, the methods in these studies were typically 

focused on other tasks such as classifying sidewalk accessibility or improving driverless 

vehicle operation. The next two sections will give an overview of these two categories of 

sidewalk-focused studies.  

1.2.5.1 Overview of previous sidewalk studies using aerial imagery 

Aerial imagery is widely used for a variety of tasks, such as remote sensing, 

traffic management, and urban planning [29]. Many studies that are focused on land 

cover classification or road extraction have used high resolution imagery at a zoom level 

that makes it difficult to detect smaller features like sidewalks or crosswalks [30]–[32].  

However, in recent years, many studies have also focused on classifying sidewalks and 

other road features using images with a higher zoom level. Luo et al. extracted a dataset 
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of 1,832 labeled images (paved sidewalk vs. missing sidewalk) from an area around the 

University of California, Riverside and a separate blind test dataset with 1,041 images 

[6]. While they did also include some crosswalk data in their dataset, they were only 

involved in their data collection process for purposes such as identifying intersections. 

Much like our data collection process for aerial images (which sampled images directly 

from the road path provided by Bing Maps), they were able to ensure that the collected 

images (taken from a large satellite image) would be sampled along the lines of a known 

road network. After collecting this data, they used a neural network based on a ResNet 

architecture [33] and found that 964 of 1,041 (92.6%) images were correctly classified in 

their blind test and 97.2% of their 180 initial testing images were correctly classified. 

While the dataset used was not comparable in terms of geographic area or qualities other 

than a focus on sidewalk presence, the performance of our model in a blind test (external 

test) using aerial sidewalk imagery was comparable to theirs with an accuracy of 91.26% 

(see section 4.4.1). Their paper also mentions occlusion, but it is not clear if they 

addressed it with any filtering other than quality control that may have occurred in their 

manual labelling process. Compared to their reported results of 62.4% and 59.0% 

accuracy in their previous work [34], some optimization was clearly performed.  

1.2.5.2 Overview of previous sidewalk studies using street-view imagery 

Our literature review found that most of the studies that identified crosswalks in 

street-view imagery were focused on sidewalk segmentation. While this is important for 

driverless vehicle research or other tasks that need to know the exact location of the 

sidewalk in an image [35], our goal was only to confirm the presence or absence of 

sidewalks in the image. Other studies focus on sidewalk accessibility [36]–[39] and even 
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handling the detection of different sidewalk surfaces in historic urban environments [40]. 

In older works such as those by Smith et al. [41], sidewalk segmentation is performed 

even though the final results are produced using a classification algorithm. In this case, it 

is done with a random forest [42] classifier applied to initial segmentation results 

produced by a graph-based algorithm [43]. With this, they were able to achieve a 

sidewalk detection precision of 60.63% and a recall of 77.24% (based on pixel-level 

metrics). Approaches that combined classical image processing techniques to extract 

features from images before using a separate classification algorithm were common 

before the current era of research that is dominated by the automatic feature extraction 

capabilities of deep learning algorithms.  

Another study by Kang et al. [44], also used a random forest classifier to generate 

an image-level classification result from a basic, graph-based segmentation algorithm. 

One of the only studies in our literature review that performed street-view sidewalk 

detection using image-level classification techniques was a sidewalk accessibility study 

[37]. They automatically assessed the accessibility of sidewalks in Google Street View 

panorama images and automatically validated crowdsourced labels from Project 

Sidewalk [38]. This was done using a modified Resnet-18 [33], [45] that introduced 

positional and geographic features. Their input data was 224x224 pixel input images 

cropped from the street-view panorama that were then processed with 7 features encoding 

the position of a point in the scene and 5 features encoding other information about the 

scene in a larger geographical context within the city. However, this study was only 

focused on accessibility problems with sidewalks and not as concerned with the 

challenges of detecting the sidewalk itself.  
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1.3 Research goals and contributions 

For this project, our goal was to incorporate a wide variety of the various 

pedestrian facility detection advances in recent years (discussed in section 1.2) into a 

single project that investigated this topic both from the perspective of computer science 

and from that of transportation research (guided by a panel of experts in the field). In 

order to do this, we applied the knowledge and experience obtained from our previously 

published machine learning research [46]–[48]. In [46] and [47], we implemented a face 

classifier (based on the model described in [49]) and tested it on the FERET image 

dataset [50]. The Python implementation of this model was heavily based on VGG16 and 

became the foundation of our image-level classification work for the pedestrian facility 

detection that is presented in this dissertation. Even though the datasets were very 

different, much of our work with the various machine learning techniques, such as the 

pretraining process and data preprocessing, in that study was relevant to our current 

research. Also, in [46], we implemented and tested the procedure for visualizing layer 

activations that would become an important part of interpreting the results of our current 

project and the future work presented in this dissertation (see section 3.8.2 and section 

5.2.4). Then, in [48], we tested a wide variety of machine learning and deep learning 

algorithms for the purpose of performing protein residue-residue contact prediction. In 

particular, our tests using stacked denoising autoencoders [51], [52] (a method that makes 

predictions by combining multiple autoencoder models at the feature vector level) 

provided important experience that we used to guide our decision when considering 

methods to make predictions by combining aerial and street-view imagery (see section 

3.4).  
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Of course, applying what we had learned from these past studies to this pedestrian 

facility detection project came with a multitude of challenges that we carefully addressed 

in various sections of this dissertation, including data collection (section 2.2), data 

filtering and cleaning (section 2.2.3), sidewalk and crosswalk detection (section 4.1), 

combining aerial and street-view imagery for improving occluded crosswalk detection 

(section 3.4), and crosswalk mensuration (section 3.5). In particular, one of the most 

important contributions of our work was the data collection and filtering guidelines that 

we developed. This included implementing our data collection pipeline (section 2.2), the 

street-view image correction method (section 2.2.2), distance-based filtering (section 

2.2.3.1), perceptual hash (image-based) filtering (section 2.2.3.2), and manual dataset 

cleaning (section 2.2.3.3). Portions of this dissertation have also been drafted into two 

manuscripts that will be submitted for publication (see section 5.2.1). Another 

contribution that the future of our research will have to this field is our plan to construct a 

high-quality data repository that will benefit researchers that are working in this field by 

providing standardized, clean data with properly annotated information (see section 

5.2.5). The previously mentioned data collection and filtering guidelines that we 

introduced will play a vital role in the acquisition, annotation, and maintenance of the 

data in this repository. Our literature review did not reveal any other projects that 

simultaneously incorporated this many aspects of pedestrian facility detection while also 

laying the groundwork for improving future data collection work and testing the 

prototype of an easy-to-use software package that will enable users to generate pedestrian 

facility presence data with very little training (see section 4.8).  
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Since we explored this many different topics in this project, many of the other 

contributions of our research are related to proposing solutions for various smaller 

challenges that we encountered during this study. For example, there are many problems 

associated with real-world pedestrian facility data sources, including occlusion and 

incomplete coverage. In particular, satellite imagery for an area often suffers from heavy 

cloud cover or interference from other objects (trees, shadows from buildings, etc.) that 

obstruct (occlude) the view of crosswalks and sidewalks. Additionally, low resolution 

and processing artifacts can also make it more difficult to automatically detect pedestrian 

facilities in aerial imagery. While street-view imagery also faces challenges (such as 

camera orientation and occlusion from objects on the street), it is typically much higher 

quality and has a better chance of accurately representing the target pedestrian facility.  

In our research we have attempted to address these problems by creating several 

machine learning models that will handle various automated pedestrian facility tasks. In 

total, our system is comprised of 4 detection models, a segmentation model, and a final 

dual-perspective model covering various perspectives (viewpoints). (aerial crosswalk, 

street-view crosswalk, aerial sidewalk, street-view crosswalk), In order to address the 

aforementioned challenges, we have proposed to incorporate multiple data sources 

through the use of dual-perspective prediction. By using data from multiple viewpoints 

(perspectives) of the same location simultaneously, we can increase the prediction 

accuracy and overall generalizability of our system when applied to real-world data. 

Specifically, our contribution in this area is to develop a dual-perspective crosswalk 

prediction model that can improve the detection of occluded crosswalks in aerial imagery 

by simultaneously incorporating street-view imagery of the same location in the 
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prediction process. We refer to this system as our dual-perspective model (DPPM) and 

have tested it on our own manually annotated datasets.  

This method integrates information from images of the same crosswalk candidate 

from two perspectives – aerial view and street view. In this DPPM, images from the aerial 

view and street view of the same crosswalk candidate are retrieved from Bing Maps and 

processed by two individual crosswalk detection sub-models, an aerial view sub-model and 

a street view sub-model, in parallel. By combining the crosswalk presence predictions 

generated by the two sub-models, a final prediction of the DPPM is produced considering 

the confidence level of the sub-model predictions. This mimics the process in manual data 

collection where the data collector will check the street view of a facility if it is occluded 

in the aerial view. Our detection models are based on advanced Convolutional Neural 

Networks (CNN) that were pretrained on large image datasets. These networks are 

designed to train themselves automatically with much less manual preparation for the 

training data (in terms of feature generation) than traditional methods require. To address 

the challenge of automatically obtaining the images in different views for the same target 

object, a special data collection pipeline was designed to retrieve the street-view image of 

an object observed in the aerial view image. Moreover, special attention is given to testing 

the method using images of crosswalks that are heavily occluded. Model performance was 

compared using the traditional, single-perspective method and the proposed dual-

perspective method. The proposed method has potential to remove the bottleneck that 

prevents the application of similar automation methods by facilitating the collection of data 

at large scale in real-world situations. It also provides the opportunity for future expansion 
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of the automation method to observe other pedestrian facilities (e.g., sidewalks, curb ramps, 

etc.) that are even harder to detect solely from aerial view images. 

One exiting study aimed to solve the occluded crosswalk problem as well by using 

human volunteers to validate the images of zebra crosswalks that are already classified 

[17]. In their procedure, images that were mistakenly classified due to occlusion will be 

corrected manually using the street-veiw image at the same location. Although this method 

used street view images as well, our method is different. In Ahmetovic’s method, street 

view image checking was done manually and only applied to the images that were 

predicted as “having crosswalks”. In other words, they used aerial view and street-view 

images sequentially. By doing this, their method could omit crosswalks that are heavily 

occluded and were not detected (false negative predictions) at all in the first place. What 

enhances our method and makes it different is that we use aerial view and street-view 

images in parallel so that heavily occluded crosswalks will not be omitted. Furthermore, 

the “ground truth” checking process is fully automated. 

1.3.1 Multi-perspective data processing overview 

As previously mentioned in section 1.3, our proposed method to address the 

detection of occluded crosswalk candidates is to conduct the detection in parallel using 

both images taken from aerial and street-view perspectives simultaneously. After that, the 

final prediction of the presence of the crosswalk would be based on a combination of 

predictions made using information learned from the two images for the same target. 

Techniques for making predictions for individual targets using multiple data sources have 

been rarely used specifically for crosswalk detection, although researchers in other fields 

have studied these approaches applied to different problems. Real-world datasets often 
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contain many types of data which measure the same thing but were gathered with 

different measurement techniques or formats. Taking advantage of multiple data sources 

can be directly beneficial to the reliability and usability of a deep learning system when 

processing images with an object that is difficult to detect accurately based only on a 

single data source. While classical machine learning methods typically require the 

extraction of manually designed features from each data source, deep learning has a 

greater potential for incorporating data from multiple sources thanks to its innate ability 

to automatically extract features from various types of data.  

1.3.1.1 General methods for utilizing multi-perspective data 

There are two types of general prediction combination techniques that are relevant 

to this study but are not specifically limited to crosswalk detection. The first type of 

technique combines the advantages of multiple models by incorporating their individual 

results into a final prediction using different voting strategies [53]. Some studies [54], 

[55] have used this idea to combine multiple types of data by training an individual 

classifier for each one before performing final prediction with an ensemble classifier. 

[55] tested various model combination techniques and showed that combining multiple 

classifiers into an ensemble model can improve the accuracy of land cover classification. 

[54] developed a system that used a block (ensemble) of individual ResNet models 

trained on different data modalities to perform segmentation of multiple sclerosis lesions 

and produce a final output 3D volume using majority voting. While the first type of 

technique focuses on training whole, individual models to handle various prediction tasks 

related to the end goal, the second type of technique instead uses various modifications to 

a neural network architecture that allow single models to directly incorporate multiple 
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sources of data. For example, [56] demonstrated a multi-input method that produced an 

increase in automated flower grading accuracy using a convolutional neural network that 

is capable of simultaneously processing three input images of the same target (a pot of 

flowers) captured with different views (rotations). Finally, methods like [57] and [58] 

combined multiple types of data for remote sensing purposes that were more similar to 

our work than the previously mentioned studies in this section.  

1.3.1.2 Methods for fusing aerial and street-view imagery 

One recent study that was related to our dual-perspective crosswalk detection 

method was conducted by Ning et al. [12]. They extracted sidewalks from aerial imagery 

and used street-view images to supplement the detection of occluded sidewalks. While 

we did also consider applying our dual-perspective prediction method (see section 3.4) to 

sidewalk data in this manner, the scope of our research was primarily focused on 

crosswalk detection. In [12], they first use a segmentation network to extract a predicted 

sidewalk network from aerial images. Then, this segmented network is refined by 

extending the sidewalk segments according to the presence of sidewalks in street-view 

imagery. Unlike our work which focused primarily on image-level classification of 

sidewalks and crosswalks, their study used the YOLACT [59] architecture to perform 

segmentation in both viewpoints. While this approach was suitable for sidewalks, the 

resolution of the aerial imagery used in their work would not be suitable for the type of 

crosswalk detection and mensuration that we needed to perform. However, this study 

supports our assertion that, when detecting pedestrian facilities across large geographic 

regions, street view imagery should be used as a supplementary data source that supports 

aerial imagery. Similar to our position in section 1.3, they emphasize that publicly 
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available street-view imagery may not cover the entire area of interest and is often 

outdated. Furthermore, street-view vehicles are often not able to access certain areas that 

have pedestrian facilities visible from the aerial view. However, they do recognize the 

utility of using street-view imagery (when it is available) to correct detection problems 

caused by occlusion in aerial imagery.  

Other studies focused on fusing street-view and aerial imagery to detect other 

types of road objects and facilities [60]–[63]. In [60], aerial and street view imagery is 

combined to detect trees near roadways. In [61], a new dataset of ground-level and aerial 

images from Brooklyn and Queens (New York, USA) is obtained from Bing Maps and 

Google Street View. They use kernel regression to integrate these ground view (street 

view) images into a spatially dense feature map. This feature map is then fused with 

features extracted by the CNN from aerial images before being combined with a small 

multi-layer perceptron at the output of the network. Therefore, unlike our decision-level 

approach, this is another method that combines feature vectors from different models and 

requires that data from both sources must always be available. They also use the VGG16 

architecture as the base for both of their viewpoints. However, they utilize some ideas 

from PixelNet [64] and extend their method from image-level classification to pixel-level 

labelling by extracting multiscale features with a hypercolumn and including a small 

multi-layer perceptron at the end of the network. Unlike our work, they are focused on 

classifying building function (206 classes, including Churches, Multi-Story Department 

Stores, Funeral Homes, etc.), land use (11 categories), and building age (organized into 

13 bins quantized by decade). Overall, they found that, by incorporating multiple 



 

20 

viewpoints, their network is better at resolving spatial boundaries and is also better at 

estimating features that are difficult to observe from the aerial viewpoint. 

In [62], Cao et al. use the dataset from [61] to test a modified model based on the 

SegNet architecture [65]. They extended this architecture with an additional encoder and 

then fused the convolutional layers with the first encoder network. One encoder is 

responsible for aerial images and the other handles street-view images. The output feature 

maps of selected layers of both encoders are fused and then fed to the remainder of the 

network to generate the final segmentation results (another feature-level combination 

method). In [63], one of the only studies we found that focused on image-level 

classification like our facility detection models (instead of producing bounding boxes or 

using segmentation), Hoffmann et al. classified buildings into four classes (commercial 

residential, public, and industrial) by fusing aerial and street-view imagery. As we also 

saw in [12], the results produced by Hoffmann et al. support the use of a decision-level 

fusion of an ensemble of models that are trained from each image type (perspective) 

independently. They argue that using feature-level fusion, as is common in the multi-

stream networks commonly discussed in the literature, can lead to a destructive effect in 

the network due to the spatial misalignment of features (especially if this combination is 

done in an early stage of the convolutional portion of the network). By instead using a 

decision-level approach with model blending, they were able to increase precision scores 

from 68% to 76%. They experimented with different ensemble configurations using 

models based on both the Inception-v3 [66] architecture and VGG16. These models were 

pretrained with ImageNet and the Places dataset [67]. Their model blending method took 

the mean of the softmax layer of the aerial and street-view models. This is similar to our 
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method presented in section 3.4 and is just a decision-level combination of the predicted 

probabilities instead of a voting function.  

Another type of study by Wang et al. involved using a single camera to perform 

segmentation on street-view imagery and then reconstructing a top-view (aerial) 

representation for the purposes of road scene understanding [68]. They used this 

representation to perform occlusion reasoning and detect different types of road features 

(number of lanes, sidewalk and crosswalk presence, type of intersection, etc.). While this 

type of approach is good for driverless vehicle research or other applications that are 

more focused on street-level information, our work is more concerned with classifying 

wider geographic regions and needs a georeferenced aerial view for mensuration and 

facility location purposes. Other studies like [7] used one perspective (aerial) but fused 

different types of predictions. In their case, road extraction (segmentation) was used to 

enhance and filter crosswalk predictions made by an object detection CNN model.  

After reviewing these studies, we determined that using deep learning to explore 

the integration of aerial and street side imagery data into a single, combined prediction 

could improve the accuracy and ability of our final model to adapt to real-world data in 

which occlusion and other factors that often compromise data quality make it impossible 

to rely on single sources of data. Therefore, we chose to use the first type of combination 

technique (decision-level/voting) since we needed the ability to train independent models 

that could perform predictions in the absence of data from one of the viewpoints (aerial 

or street-view). In general, these strategies also give researchers more control when 

determining which single-perspective models should have more weight (importance) in 

the final multi-perspective prediction based on the quality and relevance of images 
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available from each of the corresponding perspectives in a given application area. 

However, due to the scope of this study, we only experimented with a basic version of 

these concepts as described in section 3.4. 

1.3.2 Application to Department of Transportation data 

A large portion of our research was performed in collaboration with the 

Mississippi Department of Transportation (MDOT) and the California Department of 

Transportation (Caltrans) with funding from the IDEA program of the Transportation 

Research Board’s National Cooperative Highway Research Program. As a result, we 

were able to test the final products of our research on real-world data provided by 

MDOT. A considerable amount of work in this project was dedicated to incorporating 

advice from the expert panel into our work and exploring various ways to apply our 

methods to the unique GIS data formats that modern DOTs work with (see section 4.4 

and section 4.8).  
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CHAPTER II – DATA COLLECTION AND PROCESSING 

2.1 Overview of dataset structure and design 

The two Single Perspective Prediction Models (SPPMs) need to be trained using a 

large number of images annotated as “having a crosswalk” or “no crosswalk” in both the 

aerial and street view. Manually labeling such a dataset would be very time and labor 

intensive. Thus, we implemented a data collection pipeline to automatically collect 

labelled crosswalk images from OpenStreetMaps (OSM) and Bing Maps. This pipeline is 

similar to what was proposed in [11], but we made three major adjustments. One 

adjustment is that our algorithm works with Bing Maps instead of Google Maps, which 

was used in [11]. We chose Bing Maps since, at the time of writing, their service offers 

an education license for making requests to the API free of charge. On the other hand, 

Google Maps (at the time of writing) requires payment information to be provided and 

charges fees for using their API after a small amount of free credit has been used. Thus, 

using Bing Maps would make this method of obtaining annotated image data more 

accessible to researchers with limited budgets. Furthermore, since very few studies in this 

field use Bing Maps imagery, our work is beneficial for the community by increasing 

access to more diverse datasets. The second improvement we made based on the work of 

Berriel et al. is that we designed a software pipeline to automatically download the 

matching street side image for a given aerial image location. While [11], [13] did conduct 

street side and aerial tests, we did not find any reports of utilizing both data types 

simultaneously when preparing the data and prediction models. This data pipeline also 

was used in preparing street side images for training and testing. Our final improvement 

was adding a user interface to allow for humans to manually verify the content of the 
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images, including the annotations and occlusion levels. This helped us prepare an 

external test set of manually verified occluded images for testing the performance of the 

DPPM. It also was used to determine the accuracy rate of the OSM tags for a facility 

(crosswalks in an area we selected) by comparing the crowdsourced tags to ones that 

were manually produced by a human. By checking the accuracy of the crowdsourced tags 

from OSM for the locations in 1,000 aerial crosswalk images, we found that the OSM 

tags had an accuracy rate of 86.7% (the remaining 13.3% of the images were found to be 

incorrectly labeled or otherwise corrupted/unusable). The operation of our data collection 

pipeline is described in section 2.2. For more details about the foundation of this study, 

please refer to the works of Berriel et al. [11], [13].  

2.2 Data collection pipeline 

The sample data acquisition model was designed to prepare tagged images of 

crosswalks and sidewalks for the purpose of training the detection model. To realize this 

function, this model was designed as a pipeline of scripts that combines crowdsourced 

tags of pedestrian facility locations from OpenStreetMap (OSM) with their corresponding 

satellite images from Bing maps. As a result, the data acquisition model produced a large 

number of images (tagged as “crosswalk”, “no-crosswalk”, “sidewalk”, and “no-

sidewalk”) for use in training and testing the deep learning models used in the project. In 

addition to the sidewalk and crosswalk categories, the data was also organized by two 

different viewpoints (aerial and street-view). Here, aerial images are slices of satellite 

imagery and street-view images are slices of a panorama image taken from a Bing 

Streetside view vehicle. Images with a crosswalk or sidewalk are stored in the “positive” 

category while images with no crosswalk or sidewalk are stored in the “negative” 
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category. Figure 2.1 illustrates this sample data acquisition process and the different 

processes used to gather positive and negative samples. First, a bounding box (depicted in 

Figure 2.1 with a red rectangle) is defined and passed into the data acquisition program in 

the form of a pair of latitude and longitude coordinates for the lower-left and upper-right 

corners of the region. Then, locations within this bounding box corresponding to OSM 

tagged crosswalks (blue markers in Figure 3) are sent to the Bing Maps RESTImagery 

API in order to obtain aerial images of crosswalks (positive samples).  

For crosswalk data, the OSM tag we used for this is “highway=crossing” as a 

node query in the request Uniform Resource Locator (URL) sent to the OSM Overpass 

API. This returned a list of coordinates representing locations that have had crosswalks 

identified by the OSM mapping community. At the same time, using the process 

described in [11], we also gathered points along the road between pairs of known 

crosswalks to use as locations labelled as “no-crosswalk”. This done by sending the 

known crosswalk locations to the Bing Maps RESTRoutes API which calculates a route 

between a given pair of crosswalks. The resulting list of points between the two 

crosswalk points is checked to ensure that these points do not contain any OSM tagged 

crosswalks. Finally, these points (yellow markers in Figure 2.1) are used as our “no-

crosswalk” points. Also, rather than randomly selecting points within the input bounding 

box region (which may produce images of forests, bodies of water, and other undesired 

scenes), using this route-based method ensures that the negative samples will be images 

of roads. Figure 2.2 and Figure 2.3 show actual examples of positive and negative 

crosswalk images in our dataset.  
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  After this list of candidate locations was processed, the location information of 

each resulting point was passed to Bing Maps (Rest V1 API) which returned a small slice 

of the aerial imagery of 256 pixel by 256 pixel centered at the coordinates of the supplied 

point. We used zoom level 20 (a configurable value in the Bing API that affects the 

returned images) for aerial images and zoom level 0 for street-view images.  

After crosswalk data had been obtained, the sidewalk data was collected using a 

slightly modified version of the data collection procedure. The major difference between 

collecting crosswalk data and sidewalk data is that locations are queried using different 

tags in OpenStreetMap (OSM). For sidewalk points, this involves using “sidewalk=left”, 

“sidewalk=right”, or “sidewalk=both”. Also, instead of generating negative samples by 

following a routePath between crosswalks (as performed in the data acquisition for the 

crosswalk data), OSM nodes with the tag “sidewalk=none” are directly requested from 

the Overpass API. New areas (separate from the areas used in the crosswalk datasets) 

were selected and all the previously mentioned data collection and filtering techniques 

were applied.  

 

Figure 2.1 An overview of the data collection process 
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Figure 2.2 An example of positive (“crosswalk”) images 

 

Figure 2.3 An example of negative (“no-crosswalk”) images 
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2.2.2 Street-view data collection and correction procedure 

The data acquisition process was adjusted for obtaining and filtering street-view 

images. This was done by switching to the Bing streetside imagery API and 

implementing a new method for obtaining images from each OSM location. The most 

important technique for obtaining street-level images from a given OSM location is 

attempting to extract the best possible view of the POI by properly calculating heading 

and ensuring that the camera (street-view data collection vehicle) is at a proper distance. 

This is due to the fact that the extracted OSM locations (such as a node tagged as having 

a crosswalk) are represented by a single point (latitude, longitude). However, the street-

level imagery is stored as a panorama which can generate many possible images that are 

the input size that the network uses. To solve this problem, it is first necessary to query 

for the image metadata of the street-view panorama closest to the OSM point of interest. 

This gives an image which is often too close to the facility of interest or directly on top of 

it. Furthermore, since the default query simply faces the camera north, the returned 

portion of the panorama will likely not contain the point of interest. Before calculating 

the heading necessary to solve this problem, a query is formed to retrieve a new point 10 

meters (an empirically determined distance) away from the initial location. After running 

this query to retrieve the new point, the appropriate panorama slice is extracted by 

“turning the camera” using the following formulas. 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑎𝑡𝑎𝑛2(𝑋, 𝑌) (1) 

𝑋 =  cos 𝜃𝑏 ∗ sin ∆𝐿 (2) 
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𝑌 =  cos 𝜃𝑎 ∗ sin 𝜃𝑏 − sin 𝜃𝑎 ∗ cos 𝜃𝑏 ∗ cos ∆𝐿 (3) 

Where: 

𝜃𝑎 – The latitude (in degrees) of the original point of interest 

𝜃𝑏 – The latitude (in degrees) of the new point that is 10 meters away 

∆L – The difference in longitude between the two points 

 

The atan2 function is implemented in the default math package of Python and 

many other programming languages, and this heading calculation is commonly used in 

many navigation applications (such as the geometric tools in the Google Maps API) and 

geography libraries (such as geographiclib [69]). This procedure has a much higher 

chance of producing a reliable image with the point of interest in the frame. An example 

of this procedure can be seen in Figure 2.4. This figure shows that, by default, the street 

side image API of Bing Maps always returns a street-view image taken with the camera 

heading pointed north (a heading of zero). Simply using the coordinates of the POI 

without supplying an angle to direct the camera will often result in an image that is 

captured at a poor angle or only depicts unwanted background objects, as shown in 

Figure 2.4 (A). In addition, without a distance offset from the POI, the returned street 

side image will often have the data collection vehicle directly on top of the targeted 

crosswalk, as demonstrated by the poorly captured crosswalk in Figure 2.4 (A). In order 

to address these challenges, we developed an algorithm based on the basic process 

described in [13] with specific modifications. 
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First, in order to avoid capturing an image with the data collection vehicle directly 

on top of the crosswalk, we defined a new point for the location of the camera that was 10 

meters away from each POI along the data collection vehicle’s route. This new point was 

calculated by using the reverse (reciprocal) heading (with respect to the current heading of 

the camera on the data collection vehicle in the metadata) to approximate moving 

backwards against the current direction of travel. Then, the API simply returns the 

panorama image that is closest to this new point. An offset distance of 10 meters was 

empirically chosen based on a few examples in order to move the camera viewpoint far 

enough away from the crossing to produce an image that captured the entire crosswalk. 

Then, the heading between the newly generated camera point and the original POI is 

calculated using formula 1 – formula 3.  

The heading measures the angle between true north and the line connecting the new 

camera point and the POI. With this heading, the camera will be facing toward the target 

from 10 meters away (instead of simply facing north always), which gives us the best 

chance of correctly bringing the POI (crosswalk) into view (without having the data 

collection vehicle incorrectly positioned directly over the target). An example of the result 

of this algorithm is shown in Figure 2.4 (B), where a cropped crosswalk was successfully 

corrected and captured from an appropriate distance by using our method. With this 

correction method, we were able to correct many potential errors in the data collection 

process for our street-view sidewalk and crosswalk datasets. 
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Figure 2.4 An example of our street-view image correction method  

2.2.3 Data filtering 

During the process of collecting images, certain tagged locations have the 

potential of producing duplicate and partial duplicate images. For the purposes in this 

study, we define a “duplicate” image as an exact copy of another image in the same 

dataset and a “partial duplicate” image as an image containing part of another image (also 

in the same dataset). These duplicate images might be caused by server errors or other 

unpredictable problems (glitches with multi-threading, filesystem errors, etc.). They also 

can be caused by retrieving images of the same location from two intersecting routes. The 

obvious importance of removing these duplicate images is to prevent duplicates from 

entering later stages of the data preparation process where the data are shuffled and 

partitioned into training and testing subsets. If the same image existed in both the training 

and testing subsets of a dataset, it would introduce bias into the test results. 
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For example, the local street-view sidewalk detection dataset (dataset 4), 

originally contained 4,244 negative (no sidewalk) and 15,893 sidewalk locations. 

However after applying the filtering techniques mentioned in section 2.2.3.1 and section 

2.2.3.2, this was reduced to the size (11,270 positive and 3,268 negative) that is listed in 

Table 2.2. Since we directly added this filtering procedure to the data collection pipeline, 

each dataset was stored in this reduced form before the images were even downloaded 

and before any machine learning operations were carried out.  

2.2.3.1 Distance-based filtering 

During the execution of the data collection processes of the data collection 

pipeline, a list of coordinates for each candidate location (obtained from OSM) is 

generated before images can be downloaded. For each pair of GPS (latitude/longitude) 

coordinates, we use a python package [70] that converts these coordinates into the UTM 

(Universal Transverse Mercator) coordinate system. This is a simple projection that 

works well for the short distances that we are concerned with. For example, in Figure 2.5 

(A), we have two crosswalk nodes in OSM that were close enough that downloading their 

respective images with the data collection pipeline would have resulted in two images 

with an overlapping region of pixels.  
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While the two crosswalks (seen together in Figure Figure 2.5 B) are not 

duplicated in these images, having any opportunity for overlap can cause bias when 

images are split between training and testing. Therefore, any instances like this are 

filtered such that only one image in the group is stored in the final dataset. We use the 

ground resolution formula [71] provided by Bing to determine an appropriate distance for 

filtering cases such as this. This formula is also used for our mensuration process in 

section 3.5 to determine the length of the crosswalk based on the segmented pixels. 

 

Figure 2.5 An example of distance-based duplicate filtering 

2.2.3.2 Perceptual hash-based filtering 

Our second layer of filtering involved directly filtering the image results of the 

data collection pipeline using a python implementation of a perceptual hashing algorithm 

(pHash) to search our whole dataset for duplicate images [72] that slipped through the 

distance-based filtering process. This usually only occurred in rare cases where an image 

was assigned the wrong coordinates due to a bug in the data collection pipeline, and only 



 

34 

a few images were removed in this way. For example, using this process, we removed 

only 102 duplicate images from the “no crosswalk” directory of the aerial crosswalk 

imagery (no duplicates were found in the crosswalk directory). Figure 2.6 shows an 

example of two image pairs and the decision made by the pHash algorithm. In row A, no 

duplication is detected, so both images are retained. For cases such as row B, the 

algorithm detects duplication and removes one of the occurrences from our dataset. This 

method for detecting duplicates later proved to be very important in cases where two 

images were erroneously assigned the same coordinates. In those cases, this method 

prevented duplicates from making it into the final datasets even when the distance-based 

filtering step described in 2.2.3.1 would fail.  

    

Figure 2.6 Searching for duplicates and removing them using a perceptual hashing script 
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2.2.3.3 Manual verification and dataset cleaning 

The manual verification procedures described here were used to ensure the quality 

of our external and DOT testing datasets. Table 2.1 describes the criteria for excluding an 

image from a testing dataset. The results in section 4.2 – section 4.4 were processed with 

these criteria to remove images that have data collections errors or are otherwise not ideal 

for testing the current formulation of our models. Specifically, all crosswalk images in 

the test subsets of these datasets were filtered. This set of standards defined in Table 2.1 

allows for consistency in future data collection projects and will allow for more detailed 

studies of the relationship between model performance and various problems that are 

often present in the data (occlusion, lens flares, blurred images, etc.).       

Table 2.1 Manual data filtering guidelines 

Tag Category Description 

y/n Target info “yes” or “no” for the presence of a target 

object in an image. 

q Target info Road markings that appear to be the target 

object, but the reviewer is not certain due to 

image context or other issues.  

o/mo/c Target info “occluded”, “majorly occluded”, or “clear”. 

This tag references the clearest target object 

in an image. ‘o’ indicates that there is some 

occlusion (<50% of the crosswalk area). 

‘mo’ indicates >50% occlusion of the 

crosswalk area. ‘c’ is used for a crossing 

that is almost entirely clear. 

p/zm/z/ot/n Target info Identifies the type of target object. This 

category is just for crossings in the image. 

Parallel (p), at least one zebra crossing 

mixed with other types (zm), other type (ot), 

no crosswalk (n). 

o/mo/c Target info Considers the occlusion of the image 

overall (not only the target in question) This 

is especially useful for tagging poor quality 

negative samples. The same rules as the 

o/mo/c tag for target info apply here.  
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Table 2.1 Continued 

nc/b/w/co/e Image condition 

info 

This refers to the condition of the image 

overall (more specific than occlusion vs. no 

occlusion). Blurry image or otherwise low 

resolution (b), worn target object or road 

lanes (w), one or both ends of a target 

object (specifically crosswalks) are 

obscured by the image boundaries (co), any 

other exception with the image itself (e) 

r/rer/fl/br/de/ms/um extra conditions Other interesting conditions that may cause 

problems. Mark image for deletion (r), 

rotation error in a street-view image (rer), 

lens flare (fl), bridge present (br), distance 

error in a street-view image, a problem with 

markings that resemble the target object 

(ms), an unmarked target object 

(specifically crosswalks) (um).  

 

2.3 GIS data preparation 

The GIS data provided by MDOT (available at the MARIS website [73]) was a 

large format satellite image. With a file size of approximately 11gb, processing the entire 

image at once would be infeasible with any modern image processing models due to the 

immense memory requirements. Therefore, we used a freely available GIS (Geographic 

Information System) software called QGIS [74] to help us extract images of the proper 

size for our system to process. To start, we used a shapefile to manually draw square 

volumes over all of the intersections that we could find in a selected area of the image. 

This area was focused around the main areas of Hattiesburg (approximately within the 

bounding box of WGS84 -89.349655, 31.342243 (upper left), and -89.282260, 31.301782 

(lower right)). More information on how this data is extracted with gdal commands is 

available in section 2.4.6). Error! Reference source not found. (A) shows the entire 
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“Forrest2013” SID file, and Error! Reference source not found. (B) shows the 

intersections that we marked with the shapefile squares.  

 

Figure 2.7 Extracting processable images from the large format GIS data 

Forrest 2013 SID file 

2.4 Summary of all datasets 

During this project, we prepared 9 final datasets (summarized here in Table 2.2) 

that were used for the training and testing of all of our models. For convenience when 

cross referencing which datasets were used with which models in our various 

experiments, we have also listed all of our final models in Table 2.3. The datasets listed 

in Table 2.2 are in their final form after the filtering procedures described in section 2.2.3 

were applied. Some of these datasets were used directly in the initial model development 

(local datasets) while others were used only in testing (external datasets).  

Here, we use the term “local” to refer to datasets that were only used for training 

and testing SPPMs. All of the images in each local dataset are collected from a specific 
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geographical area. Therefore, since the SPPMs are trained and tested with these local 

datasets, we introduced “external” test datasets to allow for testing on crosswalk images 

that were from a new area (unseen by any of the SPPMs). It should be noted that the 

DOT datasets were also only used as external test datasets. An overview of the 

procedures governing these tests and the methods for training and evaluating the models 

is given in section 3.1. In the remaining sections, the datasets and models will be 

referenced by their ID in Table 2.2 and Table 2.3. 

Table 2.2 The size and description of our final datasets 

Dataset 

ID 

Data type Purpose Location Positive Negative Total 

1 Aerial 

crosswalk 

Detection 

(local) 

Milan, Italy 1,467 1,599 3,066 

 

2 Street-

view 

crosswalk 

Detection 

(local) 

Austin, Texas 476 1100 1,576 

 

3 Aerial 

Sidewalk 

Detection 

(local) 

Tampa+Orlando, 

Florida 

20,926 9,943 30,869 

 

4 Street-

view 

sidewalk 

Detection 

(local) 

Reno, Nevada 11,270 3,268 14,538 

 

5 Aerial 

crosswalk 

Detection 

(external) 

Hartford, 

Connecticut 

344 345 689 

 

6 Street-

view 

crosswalk 

Detection 

(external) 

Hartford, 

Connecticut 

344 345 689 

 

7 Aerial 

crosswalk 

Detection + 

Segmentation 

(DOT) 

Forrest county, 

Mississippi 

20 110 130 

8 Aerial 

sidewalk 

Detection 

(DOT) 

Forrest county, 

Mississippi 

86 17 103 

9 Aerial 

crosswalk 

Segmentation 

(local) 

Seattle, 

Washington 

91 n/a 91 
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Table 2.3 A description of all models used in our work 

Model 

ID 

Training 

Dataset 

Data type Viewpoint Type Description 

1 1 crosswalk aerial Detection aerial-view 

crosswalk 

SPPM 

2 2 crosswalk street Detection 

 

street-view 

crosswalk 

SPPM 

3 n/a crosswalk+sidewalk aerial+street Detection 

(ensemble) 

dual-

perspective 

prediction 

model 

(DPPM) 

4 3 sidewalk aerial Detection aerial-view 

sidewalk 

SPPM 

5 4 sidewalk street Detection street-view 

sidewalk 

SPPM 

6 9 crosswalk aerial Segmentation Crosswalk 

segmentation 

 

2.4.2 Aerial datasets 

For the image data used to train the aerial crosswalk detection SPPM (dataset 1), 

we selected an area in Milan, Italy, limited by a bounding box (45.444139, 9.151489, 

45.486364, 9.217274) where the first pair of numbers denotes the latitude and longitude 

of the bottom left corner, and the second pair denotes the top right corner. This area was 

selected since it was also used in a previously published study [11]. By using the same 

location, it is possible for us to compare the results produced by our aerial image 
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detection model to their published results. Then, within this area, we queried OSM 

Overpass for a list of locations (coordinates) that have been tagged as having a crosswalk.  

 

2.4.3 Street-view datasets 

For the image data used to train the street-view crosswalk image SPPM, we chose 

an area around Austin, Texas defined by the bounding box (30.098458, -97.936766, 

30.516626, -97.560529). Austin was chosen because of the high number of labeled 

crosswalks that we found in that area and the relatively high coverage of street-view 

image data. In other words, it was easier to find more images that contained crosswalks. 

However, using Bing Maps to download street-view images of these locations required a 

more complex solution than what was necessary for downloading aerial images. The two 

main challenges with obtaining street-view crosswalk images using only OSM 

coordinates is finding the location of the crosswalk in the 3D panorama captured by the 

data collection vehicle and capturing an image of that crosswalk without it being blocked 

by that same vehicle.  

2.4.4 Dual-perspective datasets 

Here, we describe a dual-perspective dataset as one in which each sample is a 

single location described with two images obtained from different perspectives (aerial 

view and street view). For our purposes, we searched for an area that was highly 

occluded in the aerial view but relatively clear in the street view. The area selected for 

this task was (41.590134, -72.904823, 41.907394, -72.461845) in Hartford, Connecticut, 

USA. Hartford was selected due to the heavy occlusion we observed in the aerial imagery 

in that area. Therefore, it was convenient for finding more images with occluded 
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crosswalks. In order to better evaluate the performance of the DPPM compared to the 

SPPM, we developed a Python verification interface that allows humans to manually 

verify the crowdsourced labels and the level of occlusion of the external test (Hartford) 

images. After checking for occlusion and confirming the class label (crosswalk or no 

crosswalk) of the image, the manual verification script presents several options to the 

human verification worker. This includes the ability to delete the image, move it to the 

opposite class (switch the label between crosswalk and no crosswalk), open a browser tab 

with Bing maps showing the location on the map (to provide more context when the 

image is unclear), or quit and save their progress. At the end of each session, the results 

of the evaluation are stored as a json file which records the user’s decisions for each 

image and allows the session to easily be resumed.  

It should be noted that this filtering procedure was slightly different from the 

guidelines and filtering process discussed in section 2.2.3.3. Mainly, the process in this 

section allowed for the verification worker to view both viewpoints of a location 

simultaneously so that each location (represented with two images) could be given a 

single tag based on the ground truth (instead of only considering what was present in 

each viewpoint independently). This difference in the filtering protocol is due to this test 

focusing on the dual-perspective mechanism and not on assessing the individual quality 

of a trained model on pure data (such as the in the DOT tests in section 4.4). We used this 

information to filter our external test dataset (dataset 5 + 6), which contains images that 

were collected from a different area than the SPPM training datasets, and to calculate the 

percentage of occluded images it contained. Our manual verification revealed that an 
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estimated total of 57.41% of the images in this dataset were occluded (either fully 

occluded or unrecognizable to a human without knowing the context of the image). 

 

 

2.4.5 Segmentation datasets 

The images for our segmentation datasets were manually labelled with a program 

called COCO Annotator [75]. As seen in Figure 2.8, this image annotation program 

provides users with a graphical interface for producing masks that can be used to train 

and test segmentation models. The pixels within the yellow region in Figure 2.8 visually 

represent this mask. Here, we created these masks by using the polygon tool to surround 

the entire crosswalk and exclude the rest of the road surface that was not between the 

crosswalk markings. This tool creates accurate masks by allowing the user to place 

markers at each desired vertex of a polygonal region around the desired location for the 

mask. These marker points are then stored as the mask for each image in the COCO 

dataset format [76]. We later describe the process of using these masks to perform 

segmentation in section 3.6. 
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Figure 2.8 An example crosswalk being labelled within the COCO annotator interface. 

The pixels of the image within the yellow area represent the mask that will be fed into the segmentation model in the COCO dataset 

format that is written by the COCO annotator software.  

 

2.4.6 Department of Transportation datasets 

In order to test the various components of the system using real-world data owned 

by an agency, a set of 400 testing images was extracted from Satellite imagery of Forrest 

County, MS. This data is available on the MARIS (Mississippi Automated Resource 

Information System) website [73]. The images used in this test were manually extracted 

from this data using predefined shapefiles that were calculated to produce 256x256 pixel 

square images (at the resolution of 0.5 feet/pixel) that were then automatically extracted 

with a gdal python script (examples displayed in Figure 12). This produced 

georeferenced slices that were an appropriate size for the models with 200 images 

focused on testing crosswalk detection/mensuration and 200 images for testing sidewalk 

detection. The locations for the crosswalk images were extracted from intersections, and 

the sidewalk images were chosen from road segments between two adjacent intersections 
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included in the crosswalk locations list. In the various tests conducted here, some of these 

images were removed to compensate for problems caused by images that were not 

optimal for processing. Due to a lack of available street view imagery, only aerial 

imagery and the corresponding models were tested here in order to show an example of 

the performance of the system specifically for data owned by DOTs.  

 

Figure 2.9 An example of two images from both of our MDOT testing datasets (detection) 

In Figure 2.9, row A shows positive and negative crosswalk samples, and row B 

shows positive and negative sidewalk samples from our MDOT testing datasets 

(detection). These datasets were designed so that tests could be conducted to show our 

system’s performance in three key areas: (1) aerial crosswalk detection, (2) aerial 

sidewalk detection, (3) aerial crosswalk mensuration. These results are given in section 

4.4. 

2.4.7 Dataset partitioning 
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For all of the datasets used to train models (not the external test or DOT datasets), 

the images are randomly shuffled and then split into training (70%), validation (10%), 

and test (20%) subsets. The test subsets from each of these datasets are referred to as our 

“local test” datasets since their images are sampled from the same bounding box (they are 

in the same city) that their training subsets are in. These images are kept from 

overlapping using distance restraints on the coordinates and image similarity filtering via 

perceptual hashing. Meanwhile, we created an “external test” dataset (Hartford) so that 

we could test these models with a dataset which was geographically separate from each 

training dataset. The external test dataset contains both aerial and street side imagery 

(stored and processed separately by the relevant sub-models of the DPPM) and was 

assigned an occlusion percentage based on the number of images marked as occluded in 

the results of the manual verification described in the next section. Table 2 shows the 

results of this data splitting process and describes how the images in each data subset are 

distributed between the two classes (crosswalk and no crosswalk). Due to abnormalities 

in the street view image data collection process that persisted even after the application of 

previously described correction methods, the local testing portion of the street view 

crosswalk imagery (Dataset 2 testing) was manually filtered to remove erroneous images 

before prediction was performed.  
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Table 2.4 Subset size for each final dataset 

Dataset Subset Positive Negative 

1 

(aerial crosswalk local 

detection) 

Training 1,467 1599 

Validation 210 228 

Testing 419 456 

Total 2,096 2,283 

 

2 

(street-view crosswalk 

local detection) 

 

Training 374 847 

Validation 53 121 

Testing 49 132 

Total 476 1,100 

3 

 (aerial sidewalk local 

detection) 

Training 16,120 6,960 

Validation 200 995 

Testing 4,606 1,988 

Total 20,926 9,943 

4  

(street-view sidewalk 

local detection) 

Training 7,889 2,288 

Validation 1,127 327 

Testing 2,254 653 

Total 11,270 3,268 

5 (aerial crosswalk 

external detection) 

Testing 344 345 
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6 (street-view 

crosswalk external 

detection) 

Testing 344 345 

 

 

 

Table 2.4 Continued 

7 (Aerial DOT 

crosswalk detection)  

Testing 20 110 

8 (Aerial DOT sidewalk 

detection) 

Testing 86 17 

9 (Aerial crosswalk 

local segmentation) 

Training 64 n/a 

Validation 9 n/a 

Testing 18 n/a 

Total 91 n/a 
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CHAPTER III – MACHINE LEARNING THEORY AND METHODOLOGY 

3.1 Machine learning theory 

As described by Langley et al., “Machine learning is the study of computational 

methods for improving performance by mechanizing the acquisition of knowledge from 

experience” [77]. Machine learning algorithms generally do this by learning knowledge 

from labelled data that form datasets of examples (in supervised learning). The larger the 

dataset, the more effectively the algorithm can be “trained” on the data. The goal of a 

machine learning algorithm is to use these datasets to form a trained “model” for the 

purpose of correctly predicting the labels of unseen data in the future [78]. One of the 

earliest machine learning methods was the perceptron [79], which was a supervised 

learning algorithm for training binary classification models. This algorithm takes all input 

values and multiplies them by weights to create a weighted sum. This weighted sum is 

then sent to the activation function which produces the output of the perceptron (the 

weight of an input shows the strength of that node). The output of a single layer 

perceptron (as illustrated in Figure 3.1) can be used to perform binary classification since 

the activation function results in a probability (between 0 to 1) that the given inputs 

belong to one class or the other. Single layer perceptrons were effective for simple 

problems with linearly separable classes, but more complex architectures with more 

layers (multilayer perceptrons/neural networks) and various other improvements have 

since been developed.  
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Figure 3.1 An illustrated example of a single layer perceptron 

Multilayer perceptrons add one (or several) hidden layers between the input and 

the output layers. Depending on the study and the computational resources that are 

available, there could be hundreds of hidden layers. In this way, these networks can learn 

a more complex and abstract representation. Also, by using the process of 

backpropagation, the weights in each hidden layer can be iteratively corrected for the 

purpose of improving the network’s prediction performance. Each iteration will update 

the weights in the hidden layer and may be repeated multiple times until optimal results 

are achieved. Figure 3.2 shows an example illustration of a simple multilayer perceptron 

with two hidden layers.  
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Figure 3.2 An example illustration of a multilayer perceptron with two hidden layers 

3.1.2 Machine learning for image classification 

The basic unit of information in image classification is the pixel. In the context of 

machine learning, images are represented as a 2D or 3D (RGB) array of pixel values. 

Typically, each pixel is assigned a value from 0 to 255 that represents the color at that 

point. For a color image in the RGB (red, green, blue) format, each pixel value is 

represented by a vector of three numbers in this format that are stored as separate color 

channels. Pixels from the array representation of an image can be flattened into vectors 

and represented as a column of input features for use in a typical neural network (like 

those described in section 3.1). In the case of images, the weights in the network 

represent different patterns in the pixels of the input image that are being detected by the 

network. This simple way to perform machine learning with image data has been 

expanded upon in modern research. 
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3.1.2.1 Convolutional neural networks 

Convolutional Neural Networks (CNNs) were first proposed by Fukushima et al. 

under the name NeoCognitron [80]. Then, the concept was refined and used by LeCun et 

al. as a novel machine learning method for recognizing hand-written numbers [81]. In the 

early years of experimenting with CNN models, the computational complexity and 

memory requirements hindered most research and only very small images were able to be 

processed. However, modern GPUs (graphics processing units) have resulted in an 

explosion in CNN performance by allowing for relatively powerful networks to be 

trained even on common workstation computers [82]. Earlier modern CNN architectures 

like AlexNet [83], which became famous for winning the 2012 ImageNet [84] challenge, 

would go on to dominate the image-level classification scene for years to come.   

While traditional computer vision models are greatly dependent on how ideal an 

image is in both resolution and perspective, the translational invariance and automated 

feature extraction capabilities of CNNs give them an advantage when dealing with real-

world images where crosswalks may not always be located in the same region of each 

image. In other words, CNN models (instances of a CNN architecture trained to perform 

a certain task) do not rely on human-generated descriptions of important aspects 

(features) within each image and can learn robust representations of objects that do not 

depend on the location of those objects in the image. These models are created by 

processing input images in a way that enables them to identify objects in these input 

images according to class labels. For the type of model used in this study, these labels are 

object categories that are defined when the model is created and must be associated with 

input images to form a labeled dataset. In our case, we used models designed for two 
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classes (“crosswalk” and “no crosswalk”) and trained them using the images and labels 

that we collected. The network learns to assign objects to these labeled categories during 

the training process using a procedure that automatically assigns importance (via weights 

and biases learned during training) to various features (including hidden features) that it 

identifies within the input images.  

CNN architectures are typically composed of convolutional layers, pooling layers, 

and fully-connected layers. Figure 3.3 shows an example illustration of a CNN used to 

perform image classification. Convolutional layers are the core component of CNNs. 

They help to reduce the excessively large number of parameters required by a normal 

neural network when using an image as input. Furthermore, they are able to consider 

spatial properties of an image and learn features that are independent of location in the 

input. CNNs accomplish this by using a convolution process with a small 2D window 

called a filter (or kernel). This small window is responsible for calculating features and 

matching them to certain regions across the entire image. Images being processed by a 

convolutional layer have each pixel value multiplied by the values in the filter before all 

of the results are summed. This produces a filtered version of the input image which has 

highlighted regions corresponding to specific features that are being learned by the 

model. 
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Figure 3.3 An example illustration of a convolutional neural network for classifying 

CIFAR [85]  images. 

Figure available at [86] 

Often placed between convolutional layers, pooling layers are used to reduce the 

size of the data at various positions in the network. They work by reducing the data 

dimension using various operations (max pooling, average pooling, etc.). For example, 

max pooling will iterate over the previous layer in a sliding window fashion and select 

only the maximum values at each point within the scope of the pooling filter size that is 

being used. Figure 3.4 shows a simple example of max pooling in which a 2x2 max 

pooling operation is performed on a 4x4 input layer and the maximum value is selected to 

represent each 2x2 submatrix. In this example, with a stride of two (shift two pixels for 

each movement), 4 maximum values will be selected as the final, pooled output layer. 

Finally, fully-connected layers are typically at the end of a CNN and connect every 

activation in the previous layer to the output prediction vector. The features learned in the 

convolutional layers will be flattened into a 1D vector and the typical process for training 

a neural network will follow. This is the portion of the network that will decide the 

classification results and make the final prediction with the output activation function.  
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Figure 3.4 An example of max pooling 

Max pooling with a stride of 2 using 2x2 filters 

3.2 Methodology overview 

This chapter describes the technical and theoretical details behind the 

development of the various components of our pedestrian facility detection system. We 

focus particularly on the development of integrated CNN-based machine learning 

models, and design and implementation of the software and libraries used to train and test 

our object detection and segmentation models. First, we will give an overview of how the 

SPPMs are integrated into the DPPM for performing dual-perspective predictions. Then, 

in addition to an overview of the theoretical background of designing convolutional 

neural networks, a detailed description of the SPPM architecture, hyperparameter 

configuration, and training details will be given. Finally, we will provide the same 

information with respect to the development of the segmentation and mensuration models 

as well as a detailed description of the methods we use to evaluate the performance of 

each model. Our proposed DPPM is composed of two individual single perspective 

prediction models (SPPMs) built using a CNN with the VGG16 architecture [87]. One 

SPPM can detect crosswalk presence from aerial view images while the other uses street 
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side images. Figure 3.5 presents the structure of the DPPM. For a given location where 

the presence of a crosswalk needs to be detected, an aerial image centered at that point of 

interest (POI) will be automatically acquired from Bing Maps. At the same time, a data 

collection pipeline was implemented to address the challenge of retrieving the 

corresponding street side image from the default panorama view obtained from Bing 

Maps by automatically focusing on that same POI. After that, the two images were fed 

into the aerial-view SPPM and the street-view SPPM separately. The two SPPMs process 

the images and generate predictions of crosswalk presence simultaneously. The final 

algorithm merges these SPPM predictions into a single crosswalk presence prediction 

(the output of the DPPM) by using a soft voting method based on the confidence level 

(predicted class probability) of each prediction. Therefore, each prediction made using an 

aerial image of a candidate object will be balanced by the corresponding prediction of a 

street side image of the same object to improve the final prediction (especially for cases 

of heavy occlusion). Since the street-view image provides a closer view of the object at 

the POI, this process acts as an additional check that may be able to observe the ground 

truth of the POI rather than relying only on a prediction based on an aerial view image 

only. Furthermore, this modular structure allows our system to be easily expanded to 

accept new data types or detect new object types in the future. The process of developing 

the DPPM includes training and testing image preparation, SPPM training and testing, 

corresponding street side image retrieval, and final prediction generation. These tasks 

will be presented in detail in the following sections.  
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Figure 3.5 Dual-perspective prediction workflow 

3.3 The VGG16 architecture and Python implementation 

Each SPPM (detection) in our study was an instance of VGG16 trained on a large 

number of labeled images and tested to verify the performance of their predictions based 

on a single perspective (aerial or street view). This was done on a server with four Nvidia 

Titan Xp GPUs (Graphics Processing Unit) and an Intel Xeon E5-1650 CPU (Central 

Processing Unit). However, all of the necessary code also ran with comparable 

performance on a laptop with an Nvidia RTX 2080 Super Max-Q GPU. The models 
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(CNNs) are based on the VGG16 architecture and implemented in Python using Keras. The 

VGG16 architecture is a powerful CNN architecture which is typically known for its simple 

design using only 3x3 convolutional layers (with max pooling) stacked in increasing depth. 

While it is sometimes slow to train and heavy in terms of parameters compared to smaller 

networks (such as MobileNetV2 [88]) that we tested (see section 3.9), it typically can 

provide consistent results with high accuracy. Also, even though CNN architectures are 

continually being improved and new state-of-the-art models are being developed 

constantly, we chose the VGG16 architecture because it was proven to be effective for 

crosswalk detection in previous studies [11], [13]. Furthermore, using this approach, we 

could quickly start this project by working with code for a model that was previously 

implemented and tested by our research group in another object detection study [46]. Given 

our previous experience with this model and its relative simplicity compared to more 

complex architectures, VGG16 was chosen as a base model that offered both high 

performance and enough interpretability to enable easier customization in our future work.  

Due to our relatively small dataset size, we utilized pre-trained weights (ImageNet 

[84]) to initialize the training process (pretraining). This is similar to the process used in 

our previous work. Figure 3.6 shows an illustration of the architecture used for both 

SPPMs. During training, the input of the network is an image labeled as “crosswalk” or 

“no-crosswalk” with a size of 224x224 pixels (3 channel RGB). The output of the network 

is a crosswalk presence prediction with two possibilities (either class 1 for “crosswalk” or 

class 2 for “no-crosswalk” images). The network mainly consists of thirteen convolutional 

layers arranged in blocks (labelled conv in Figure 5) that are each followed with max 

pooling.  
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Figure 3.6 A visual overview of our implementation of the VGG16 architecture 

A portion of this figure was generated using the network drawing code from [89] 

 

Figure 3.7 Visualizing VGG16 layer activations  

The features thus obtained are fed to two fully connected layers that use the ReLU 

(Rectified Linear Unit) activation function. Then, using the Softmax activation function, 

the output layer (fully connected) produces the crosswalk/sidewalk presence prediction.  

To illustrate what happened at each layer, we projected the activation function values at 

selected convolutional layers back onto an example input image, as shown in Figure 3.7. 

The resulting activation maps revealed how our models perform predictions by showing 

the regions of pixels that are the most recognized by various layers of the network. To be 

specific, these images were created using the average of the activation values produced by 

the convolutional filters in each selected layer, and the brighter areas of the image 

essentially show features that the layer has learned to detect (not necessarily only 

crosswalks). As illustrated by these activation maps, CNN models learn features from 
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training images using various filters applied at each layer. These layers are named 

according to the “convolutional block” (group of convolutional layers) that they come from 

in the network as depicted in Figure 3.6. For example, “block2_conv1” is the first 

convolutional layer in the second block (group) of convolutional layers. The features 

learned at each convolutional layer significantly vary. In general, the initial layers are more 

interpretable and retain the majority of the easily discernable features in the input image. 

At this stage, more general features such as edges, object orientation, and colors are 

captured. As the depth of the layer increases, features become less interpretable and more 

specific. CNN models also capture high-level features such as shapes and collections of 

shapes. The last layer is able to combine all of the information previously learned from 

both general and crosswalk-specific image features to produce the final pedestrian facility 

presence prediction. 

Table 3.1 lists and explains several other technical details about the architecture 

and parameter settings that were important during our model training process. The SPPMs 

perform these operations on each input image during the training process and slowly learn 

a more useful representation of common crosswalk features after repeated training 

iterations. Also, during each iteration of training (not in the testing or validation phases), 

we used augmentation in the DataGenerator object. Augmentation is a process that applies 

changes (transformations, noise, cropping, etc.) to input images during training for the 

purpose of adding some variety to the dataset. These parameters that we used for this 

augmentation procedure are listed in Table 3.1 and are randomly applied at each training 

iteration. Figure 3.8 shows an example of how these random changes to an example input 

image (A in Figure 3.8) produce different output images (B in Figure 3.8).  
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Figure 3.8 An example of image augmentation during training. 

Input image (A) vs. several randomly augmented output images (B). 
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Table 3.1 Parameter configuration for our Keras (Python) VGG16 implementation 

Model name VGG16 
VGG16 model available as part of the 

Keras Applications library 

Weights ImageNet 

Sets of values for the parameters within 

the network (pretrained on the ImageNet 

dataset).  

Input image size 224x224 (3 channel) 

Image size in pixels (height, width) of 

the images passed into the model (both 

input and output). This is a fixed value 

required by the VGG16 network.  

optimizer stochastic gradient descent 

Keras implementation using default 

parameters. Controls how the weights 

are updated during training. 

Pretrained weights 

status 
All layers unfrozen 

The pretrained weights in all layers will 

be updated during training, and the new 

output layer was created with the default 

initialization in Keras. 

Learning rate 1e-4 

Affects how quickly the model is fit to 

the data (small values are typically 

important in transfer learning to avoid 

dramatic changes to the pretrained 

weights). 

Batch size 

16 (aerial) How many images to pass through the 

network at a time. Has a direct effect on 

GPU memory usage and often on 

convergence speed.  
4 (street view) 

Augmentation 

parameters 

(augmentation is 

applied during 

training only) 

featurewise_center=False Keras ImageDataGenerator class that is 

used here to apply augmentation 

(randomized transformations and 

deformations) to each batch of images 

passed into the network during training.  

featurewise_std_normalization=False 

rotation_range=20 

width_shift_range=0.2 

height_shift_range=0.2 

horizontal_flip=True 

vertical_flip=True 

Epochs 
200 (aerial) Number of iterations of the training 

process to run. 1000 (street view) 

Total parameters 134,268,738 
Total of all parameters in the network 

(all are trainable) 

Output layer 

activation 
Softmax 

The output layer is a 2 unit dense (fully 

connected) layer with a Softmax 

activation function. 
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3.4 DPPM operation 

After each SPPM was built and trained, the final DPPM was configured to 

generate the final prediction based on information combined from two distinct 

perspectives of a candidate crosswalk location. In other words, the DPPM is a 

combination (ensemble) of the previously trained SPPMs rather than a separately trained 

model. We began with treating each location as a single item to be predicted using both 

the aerial and street side images. Thus, each candidate crosswalk that the DPPM 

processed was detected using two images of the same location (one image from the aerial 

perspective and one image captured from the street-view perspective). In order to obtain a 

single prediction result for each location that is less sensitive to aerial imagery occlusion, 

we combined the prediction results from the aerial and street-view models in an ensemble 

using soft voting. This simply performs two predictions for each location separately and 

then sums the class probabilities together as the final prediction, which we call the output 

of the DPPM. Compared to combination methods that fuse models at the feature vector 

level (as discussed in section 1.3.1.2), this approach allows for independent models to be 

trained and used separately in situations that demand it (such as in cases of missing 

street-view imagery). Also, performance can be tuned after training since the results are 

essentially a post-processing of the final predictions. As seen below in formula 4, each 

location’s predicted class is determined by picking the maximum of the sum of the 

probability values between the aerial and street side models.  

𝑦 = argmax
𝑖

∑ 𝑤𝑗𝑝𝑖𝑗
𝑚
𝑗=1  (4) 
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This equation represents a single prediction from our final DPPM by creating a soft 

voting ensemble of the two SPPMs using the following values: 

𝑖 ⎯ the 𝑖th class label predicted. “𝑖=0 means the predicted label is “no crosswalk” 

and “𝑖=1” means “crosswalk”.  

𝑗 ⎯ the 𝑗th SPPM model. “𝑗=0” means aerial SPPM and “𝑗=1” means street side 

SPPM.  

𝑚 ⎯ the total number of SPPMs (𝑚=2 in this case) used to perform separate 

predictions.  

𝑝𝑖𝑗 ⎯ the probability of the input image belonging to class 𝑖 predicted by SPPM 𝑗. 

𝑤𝑗 ⎯ a weight assigned specifically to a model 𝑗, where the sum of all weights is 

equal to 1  

𝑦 ⎯ the largest number obtained by combining the predicted class probabilities 

from each model according to the equation. This is the output from the DPPM and 

indicates whether an input image is predicted to contain a crosswalk or not.  

 

The value of 𝑤𝑗 is critical and can be empirically determined or optimized for better 

results. For example, in the case of low resolution and heavily occluded aerial imagery, it 

may be better to place more weight on the predictions of the street view model. To illustrate 

this idea first, in the results we report here, we used equal weight (𝑤 = 1.0) for both models 

to obtain a simple combination of the prediction results that can serve as a baseline for any 

future work in this area. Since this voting function is performed as the last step before 

reporting the final prediction, this value is easily adjustable in the validation step. Even 
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without adjusting the model weights, this method provides the user of the final system with 

a more concise prediction and increases robustness when processing real-world data by 

resolving many cases of aerial view occlusion. It is also easily expandable since new 

models that use any other available perspectives or data formats, such as Lidar, can be 

directly added into the system with no need to retrain any of the other components. In fact, 

in the final production environment for a system like this, retraining the entire system to 

add new object categories or additional data types may be impossible due to data storage 

and computational requirements. Therefore, our method is much more flexible as a final 

system than methods that rely on a single model only.  

3.5 Mensuration overview 

One of the primary tasks of our project was to measure the length of crosswalks in 

satellite images. This is an important task for agencies that collect pedestrian facility data 

and gave us another chance to automate a process that traditionally requires time-

consuming, large-scale manual data collection projects. We chose segmentation as our 

method for predicting the length of crosswalks in our aerial images. This is possible 

thanks to the fact that these images have a known ground resolution. In other words, each 

pixel represents a known distance in the real world. Segmentation models, a type of 

machine learning model that identifies the location of a predicted class in the image, can 

output a bounding box around the region that they predict. Given this information, we 

performed some adjustments and were able to produce a segmentation model that can 

accurately measure crosswalks in aerial imagery. Figure 3.9 shows an overview of our 

segmentation process. In total, 100 images (with 65 used for training) were processed and 

used in this manner to create the trained segmentation (mensuration) model. The 
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highlighted yellow pixels in the training input image represent a manually drawn mask 

used to train the model to identify the crosswalks in the training images. The output is a 

blue box drawn around the predicted crosswalk region and a green dot at the center of 

this region. The length of the longest side of this bounding box is used as the predicted 

length of the crosswalk and the coordinates (latitude/longitude) of the center point are 

used as the location of the crosswalk. 

 

Figure 3.9 An overview of the segmentation process from training to testing 

3.6 Segmentation implementation and architecture 

Our segmentation model was implemented based on a forked version [90] of 

Matterport’s Mask R-CNN library [91]. Both of these libraries implement the Mask R-

CNN network as it is described in [92]. Figure 3.10 shows an illustrated example of the 

operation of the Mask R-CNN network on one of our input images. Region proposals 

generated by the region proposal portion of the network (A in Figure 3.10) are processed 

by the CNN portion of the network (C in Figure 3.10) to produce a final output prediction 

that can be mapped back onto the input image to produce a predicted mask.  

 

 



 

66 

 

Figure 3.10 An overview of the two stages of the Mask R-CNN architecture 

 

3.6.2 Mask R-CNN python implementation 

For the training of our segmentation model, we used a Jupyter notebook in order to both 

train the Mask R-CNN network and to visualize the results and loaded data 

simultaneously. Our training images were 200x200 pixels and were fed into the network 

with the following parameters in Table 3.2 (listed by the display method of this library’s 

[90] Config class). Figure 3.11 shows an example of the model loading these images and 

the associated training mask that was generated with CoCo annotator (as described in 

section 2.4.5). After training was complete, we used a separate Python script to modify 

the output format of the predictions by drawing a custom bounding box using the 

minimum enclosing rectangle around the predicted mask (see section 3.8.1).  

Table 3.2 The values of all parameters used when training our Mask R-CNN 

segmentation model. 

Parameter Values 

BACKBONE   resnet50 

BACKBONE_STRIDES [4, 8, 16, 32, 64] 

BATCH_SIZE  1 

BBOX_STD_DEV [0.1 0.1 0.2 0.2] 

COMPUTE_BACKBONE_SHAPE None 

DETECTION_MAX_INSTANCES  100 
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Table 3.2 (continued) 

DETECTION_MIN_CONFIDENCE 0.7 

DETECTION_NMS_THRESHOLD  0.3 

FPN_CLASSIF_FC_LAYERS_SIZE  1024 

GPU_COUNT 1 

GRADIENT_CLIP_NORM  5 

IMAGES_PER_GPU  1 

IMAGE_CHANNEL_COUNT 3 

IMAGE_MAX_DIM  256 

IMAGE_META_SIZE 14 

IMAGE_MIN_DIM 256 

MEAN_PIXEL  [123.7 116.8 103.9] 

MINI_MASK_SHAPE (56, 56) 

NAME crosswalk 

NUM_CLASSES 2 

POOL_SIZE 7 

POST_NMS_ROIS_INFERENCE 500 

POST_NMS_ROIS_TRAINING 1000 

PRE_NMS_LIMIT 6000 

ROI_POSITIVE_RATIO 0.33 

RPN_ANCHOR_RATIOS [0.5, 1, 2] 

RPN_ANCHOR_SCALES (8, 16, 32, 64, 128) 

RPN_ANCHOR_STRIDE 1 

RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2] 

RPN_NMS_THRESHOLD 0.7 

RPN_TRAIN_ANCHORS_PER_IMAGE 256 

STEPS_PER_EPOCH 500 

TOP_DOWN_PYRAMID_SIZE 256 

TRAIN_BN FALSE 

TRAIN_ROIS_PER_IMAGE 32 

USE_MINI_MASK TRUE 

USE_RPN_ROIS TRUE 

VALIDATION_STEPS 50 

WEIGHT_DECAY 0.0001 
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Figure 3.11 Visualizing four example input images and their corresponding masks as they 

are loaded by the segmentation model.  
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3.7 Standard evaluation metrics 

The performance of a model is obtained by evaluating prediction results with the 

metrics of accuracy, precision, recall, and F1 score, described by the following equations. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (5) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (6) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (7) 

𝐹1 = 2 (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) (8) 

 

Where: 

𝑡𝑝 ⎯ the number of true positive predictions (crosswalks correctly predicted as a 

crosswalk),  

𝑡𝑛 ⎯ the number of true negative predictions (correctly predicted images containing no 

crosswalks), 

𝑓𝑝 ⎯ the number of false positive predictions (images that contain no crosswalk but are 

predicted to contain one), and 

𝑓𝑛 ⎯ the number of false negative predictions (images that contain a crosswalk but are 

predicted to not contain one).  

Instead of solely relying on accuracy, looking at these four metrics together can 

provide a more detailed explanation of model performance. While accuracy is a more 

general measure of performance, precision and recall are particularly useful in situations 

with heavily occluded image data. For example, a poorly performing model may have very 
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high precision by only marking a few images as crosswalks (a low number of true positive 

and false positive predictions). However, it will likely have low recall due to missing many 

true images of crosswalks (either because of occlusion or other factors). Looking at this 

relationship between precision and recall allows us to see how our methods can boost the 

number of crosswalks that are actually detected by our DPPM method. One way to quantify 

this relationship is by using the 𝐹1 score, which is a widely used metric for analyzing both 

precision and recall by providing a single value that describes the balance between these 

two metrics.  

3.8 Evaluation methods 

Each type of model used in our research requires different data and solves a 

different challenge. Therefore, we utilize a variety of evaluation methods to generate 

results that are used to judge the overall quality of the final models. These evaluations 

mainly include numerical scores when determining the quality of a detection model 

during local and external testing. However, we also defined some empirical rules that are 

used in two situations. First, when manually validating the label of images in a test 

dataset (especially the DOT data), we have defined a set of criteria for removing 

erroneous or otherwise problematic images (described in section 2.2.3.3 and applied in 

section 4.4.1). This is done in order to create an ideal dataset that can show the true 

quality of the model without introducing performance issues due to errors in the data. 

Second, we designed the masks for training our segmentation model according to another 

set of guidelines described in section 2.4.5. 
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3.8.1 Detection and segmentation evaluation 

The detection models were evaluated mainly with accuracy (described in section 

3.7). Of course, the other metrics can be calculated from the provided confusion matrices. 

The models with the best accuracy during training (judged using the local test sets) were 

later selected as the sub-models for the DPPM and for our final system. These results are 

later discussed in section 4.1. On the other hand, the quality of our final segmentation 

model was primarily determined empirically by manual, visual analysis of the resulting 

predictions during training, even though a metric known as IoU (Intersection over Union) 

was considered when evaluating some of the early models. This is because, while a 

model that focused more on filling in all of the area of the crosswalk could obtain a 

higher IoU, we were focused on training a model that could predict a mask with the 

proper length for mensuration purposes.  

An important method that we used to properly measure length from these 

segmentation results was to draw a rotated bounding box around the actual predicted 

crosswalk mask. Measuring the default bounding box often will result in a skewed 

measurement if the angle of the detected crossing does not match this box (which is 

always exactly horizontal or vertical). To do this, we used a few functions from the cv2 

library in python. First, the findCountours function returned a line that was drawn around 

the predicted segmentation inside the original bounding box. Then, we drew the 

minimum enclosing rectangle around this calculated contour line by using the 

minAreaRect function. This returned the length, width, and centerpoint of a bounding 

box that was able to fit much better to our predictions. This process is illustrated in 

Figure 3.12 where the original bounding box (A) is corrected to match the angle of the 
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predicted crossing (B). The specific calculation we used for determining the mensuration 

performance is described in section 4.4.2 with the results of the DOT segmentation test. 

Also, it should be noted that the color shift that is sometimes seen in our results (see 

Figure 3.12 B) is a result of passing the image between different libraries that use RGB or 

BGR color format. This does not affect results since it happens only during the time that 

the final image is displayed (when the bounding box is redrawn), and it can be easily 

reversed.  

 

Figure 3.12 Using python functions to generate a more accurate measurement of a 

predicted crosswalk 

3.8.2 Prediction visualization procedure 

At various stages in this project, we found it useful to visualize the operations of 

our models on various input images. This was mostly done to increase the interpretability 

of the models and aid in the future work for this project by providing some suggestions 

for possible architecture improvements. We later apply this method to analyze different 

aspects of how input images affect the trained models (see section 5.2.4). Figure 3.13 

demonstrates an example of this using a crosswalk image and displaying the average 
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activations using matplotlib. Specifically, Keras allows for this functionality by allowing 

you to iterate through each layer and obtain the output at that layer. Then, we used numpy 

to find the mean and display each selected layer as a heatmap (brighter colors indicate 

areas of more intense activation).  

 

Figure 3.13 Example layer activations displayed by Keras and matplotlib.  

3.9 Protype pedestrian facility data crowdsourcing app development 

In order to build a well-connected pedestrian facility network that will improve 

safety and walkability, accurate and thorough data of existing pedestrian facilities must 

be available [93]. However, there is a shortage of efficient methods for collecting these 

facility data, such as sidewalk and crosswalk presence [15]. To address this, we 

developed a prototype pedestrian facility data crowdsourcing system that consisted of a 

smartphone (Android) application and a remote webserver running a MySQL [94] 

database. This webserver also was running a machine learning model for detecting the 

presence of crosswalks in street-view imagery collected by the users of the smartphone 

application. By doing this, we were able to extend our pedestrian facility detection 

methods to a new platform for crowdsourcing high quality data from smartphone 

cameras. 

This application makes use of the Android software development kit’s Camera2 

API [95], which allows for direct access to the hardware camera instead of the default 

camera app. This makes it possible to directly display the live feed from the camera view 
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within the app and to add custom elements to the user interface, such as custom buttons, 

visual overlays (potentially useful for guiding users to keep the phone held in the 

appropriate orientation), and other customizations. It also allows us to programmatically 

change the aspect ratio and resolution of the output image supplied by the camera. After 

being captured, this output image is automatically processed (checked for the proper 

orientation) and sent to the data storage server  

These collected images are sent to this webserver along with the device’s location 

using a multipart POST request. The server then saves the image data and creates a 

record in a MySQL database that includes the upload time, the file path of the newly 

stored image on the webserver’s filesystem, and GPS coordinates that correspond to the 

location of the device at the time that the image was captured. Once this storage 

procedure is complete, the image data is then passed to a street-view crosswalk detection 

(image-level classification) model for classification into either the “crosswalk” or “no-

crosswalk” category. After classification is complete, the predicted class will also be 

stored with the previously generated MySQL database entry. Since this webserver would 

need to handle many requests and process data quickly, we chose the MobileNetV2 [88]  

architecture (available as part of the Keras applications API [96]). The model was well-

suited for our purposes since it was lightweight and pretrained on the ImageNet [84] 

dataset. After being trained on the GOPRO street-view crosswalk detection dataset 

available at [97], this model was able to quickly perform predictions on this webserver 

using only the CPU (larger models would require a GPU). We conducted a small test of 

this system using images collected at the University of Southern Mississippi’s 

Hattiesburg campus (see section 4.9).  
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CHAPTER IV – RESULTS AND DISCUSSION 

4.1 Local detection results 

Here, we refer to the “local test” for each model as an evaluation of a model’s 

performance on a randomly sampled set of labelled images from the same dataset that the 

model was trained on. This only means that the images are from the same geographical 

region, but our filtering methods (see section 2.2.3) and random sampling procedure (see 

section 2.4.7) ensure that there are no duplicates between the training, validation, and test 

sets. Each model and dataset in the following results is referenced by the naming system 

presented in Table 2.2 and Table 2.3. 

4.1.1 Local crosswalk detection test results 

The local test of the aerial crosswalk detection model (model 1 applied to the 

testing subset of dataset 1) resulted in an accuracy of 97.14% (confusion matrix and 

training information shown in Figure 4.1-Figure 4.3). Next, the local test of the street-

view crosswalk detection model (model 2 applied to the testing subset of dataset 2) had 

an accuracy of 97.24% (confusion matrix and training information shown in Figure 4.4-

Figure 4.6). Some of the graphs displayed here, such as Figure 4.5 and Figure 4.6, 

contain large spikes in the training loss and accuracy. This did not affect the final results 

since only the model from the epoch with the highest validation accuracy was saved. 

However, any number of reasons could explain this type of variation in the result graphs. 

First, it is expected for mini-batch gradient descent to have some spikes. Using a learning 

rate that is too large may lead to larger spikes. In the case of extremely large spikes, 

randomly applied augmentation may have created bad batches that result in a model that 

is unable to learn as well from the training data at that epoch. Ensuring better shuffling of 
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batches and using various batch normalization methods can be used to eliminate some of 

these spikes. Differences in the various datasets that we collected likely required more 

specific attention to these parameters to produce smoother training graphs.    

 

 

Figure 4.1 The confusion matrix for the local test of the aerial crosswalk detection model 

(97.14% acc) 

These results are for model 1 applied to the testing subset of dataset 1 
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Figure 4.2 Aerial crosswalk detection training accuracy curve 

Model 1 trained on the training subset of dataset 1. The yellow line represents testing on the validation subset of dataset 1 at each 

epoch. 

 

Figure 4.3 Aerial crosswalk detection training loss curve 

Model 1 trained on the training subset of dataset 1 
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Figure 4.4 Street-view crosswalk detection local test confusion matrix (97.24% acc) 

Model 2 trained on dataset 2 and tested on the testing subset of dataset 2 

 

 

Figure 4.5 Street-view crosswalk detection training accuracy curve 

Model 2 training on dataset 2. Large spikes were irrelevant since the model was saved at the epoch with the greatest validation 

accuracy 
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Figure 4.6 Street-view crosswalk detection training loss curve 

Model 2 training on the training subset of dataset 2 

4.1.2 Local sidewalk detection results 

As shown in Figure 4.7-Figure 4.9, the local test of the aerial sidewalk detection 

model (model 4 tested on the testing portion of dataset 3) achieved an accuracy of 

91.55%. For the local test of the street-view sidewalk detection model (model 5 tested on 

the testing portion of dataset 4), the accuracy was 89.03%. 
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Figure 4.7 Aerial sidewalk detection model local test confusion matrix (91.55% acc) 

Model 4 tested on the testing subset of dataset 3 

 

Figure 4.8 Aerial sidewalk detection training accuracy curve 

Model 4 trained on the training subset of dataset 3. 
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Figure 4.9 Aerial sidewalk detection training loss curve 

Model 4 trained on the training subset of dataset 3 

 

Figure 4.10 Street-view sidewalk detection local test confusion matrix 

Model 5 tested on the testing subset of dataset 4 



 

82 

 

Figure 4.11 Street-view sidewalk detection training accuracy curve 

Model 5 trained on the training subset of dataset 4 

 

Figure 4.12 Street-view sidewalk detection training loss curve 

Model 5 trained on the training subset of dataset 4 
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4.2 Dual-perspective detection results 

In order to test if the DPPM could improve the detection of occluded crosswalks 

in aerial images, we used an external test dataset which contains imagery that is relatively 

clear in the street side view but is heavily occluded in the aerial view (the target 

crosswalk is often blocked with trees, shadows, image artifacts, etc.). Specifically, this 

dual-perspective dataset was a combination of Dataset 5 and Dataset 6 (see Table 2.2). 

These two datasets contain crosswalk images that are captured from different viewpoints 

(aerial vs. street-view), but they both depict the same list of locations. In other words, 

each image in dataset 5 (aerial) has a counterpart in dataset 6 (street-view) that was 

captured at the same location (GPS coordinates). For the test images having a crosswalk, 

54.07% of them are heavily occluded. This occlusion rate for the test images not having a 

crosswalk is 60.76%.  

After using this combined dataset to test the aerial view SPPM and DPPM 

separately and compare their performance, we obtained the results shown in Table 4.1. 

Unsurprisingly, the metrics reveal that the performance of the aerial crosswalk detection 

model suffers greatly in this external evaluation that is focused on handling heavily 

occluded aerial imagery. When processing the internal test images with an ideal aerial 

view, the accuracy rate of the aerial view SPPM was 97.14%. However, it dropped to 

55.59% when the model was applied to this external dataset. Particularly, the recall 

indicator is only 15.41%, which means most occluded images couldn’t be detected only 

using aerial view SPPM. Fortunately, by using our proposed DPPM, we obtained a 

relative increase in external test crosswalk detection accuracy of about 49% (from 

55.59% to 83.02%). More importantly, the recall improved by about 382% from 15.41% 
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to 74.42%. This substantial increase in recall means that a large majority of the occluded 

or otherwise unrecognizable crosswalks in the aerial imagery that were initially missed 

were able to be recovered and correctly classified by incorporating the street side view 

information as an approximation of a “ground truth” check. As for precision, while the 

aerial-view SPPM was fairly precise (77.94%), the DPPM still improved this by about 

15%. In other words, when the DPPM decided to predict that a location contained a 

crosswalk in this test, it was more trustworthy than the aerial view SPPM. This, 

combined with the previously mentioned recall increase, is reflected by the equally 

impressive relative increase in the F1 score from 25.73% to 81.40%. Together, these 

metrics numerically quantify our observation that the DPPM has increased the 

performance and reliability of our final system when detecting crosswalks in situations 

with heavily occluded aerial imagery.  

Table 4.1 Comparing SPPM and DPPM performance on an external crosswalk detection 

dataset 

Model Dataset Acc. F1 Prec. Rec. 

1 (Aerial View SPPM) 5 55.59% 25.73% 77.94% 15.41% 

3 (DPPM) 5+6 83.02% 81.40% 89.82% 74.42% 

 

4.3 Local segmentation results 

In this section, we show examples of several segmentation predictions generated 

during the development of the segmentation (mensuration) model. These results are for 

model 6 tested on the testing subset of dataset 9 (see Table 2.2 and Table 2.3). As we 

discussed in section 3.6, these results were evaluated visually and by a crosswalk 

mensuration metric that we used for more extensive testing of this model in section 4.4.2.     
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Figure 4.13 Three examples of good local segmentation predictions. 

Model 6 tested on the testing subset of dataset 9. 

 

Figure 4.14 Three examples of less successful local segmentation predictions. 

Note that even though the predictions were incorrectly split into two regions, the total length of the crossing was still covered. 
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4.4 Department of Transportation results 

This portion of our research was dedicated to applying the models that we had 

trained on a specialized image data format used by MDOT (described in section 2.4.6). 

These results also count as an external test of these models. However, the images are 

higher quality (manually filtered) and there was no street-view data available. Compared 

to the dual-perspective prediction tests in 4.2, these tests focused on testing the models 

with ideal data and ensuring that the data format used by MDOT could be properly 

utilized by our system.  

4.4.1 DOT detection test results 

This test used our DOT detection datasets (dataset 7 and dataset 8). The aerial 

crosswalk detection model was 99.23% accurate in this test (A in Figure 4.15). For aerial 

sidewalk detection, the model was 80.5% accurate on the original 200 images, but it was 

then able to achieve 91.26% accuracy (B in Figure 4.15) using only ideal images. Of 

course, CNN-based models typically require very large image datasets to reach high 

levels of performance. Small image datasets may not have enough variance to reflect the 

true performance of the model. Using a larger dataset of ideal images would likely 

provide a better representation of this.  
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The ideal images used here (Dataset 8) were extracted by removing images where 

the sidewalk (or the side of the road in images with no sidewalk) was occluded, damaged, 

or otherwise not optimal for the model to process as described in section 2.2.3.3. 

Specifically, only images that were tagged as ‘c’ (clear) and ‘nc’ (normal condition) with 

nothing in the eCon (extra condition) list were selected. The aerial crosswalk images also 

were filtered in the same way from an initial set of 200 (20 positive images were found to 

be ideal). For these images, the same filtering tags applied except that only the ‘z’ (zebra) 

tag was allowed. 

 

Figure 4.15 The confusion matrices for two tests on the DOT data. 

4.4.2 DOT crosswalk segmentation test results 

Just as in section 4.3, the segmentation data used here was only captured from the 

aerial view. In this test, the aerial crosswalk DOT data was used (dataset 7). The purpose 

of this test was to test the mensuration capabilities of the segmentation model (model 6). 

In these images, it was found that there were 37 zebra crossings, and 20 of them were 

ideal (no occlusion or worn markings). For the full set of 37 zebra crossings, 30 of the 
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crossings were detected with an average length measurement accuracy of 74.3% 

(calculated as 1 minus the percent error of the predicted and real measurement of the 

crossings). For the 20 ideal zebra crossings, 17 were detected (the 3 remaining 

crosswalks were not detected) with an average measurement accuracy of 93.7% 

according to the following formula where 𝑐 is a zebra crosswalk, 𝑛 is the total number of 

zebra crosswalks that were detected by the mensuration model (17 here), 𝑦_𝑡𝑟𝑢𝑒𝑐 is the 

true length of crosswalk 𝑐 (obtained from the measurement tool in Bing Maps or QGIS), 

and 𝑦_𝑝𝑟𝑒𝑑𝑐 is the predicted length of crosswalk 𝑐. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
∑

|𝑦_𝑝𝑟𝑒𝑑𝑐 − 𝑦_𝑡𝑟𝑢𝑒𝑐|
𝑦_𝑡𝑟𝑢𝑒𝑐

𝑛
𝑐=1

𝑛
 

(9) 

 

Figure 4.16 shows the process of obtaining these measurements for one input 

image (A in Figure 4.16). The first step for scoring a segmentation model is to create the 

ground truth by manually labeling the crosswalks in the image (done here by using an 

annotation program called coco annotator in Figure 4.16 (B). The general procedure used 

when manually creating these masks was to keep the drawn labels as close to the crossing 

as possible and to extend the labeled region all the way to the curb unless it intersects 

another crossing. This information was mostly used for training the models, but it also 

can be used for various other types of accuracy calculations during testing. 
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Figure 4.16 Evaluating length measurement accuracy. 

The process of evaluating the length measurement accuracy for an input image (A) using five steps (B-E). 

However, for this test, manual measurements of the crosswalks were taken 

according to some simple rules that were followed when creating annotations for the 

original training data. As demonstrated by the yellow line in Figure 4.16 (E), the 

measurement tool in QGIS was used to measure from curb to curb through the middle of 

crossing (trying to follow the angle of the crossing like the labels drawn in B in Figure 

4.16).  Then, this value (13.703m in this case) is compared with a measurement of the 

results of the segmentation model (C in Figure 4.16) generated from the input (A in 

Figure 4.16). In Figure 4.16 (C), there are actually 5 separate detections for the 4 

crosswalks. In this test, the pixels of multiple detections within a single crosswalk were 



 

90 

measured as one detection, as shown in Figure 4.16 (D). This measurement is obtained by 

counting the number of pixels that make up the combined length of the predicted 

bounding box/boxes (not counting any overlap between boxes) on a crosswalk and 

multiplying by the ground resolution of the image. Here, it was seen that 89.4 pixels (D 

in Figure 4.16) multiplied by the ground resolution of 0.1524 meters/pixel gave a 

distance of 13.626m and a difference of only 0.56% from the true measurement. 

Repeating this procedure and averaging the results produced the previously mentioned 

measurement accuracy scores for this test. Figure 15 shows a correctly working example 

where the true length (9.251m) and the predicted length (9.113m) are very close. The 

relatively noisy predictions in Figure 4.16 can likely be attributed to a number of things, 

such as a car blocking a portion of crossing detection 1, and a shadow intersecting the 

corner of the crosswalk that was detected as 4 and 5. The current segmentation model 

seems to be more likely to skip or split a detection if there are any obstacles in the 

crossing region.  
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Figure 4.17 A correct prediction with only a difference of 0.13m from the true length. 

4.5 Dual-perspective result analysis 

These results demonstrate the fine balance that exists between the two SPPMs and 

the importance of having multiple SPPMs that can correct each other's mistakes. Also, we 

can see that, because of using the default, equal weights for the soft voting operation, we 

often observe a very small difference between the sums of the predicted class 

probabilities of the two SPPMs. In cases such as Figure 4.20 where the aerial SPPM very 

confidently predicts the lack of a crosswalk, the DPPM heavily depends on the street side 

SPPM model to correct the final score. Of course, since this difference in the final class 

probabilities can be so small, there is a lot of room for error given the vast amount of 

possible defects that input images can have in both viewpoints. Part of our ongoing work 

will be to provide solutions to this problem in the future. 

The most critical component of the DPPM is the voting function which defines the 

mechanism to combine the two predictions produced by the two SPPMs. Our soft voting 

method is just one of the many possible ways to demonstrate the capability of the DPPM 

to improve final predictions by incorporating multiple data sources for each target. One 
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way to merge the votes could be to heavily (or fully) rely on the street side view SPPM’s 

prediction whenever the two predictions from the two SPPMs contradict each other. This 

is equivalent to assuming that street side view images can always provide more detailed 

information than aerial images, especially when occlusion is present. Another method is to 

always trust the street side view SPPM’s prediction when the time stamp of the street view 

images is more recent than that of the aerial view images. This would be done in order to 

always gather the most recent information of the facilities. A more advanced technique 

could be to automatically evaluate the level of occlusion in the street side and aerial view 

images of the same target and then put more weight on the one with the lowest level of 

occlusion. However, this method requires another model to detect and assess the level of 

occlusion first. When needed, more than one angle of the street side view image of the 

same target could be gathered as well to inform the final prediction. Thus, questions about 

when and how to combine multiple image sources are critical for the improvement of our 

method for better solving the problem of occlusion.  

4.6 DPPM external test results individual analysis 

While the results in section 4.3 are good for reflecting the average performance of 

our DPPM on our external test dataset, looking at the individual predictions from each of 

the constituent models can reveal the reason for incorrect predictions and help us gain 

valuable insight for future model development. Therefore, in order to provide more 

informative examples of the DPPM's predictions, we selected a few interesting results 

from individual crosswalks to discuss here. Figure 4.18-Figure 4.22 contain input images 

of the same location captured from both viewpoints (aerial and street view) and their 

corresponding predictions from the aerial (section A) and street-view (section B) models. 
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In these figures, the numbers in the brackets are predicted class probabilities given as [% 

negative, % positive], and the final result of the DPPM is represented by the bold number 

in section C (the largest class probability is chosen as the prediction result). Here, the 

positive class represents images containing crosswalks and the negative class represents 

images without crosswalks. This can be interpreted as the amount of "confidence" that 

the model has in predicting the presence or absence of a crosswalk in the given input 

image.  

Looking at Figure 4.18, the crosswalks in both the aerial view (section A) and the 

street view (section B) are clearly visible, and both models produced correct predictions. 

Also, since the models are confident in the presence of a crosswalk, the difference between 

the predicted positive and negative class probabilities in section C is very large. Figure 

4.19, on the other hand, depicts a situation in which both crosswalks are occluded by a 

shadow. This caused the aerial model (A) to be less confident in its choice, but the 

crosswalk was correctly predicted by both models. Interestingly, the street-view model (B) 

was still able to detect the crosswalk despite the shadow, and the final prediction of the 

DPPM was still very confident. In Figure 4.20, the occlusion in the aerial image was much 

more severe while the street-view image was relatively clear. As a result, the aerial model 

(A) produced an incorrect prediction that was corrected in the final DPPM result by the 

street-view model's correct prediction (B). However, the aerial-model was overly confident 

in its incorrect prediction and caused the difference in C to be very small.  

Analyzing each of these unique cases that arose during the development of the 

DPPM demonstrates the fine balance that exists between the two sub-models (aerial and 

street-view crosswalk SPPMs) and the importance of having multiple SPPMs that can 
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correct each other's mistakes. Also, we can see that, because of using the default, equal 

weights for the soft voting operation, we often observe a very small difference between 

the sums of the class probabilities of the two models. In cases such as Figure 4.20 where 

the aerial model very confidently predicts the lack of a crosswalk, the DPPM heavily 

depends on the street-view model to correct the final score. Of course, since this 

difference in the final class probabilities can be so small, there is a lot of room for error 

given the vast amount of possible defects that input images can have in both viewpoints. 

For example, Figure 4.21 depicts a situation where the aerial model (A) was not able to 

detect a crosswalk, and image retrieval issues caused the street-view model (B) to miss 

the crosswalk in the image. Interestingly, the input images in Figure 4.22 are similar, but 

the final result of the DPPM (C) was still correct thanks to the street-view model (B) 

correctly predicting the presence of a crosswalk.  

 

Figure 4.18 DPPM example 1 

An example of a dual perspective prediction showing a crosswalk that is clearly visible in both perspective  
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Figure 4.19 DPPM example 2 

An example of a dual perspective prediction n which a crosswalk that was occluded in its aerial image was correctly detected by 

incorporating the corresponding street-view image into the final prediction instead of only relying on the aerial model alone (which 

produced a false negative in this case) 

 

Figure 4.20 DPPM example 3 

An example of a dual perspective prediction where an incorrect prediction on heavily occluded imagery was corrected by the street 

view model. This demonstrates the importance of experimenting with different weights for the DPPM output when processing an area 

that is known to have occluded or otherwise low quality aerial imagery.  
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Figure 4.21 DPPM example 4 

An example of an incorrect prediction from both models caused by occlusion in the aerial view and an obstruction of the street-view 

image caused by an incorrectly retrieved street-view image due to an error in the data collection pipeline. 

 

Figure 4.22 DPPM example 5  

An example of an incorrect prediction from the aerial model that was still corrected by the street-view model despite street-view 

image retrieval pipeline issues. 

4.7 Time and cost estimate for large area processing  

The amount of time and funding necessary to apply the system to a new area can 

be estimated using the data available for Forrest County, MS. Given the current input 

image size used by this system (256x256 pixels) and the total pixel size of the Forrest 

County satellite imagery, it is possible to calculate the following value for the maximum 



 

97 

number of images needed to process the area from one viewpoint. Here, 𝑡𝑎𝑒𝑟𝑖𝑎𝑙 is the 

currently required time for processing one of these images with the aerial view detection 

model (~0.2361 seconds). Given the same image, 𝑡𝑠𝑡𝑟𝑒𝑒𝑡 is the time necessary to apply 

the street view model (0.0347 seconds) and  𝑡𝑚𝑒𝑛𝑠𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is the time needed to apply the 

mensuration model (0.261808 seconds). These runtime estimates were obtained using a 

standard Windows 10 desktop equipped with an Nvidia GTX 1070 GPU and an Intel i7-

6700k CPU. The following formulas show how these numbers are used in the estimates 

here. 

𝑡𝑜𝑡𝑎𝑙_𝑖𝑚𝑎𝑔𝑒𝑠 =
81,900,000,00 total pixels

65,536 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
= ~1,249,695 𝑖𝑚𝑎𝑔𝑒𝑠 (10) 

𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 = required_images(𝑡𝑎𝑒𝑟𝑖𝑎𝑙 +  𝑡𝑠𝑡𝑟𝑒𝑒𝑡 + 𝑡𝑚𝑒𝑛𝑠𝑢𝑟𝑎𝑡𝑖𝑜𝑛) = ~8 days (11) 

𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 = required_images(𝑐𝑎𝑙𝑙𝑠𝑎𝑒𝑟𝑖𝑎𝑙 + 𝑐𝑎𝑙𝑙𝑠𝑠𝑡𝑟𝑒𝑒𝑡) = ~3,749,084 API calls (12) 

Here, the value of 𝑡𝑜𝑡𝑎𝑙_𝑖𝑚𝑎𝑔𝑒𝑠 represents all of the possible images that can be 

extracted from the 466.31 square miles of satellite imagery contained in this test data. 

Using this, Formula 9 shows how the total processing time can be estimated. Then, 

Formula 10 shows an estimate for the total cost of these operations in terms of maps API 

calls (Google and Bing both offer different rates and various options for bulk pricing 

when many calls are needed). Here,  𝑐𝑎𝑙𝑙𝑠𝑎𝑒𝑟𝑖𝑎𝑙 is equal to one call and 𝑐𝑎𝑙𝑙𝑠𝑠𝑡𝑟𝑒𝑒𝑡 is 

equal to two calls. For aerial images, one call will provide one aerial image of a location 

(256x256 pixel images centered at the given coordinates). For street view images, one 

call also provides one street view image for the same location. However, two API calls 
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are currently needed to properly frame the crosswalk within a street view image and 

extract it from the full street view image. Also, it is important to note that the number of 

images required to process this example area can be greatly reduced by extracting images 

only along roadways. Furthermore, street view imagery would not be available for areas 

that are not located on a road. All of the necessary processing to extract road locations 

from the list of all possible locations could be done with existing GIS data and would not 

require additional API calls.  

4.8 Final system and graphical interface prototype 

The models that were developed and tested in this project have been organized in 

a software package that allows users to automatically run them on their own input 

images. Figure 4.23 shows an overview of all of the developed models that are part of the 

final system (including the ones not currently shown in the interface) and how they work 

together. 

 

Figure 4.23 An overview of the components of the final system 
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This program organizes the scripts that control the data input, model loading, and 

prediction processes for all of the previously developed models into a single system that 

can be used with little knowledge of Python and the other technologies involved in this 

project.  It uses a simple graphical interface developed with PySimpleGUI to allow users 

to automatically apply any of the models to either one image or an entire directory of 

images at once. Each function is programmed to run independently to save processing 

time if only one type of prediction is needed, but they can be combined with others to 

produce more detailed reports using any combination of prediction methods that the user 

chooses.  

Figure 4.24 shows a screenshot of the main interface of the system and one of the 

options for processing aerial images. The main window (A in Figure 4.24) launches when 

the program starts and allows users to pick an operation mode based on the type of 

prediction they want to perform. The two main choices are the option to process one 

image at a time or to batch process an entire directory of images. From there, if 

performing crosswalk or sidewalk detection, the user is asked to also choose the model 

that matches the viewpoint (aerial or street-view) that their data is captured in. It should 

be noted that this interface can be used to launch any of the models developed in this 

project, but it is currently only tested to work on the options shown in Figure 4.25 (A).  

Figure 4.25 shows an example of using the interface to examine a single 

crosswalk at a time in an aerial image. The aerial crosswalk detection model is 

automatically loaded in addition to all of the relevant python libraries, scripts, and data 

necessary to perform a prediction. The interface then displays all available images in the 

directory chosen by the user (as seen in the window displayed in Figure 4.25 B). Upon 
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selecting an image from the list, the system performs the prediction and displays both the 

input image and the result produced by the model (displayed as a percent confidence for 

the positive class). In Figure 4.25 (B), the positive prediction resulted in the text 

“detected a crosswalk” to be displayed a long with the 99.96% confidence score. This 

confidence score is simply the predicted probability of this image belonging to the 

“positive” (crosswalk) class. This operation mode of the final system can be used to 

quickly check the model’s performance on a few images without committing to 

processing a large number of images at once.  

If a batch (directory) processing option is chosen, then a spreadsheet is produced 

that stores these detection predictions instead of displaying each image individually. For 

the directory mensuration option (“Aerial Measure and Locate”), each input crosswalk 

image is processed with the segmentation model (model 6). Then, the final results for 

each detected crossing in each input image, including the GPS coordinates of the 

centerpoint and the predicted crossing dimensions (length and width), are stored in a 

similar spreadsheet. Once all operations for a user’s chosen operation have been 

completed, the main window becomes available again for starting another task.    
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Figure 4.24 The main window of the interface 

Note that the window on the right is actually drawn by PySimpleGUI while the textboxes to the left are illustrations added here to 

explain the functions of the system.  

 

Figure 4.25 Performing aerial crosswalk detection on a single image using the interface  

The output of the model associated with the choice in the main window (A) is presented in the results window (B). The result 

(highlighted in green) is a percentage (prediction confidence). 
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Figure 4.26 Performing aerial sidewalk detection on a single image using the interface 

4.9 Prototype pedestrian facility data crowdsourcing app testing 

As discussed in section 3.9, we developed a prototype Android application for 

collecting and verifying crosswalk images from smartphone cameras. After developing 

this application and the corresponding webserver that handled verification and data 

storage, we conducted a test of this system’s features at the University of Southern 

Mississippi’s Hattiesburg campus. Figure 4.27 shows an example of images that were 

collected during this test by using the prototype Android application. Figure 4.28 shows 

an example of the process of capturing one of those images and uploading it to the remote 

webserver using the application. Figure 4.29 shows three example images collected by 

the app that were uploaded to the server. The predicted class probabilities for each image 

are shown on the right with each corresponding input image as it stored on the server 

(left).  
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Figure 4.27 Example street images gathered using the prototype crowdsourcing app 

Images were gathered from the University of Southern Mississippi’s Hattiesburg campus before being sent to the prediction server for 

further processing. 

 

Figure 4.28 The user interface of the prototype pedestrian facility data crowdsourcing 

app 
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Figure 4.29 An example of three images collected by the app and processed by the 

webserver 

Each input image (left) is shown in the form that is stored on the server after being processed. The detection results (right) are the 

predicted class probabilities (confidence) produced by the model for these images. 
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4.10 Preliminary visual analysis and manual object removal experimentation 

Based on the ideas for future work discussed in section 5.2.4, we performed a few 

small tests to determine if modifications to the input images could produce an effect on 

the final prediction produced by our detection models. Specifically, we used our street-

view crosswalk detection model (model 2) to process several images that were manually 

modified based on the activation patterns identified by our previously described 

visualization procedure (see section 3.8.2 for more details). This was done simply to 

examine if different features in our images could potentially affect the prediction results 

and to gather evidence for potential architecture improvements in the future.  

For both of the street-view input images in Figure 4.21 and Figure 4.22 (section B 

of both figures), the target crosswalk is cropped due to miscellaneous issues in the data 

acquisition process. Even though the crosswalk placement in these images appears to be 

similar, the large difference in the predicted class probabilities encouraged us to perform 

an additional analysis. Starting with row A of Figure 4.30, we see that the crosswalk (also 

shown in Figure 4.22) closest to the camera is partially obscured but there is a significant 

amount of other common road features present (traffic lights, cars, etc.). On the other 

hand, in row B of Figure 4.30, we see that the crosswalk (also shown in Figure 4.21) is 

similarly obscured by the position of the camera, but there is also a noticeable lack of 

other road features compared to the image in row A. Therefore, we believe that these 

common road features that are more prevalent in row A may increase the model’s ability 

to detect crosswalks, especially in situations where the crosswalk is occluded or cropped. 

In order to investigate this and perhaps to understand the reason for the street-view model 

producing differing predictions for the similar images in Figure 4.21 and Figure 4.22 
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(section B in each figure), we visualized the average layer activations for each input 

image. Figure 4.30 shows the results of this process and depicts the average layer 

activations at a few layers that we selected (listed in order of increasing depth after the 

input layer). The brighter pixels in these images represent features that are more 

important to the model’s decision. 

 

 

Figure 4.30 Visualizing the average activation values from selected layers in the street-

view crosswalk detection model for the purpose of investigating the incorrect prediction 

of the input image in row B.  

These images are unmodified and were examined to observe similarities between these input images that both have similar cropping 

issues caused by the data collection pipeline yet have very different predictions from the street-view SPPM. 

Looking at the activation patterns in Figure 4.30, we can see that the network 

places emphasis not only on the crosswalk pixels, but also on common road features 

(cars, lane markings, traffic lights, etc.). This is consistent with our observed differences 

between the two input images. To further test this, we modified the input image in row A 

using the clone and heal tools in GIMP (the GNU Image Manipulation Program) to 

remove various features of interest. Figure 4.31 shows 3 examples of this and also shows 
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the model’s prediction for each image after they were modified. In this figure, we 

removed only the traffic light in row A.  

The activation values show that the region that used to contain the traffic light is 

no longer being focused on by the model. Furthermore, the predicted positive class 

probability dropped by a small amount compared to the result in column B of Figure 

4.22. In row B, of Figure 4.31, we retained the crosswalk but removed most of the road 

features, including the traffic light, cars, and lane markings. This had a very large effect 

on the confidence of the model’s prediction and actually caused it to miss the crosswalk 

in the image. Given that the class probabilities in row B were almost evenly split and 

there still was a significant number of regions with high activation values (the horizon, 

edges of sidewalks, etc.), we wanted to test if removing the crosswalk itself would result 

in an equally large change in the prediction results or if the other road features were 

somehow collectively more important to the model.  

To test this, we took the same image from row A of Figure 4.31 and removed the 

crosswalk using the same photo editing methods. The results from this, shown in row C 

of Figure 4.31, were much more dramatic than removing the other road features and 

resulted in an almost completely confident negative prediction. Therefore, at least for this 

input image and likely for other images similar to it, these results suggest that the street-

view model has a robust ability to detect crosswalks that depends not only on the 

presence of a crosswalk in the image but also on the presence of other common road 

features. It also suggests that even partial crosswalks are useful features when in the 

presence of other features (cars, etc). As a result, we believe that the lower evaluation 

metrics obtained using our local test dataset were likely due to problems with our data 
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rather than the street-view SPPM’s ability to detect crosswalks. In the following section, 

we will discuss these challenges and other opportunities that this analysis has opened up 

for our future work.    

 

Figure 4.31 Visualizing the average activation values from selected layers in the street-

view crosswalk detection model to investigate the effects of removing various important 

image features.  

The input images in each row were edited using photo editing software to remove various features that were identified as important by 

the average of the model’s layer activations in these selected layers.  
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CHAPTER V – CONCLUSIONS AND FUTURE WORK 

5.1 Conclusion 

Our research developed a machine learning-based system to automatically detect, 

classify, and measure specific types of major pedestrian facilities, including sidewalks 

and crosswalks, from aerial and street-view imagery. This system also includes a dual-

perspective prediction model that we designed to increase the accuracy of crosswalk 

detection from occluded aerial images by simultaneously utilizing both aerial and street-

view images of each location when making predictions. The output of the system is 

information about the presence of sidewalks and crosswalks as well as crosswalk length 

and location for each processed image. To achieve this goal, we first focused on 

developing a mechanism and functional models for automatically acquiring labeled aerial 

images, training the facility detection models using machine learning methods, improving 

the predictions for aerial images of occluded facilities by innovatively developing a dual-

perspective model which uses aerial and street-view imagery simultaneously, and 

measuring the length of crosswalks. After developing these core components, we 

completed the data collection system by integrating the functional models to evaluate the 

system’s accuracy and efficiency by testing aerial images provided by MDOT. The 

results generated by our research can be summarized in the following list of 

contributions: 

1) A data collection workflow was developed to automatically prepare labeled 

sample data for sidewalk and crosswalk detection training and testing. This process 

automatically generated several large image datasets with images tagged as “having 

crosswalks”, “not having crosswalks”, “having sidewalks”, and “not having sidewalks”. 
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After filtering, the datasets used for development and testing contain 6,241 images tagged 

for crosswalk detection and 45,510 images tagged for sidewalk detection. These labeled 

data served as the positive and negative samples that were used to train and test the 

facility detection model.  

2) Based on these sample data, a prototype of each facility detection model has 

been developed using machine learning techniques. Specifically, a convolutional neural 

network (CNN) model was used to automatically detect and classify images into one of 

four classes (crosswalk, no-crosswalk, sidewalk, or no-sidewalk). These models were 

tested and achieved an accuracy rate of 97.14% for crosswalk detection and 97.24% for 

sidewalk detection, respectively. These testing results demonstrate the high accuracy and 

efficiency of collecting the data automatically with zero cost (not including the cost for 

tool development), compared to the cost of Caltrans’ recent effort to award an Asset 

Collection Service Contract for millions of dollars.  

3) Innovatively, to overcome situations where sidewalks or crosswalks are 

occluded in the aerial imagery, a dual-perspective mechanism was developed to double 

check the ground truth information for target objects by making use of both aerial and 

street-view images simultaneously. A test on an image dataset with heavily occluded 

aerial crosswalk imagery showed that this model can increase detection accuracy by 49%. 

4) The crosswalk mensuration model was developed using a dataset of 100 

images that were manually prepared. This model can automatically obtain measurements 

such as crosswalk length by identifying a bounding box that contains all the pixels that 

belong to a crosswalk. In addition, the coordinates of the center of the bounding box are 

obtained and recorded as the location of the detected crosswalk. 
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5) A graphical user interface was created to package all of our developed models 

into single system that allows users to test images without knowing Python or any 

machine learning methodology. A test of 233 images from Forrest County Mississippi 

presented the accuracy of the system as high as 99.23% for crosswalk detection, 91.26% 

for sidewalk detection, and 93.7% for crosswalk length mensuration. 

 The results of this research have proved the feasibility of using machine learning 

methods and image processing techniques to automate the data collection process for 

pedestrian facilities such as sidewalks and crosswalks. Detection methods and core 

functional models were developed based on deep learning and computer vision 

technology for performing multiple pedestrian facility detection and mensuration with 

high accuracy. Particularly, the application of deep learning methodologies, such as 

training a Convolutional Neural Network (CNN) to automatically detect crosswalks and 

sidewalks from images, showcased that deep learning-based methods enable knowledge 

extraction from images without requiring humans to manually select features beforehand. 

This also demonstrated that the deep learning method is more appropriate for handling 

the real-world conditions under which candidate images could contain clutter, shadows, 

saturation effects, distortion, occlusion, and many other unknown features. This makes 

the deep learning method surpass the previously used methods based on traditional image 

processing or machine learning methods.  

 Another contribution to the field is that it provided an effective solution to solve 

the “occlusion” problem in real-world aerial images. Occlusion has been recognized as 

the most challenging problem [9], [11], causing omission of a crosswalk [8] during 

analysis or even malfunction of the algorithm. Occlusion of a crosswalk in an image 
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could be caused by cars, trees, pedestrians, etc. The suggested treatment in previous 

studies for the occlusion problem is to exclude images with occlusion during model 

development, which was common in global segmentation-based image processing 

approaches. As a result, the detection could only reach high accuracy when analyzing 

near-ideal pictures of crosswalks or sidewalks. Therefore, it was not applicable for 

generating data for an inventory of pedestrian facilities [5], [11], [13]. Our solution to 

detect crosswalks and sidewalks from real-world images (especially with heavy 

occlusion) was to develop a dual-perspective, deep learning-based prediction method to 

utilize the aerial view and street view of the same location simultaneously. Using this, 

occluded crosswalks can be verified automatically by checking the ground truth in their 

street view images using a combined model that takes advantage of both aerial images 

and street view images. One model was used as the initial detector for processing aerial 

images while a second one was used as an additional check of an alternative perspective 

(street-level) for the purpose of verifying the prediction made by the first detector. 

Combined, this ensemble model was proved to increase accuracy for occluded view 

detection by 49% (from 55.59% to 83.02%). More importantly, the recall value increased 

by 382.9% (from 15.41% to 74.42%), which means that a large majority of the occluded 

or unrecognizable crosswalks in the aerial view imagery were initially missed but were 

able to be recovered and correctly classified by the new method. However, this dual 

perspective method requires the availability of street view images at target locations. 

State DOTs need to provide either street view images or video logs to capture the images 

needed. Another solution to obtain street view level images is to query Google or Bing 

Maps through paid API calls. 
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 The models and system that we developed form the foundation for developing a 

next-generation data collection method which could automatically detect, measure, and 

generate in-depth pedestrian facility information from images of the built environment on 

a large scale. The methods we developed not only promote the application of automated 

methods for pedestrian facility data collection, but also provide a potential solution for 

detecting other transportation facilities, such as sidewalks or curb ramps, that are 

frequently occluded in real-world aerial images. The innovative methods for automating 

the data collection process provide “building blocks” for practitioners and researchers to 

adapt in building next-generation data collection tools for automatically collecting 

specific infrastructure information of interest.  

5.2 Future work 

Our research was mostly focused on working with DOT collaborators to study the 

data science aspects of automated pedestrian facility detection. This included image 

annotation and manual image filtering, applying machine learning models to large area 

satellite imagery, and creating the framework (and prototype) for a new all-in-one system 

with a graphical user interface that DOT workers could use to apply our research to their 

daily work. Guided by our understanding of the behavior of our early models, the rich 

guidelines for image filtering that we developed to create our “ideal” image subsets (see 

section 2.2.3.3), have produced results that support the importance of having a clean, 

well-labeled, and high-quality pedestrian facility detection dataset. Designing such a 

dataset using the protocols we have defined would greatly benefit future work related to 

our research and the entire field of automated pedestrian facility detection.  
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Once this is complete, the machine learning methodology in our research could be 

expanded on using new state-of-the-art models and other methods to fully benefit from a 

large, pure training dataset. In addition to trying a wide variety of different architectures, 

we would like to explore the possibility of creating custom architectures that are 

specifically designed for performing automated pedestrian facility detection tasks. The 

main machine learning architectures utilized in our work (VGG16 and Mask R-CNN) and 

the Python libraries used to implement them are versatile and relatively easy to modify. 

Therefore, we would like to explore different ways for these models to process data (see 

section 5.2.2) as well as possible modifications to the architecture that take expert advice 

from our DOT collaborators into consideration. Also, guided by heuristics such as 

visualization of layer activations and the information gained by manually manipulating 

input images to learn which features are important to our trained models, we would like 

to explore the possibility of making more interpretable pedestrian facility detection 

models with a custom training process guided by this information.  

5.2.1 Manuscripts in progress 

A portion of the results presented in this dissertation have been drafted into two 

manuscripts that will be submitted for publication. The first manuscript is focused on 

aerial and street-view crosswalk prediction as well as the dual-perspective prediction 

model results discussed in section 4.2. We also discuss some of the data filtering and 

image collection correction procedures (covered in section 2.2.3). The second manuscript 

is focused on improving crowdsourced pedestrian facility data collection by developing 

an easy-to-use smartphone application that interfaces with a webserver running a 

machine learning model for data verification. In order to build a well-connected 
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pedestrian facility network that will improve safety and walkability, accurate and 

thorough data of existing pedestrian facilities must be available [93]. However, there is a 

shortage of efficient methods for collecting these facility data, such as sidewalk and 

crosswalk presence [15]. To address this, we developed a prototype pedestrian facility 

data crowdsourcing system that consisted of a smartphone (Android) application and a 

remote webserver running a MySQL [94] database. This webserver also was running a 

machine learning model for detecting the presence of crosswalks in street-view imagery 

collected by the users of the smartphone application. We discuss the development of this 

application in section 3.9 and present initial results from a test conducted on the 

University of Southern Mississippi’s Hattiesburg campus in section 4.9. 

5.2.2 Sliding window method for large satellite image processing 

The existing aerial images owned by DOTs cover large areas which contain many 

pedestrian facilities in different locations. To process these large area images, a workflow 

should be developed to pre-process the images so that only the aerial images of the 

candidate locations will be extracted and used as input for the data collection system 

where further processing will be performed. The candidate locations would include 

locations where a crosswalk or a sidewalk could possibly exist. A few possibilities for 

this include 1) the location of every approaching lane at an intersection could possibly 

contain a crosswalk, 2) one side of a roadway segment could possibly contain a sidewalk, 

or 3) the roadway segment between two intersections could possibly contain a mid-block 

crosswalk. Narrowing down the input images to only focus on images of these candidate 

locations will reduce the processing time of the data collection system and decrease false 
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detections by filtering out irrelevant but disruptive factors such as parking lots with 

parallel white lines.  

Another challenging problem to solve in this task is to extract the aerial image 

surrounding a candidate crosswalk and ensure that the entire crosswalk would be 

contained in the image. Only in this way, can the length of the full crosswalk be 

measured automatically. We have already developed a prototype “sliding window” 

method to adjust the extraction window automatically to cover the entire candidate 

crosswalk in one image. This method is necessary since deep learning models are only 

able to process images of a much smaller size than large area satellite imagery (256x256 

pixel tiles in the tests here). Therefore, the imagery around candidate locations needs to 

be sliced into tiles intelligently.  

This sliding window method works by detecting crosswalks that may be partially 

obscured by the boundary of the sliced image tile. Once a predicted bounding box is 

found near the edge of an image, the coordinates for the centerpoint of the partial 

detection are translated to the center of the current image before slicing a new image with 

gdal_translate. This has the effect of roughly centering the crosswalk candidate in the 

center of the image and allows the image to be reprocessed by the segmentation model. 

Figure 5.1 shows an example of this method being used to obtain a more accurate 

segmentation result for a crosswalk where the other curb was obscured by the tile 

boundary. 
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Figure 5.1 A working example of the sliding window method 

5.2.3 Future segmentation model improvements 

In addition to the potential to improve our mensuration results by continuing the 

implementation of the prototype sliding window method that we discussed in section 

5.2.2, we also conducted a small-scale test that produced some promising results using 

larger input images. Specifically, we were able to use the same procedures described in 

section 3.5 with images that were 1024x1024 pixels instead of the smaller 200x200 or 

224x224 images used in the other models. This difference in size resulted in a much 

clearer view of areas such as intersections where multiple crosswalks are present (see 

Figure 5.2). While this is promising for reducing the need for correction methods such as 

our sliding window process, there will always be a need for such methods if the road 

images are being sampled blindly before predictions are made. Furthermore, increasing 

the field of view will include more trees, parking lots (with markings that are similar to 

crosswalks), and other objects that may increase the noise in large datasets. However, 

using images of this size could also greatly reduce the amount of cut-off crosswalks in 

situations where the coordinates of the roadway in the full satellite image are known (a 

fairly safe assumption for most DOTs).  
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   Therefore, for the purpose of testing the feasibility of this concept (memory 

limitations, architecture limitations, the increasing presence of noise from background 

objects with a similar appearance to crosswalks, etc.), we used a small set of aerial 

images (30 training, 10 validation, 9 testing) with this new size (1024x1024 pixels) that 

were also sampled from the Seattle area. Judging by the results in Figure 5.3, this is 

worth pursuing in future work (note that it can also detect parallel crossings).  

 

 

Figure 5.2 Experimenting with larger segmentation training images. 

Original input size that is consistent with the other models in this project (A) vs the expanded input size (B). 
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Figure 5.3 Successful segmentation results using larger input images 

5.2.4 Visual analysis of model operation for architecture optimization and 

interpretability purposes 

For convolutional neural networks, one of the most useful methods for observing 

the internal behavior of a trained model involves utilizing various techniques that provide 

visual representations of the activations at selected layers within the network. The 

visualization method that we used (based on the average of the activations at each chosen 

layer) could be refined in future work with a number of alternative options, such as class 

activation mapping [98] or gradient-weighted class activation mapping (which does not 

require any retraining or architectural changes to the model) [99]. The idea of describing 

the importance of regions of an image to the final classification decision of a 

convolutional neural network can be traced back to the idea of saliency maps [100]. Later 

methods would expand on this, such as guided backpropagation [101] and DaSaliNet 

[102] (both built on the DeConvNet [103] method). As exploration into these 
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visualization techniques continued, methods such as SmoothGrad [104] focused on ways 

to refine the final visualization. They presented a straightforward method that can 

visually sharpen gradient-based sensitivity maps by introducing additional noise to the 

input image. Such techniques could be useful for enhancing visualizations in datasets like 

ours where occlusion in the original image may interfere with visualization quality. A 

very thorough description and overview of these visualization methods and some of their 

shortcomings is provided by Adebayo et al. [105]. 

Based on these studies that emphasized the importance of certain regions of pixels 

to the final prediction of a classification CNN, we decided to investigate the effect of 

manipulating various regions of one of our input images. Based on simple observations of 

our own data, we noticed that predictions for some classes (such as crosswalks in street-

view images) may be dependent on context derived from other features that the model 

has learned. The idea that the visual context of an image and various contextual clues 

(such as unrelated objects that appear frequently in images of a target object) can affect 

segmentation [106]  and object detection/recognition [107]–[110] has been explored in 

several past studies.  

One study by Shetty et al. [111] supported our idea of using all of this information 

about the visual context of objects in images to directly experiment on the input images 

themselves rather than modifying the model architecture or visualization method. They 

also focused on both segmentation and image-level classification using data that was very 

relevant to our research (roads and sidewalks). In fact, the base of the model they used for 

classification (VGG19), also available as a part of the Keras Applications library [112], is 

very similar to our VGG16 street-view sidewalk classification model. Compared to our 
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approach, discussed in section 4.10, they performed automatic object removal through the 

use of an in-painting network that learns to remove objects from general scene images 

[113]. In [111], they observe that segmentation of the “sidewalk” class is very sensitive to 

the presence of objects in the “cars” class. We also observed an example of this kind of 

intertwined relationship between object categories in our data where the presence of cars 

seems to have a very pronounced effect on the classification of a partially occluded 

crosswalk in a street-view image (see Figure 4.31). Their results show that their 

automated object removal-based data augmentation method can help mitigate the effects 

of this kind of relationship in a dataset. This could be interpreted as sanitizing or 

otherwise removing noise from the model’s internal representation of a certain class. 

Given the high frequency of cars in road imagery datasets, simply adding more training 

data to produce a model that is not biased by the presence of vehicles may be extremely 

difficult. Even if it is viable, we believe that studies exploring model interpretability and 

methods that produce improvement using smaller datasets and field-specific knowledge 

are equally important to studies that enhance performance through the use of larger 

models and datasets.   

5.2.5 Identified challenges and future direction 

The implementation of the findings of this project faces several challenges that 

are worth being noted as lessons learned. The first challenge is the availability of the 

street view images of the candidate location. If the system is adopted by state DOTs, 

street view images should be provided by the DOTs internally, instead of using the street 

view images obtained from commercial databases like BingMaps or Google Maps. Even 

though some DOTs are able to collaborate with commercial image databases to extract 
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their street view images, street view images are usually not available in many areas, such 

as undeveloped areas, local roads, or gated subdivisions. One possible solution is to bring 

in crowdsourced street view images taken by pedestrians as a supplementary data source 

to cover areas without publicly available street view images. In addition, even when the 

street view images are available, in some cases the street view of a crosswalk or sidewalk 

can possibly be occluded by cars and other objects. Therefore, it is important to 

incorporate multiple angles of observation when designing a robust prediction system. 

Another problem with street view images is that their time stamp is not always the same 

as the corresponding aerial view images. There could be cases when the street view 

image was taken after a crosswalk was removed, but it might still be present when the 

aerial view image was taken (or vice versa).  

The second challenge is regarding the quality of the training dataset of images 

tagged as having a crosswalk/sidewalk or not from OSM. The method developed here for 

extracting sample images of crosswalks and sidewalks from the large amount of aerial 

imagery covering a given area requires the crowdsourced tags for each crosswalk or 

sidewalk to accurately mark the location of the crosswalk or sidewalk. If the coordinates 

of a tag are not sufficiently close to the physical location of the crosswalk, the cropped 

images used as input for the facility detection model may not depict the actual target 

crosswalk or sidewalk. Also, nearby crosswalks or sidewalks can show up in an image 

that is marked as not having a crosswalk or sidewalk, which creates false positive 

samples. All these issues can lead to mismatched, incorrect images in both the training 

and testing data. In addition to the possibility of incorrect coordinates in crowd sourced 

data, it is also possible to obtain images that have a completely incorrect label. To 
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investigate this, two evaluators looked through a subset of 1000 labelled crosswalk 

locations and 1000 labelled sidewalk locations from OSM and found the crowd sourced 

tags to be 78% accurate on average for crosswalk labels and 94% for sidewalk. This 

preliminary result implies that there is a certain amount of incorrectly labeled images that 

likely affected the system performance adversely. Therefore, a training image repository 

would be recommended to be developed for the benefit of the automated data collection 

field. This repository, consisting of a large amount of diverse sample images of different 

types of pedestrian infrastructures accurately tagged by human evaluators with types and 

features, is critical to training a high-performance facility detection model. It is also 

recommended that additional, fine-grained classifications of image sets (e.g., “images 

with object in clear view”, “images of partial objects”, or “images with occlusion”) 

should be included in the repository as well. This will greatly improve the capability of 

the detection models to handle special views of facilities in real-world images. Sample 

images in both aerial view and street view from imagery data available online or in 

government agencies should be obtained and manually tagged to guarantee high 

accuracy. 

Except for the above-mentioned methodology related challenges, there are also 

certain application related challenges required for fully implementing the existing results. 

First, an input preprocessing module is required to extract aerial images from candidate 

locations to feed the data collection system. This is because that the aerial images owned 

by DOTs are of the entire district area instead of each target facility and pre-processing of 

these large area images needs to be conducted before feeding them directly into the 

models developed by the project. This task may include dividing an area image into small 
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images containing just one approaching leg of an intersection or a short segment of a 

roadway. Second, as the output of the data collection system, information about 

sidewalks and crosswalks needs to be organized and stored in a ready-to-use format and 

structure by an output function module. Without any standard database structure for 

pedestrian facility data, a few questions need to be answered by DOT collaborators. For 

example, should the output be stored in a GIS layer or a table format? More importantly, 

how should the output be associated with the existing inventory of roadways and 

intersections owned by the DOT? Finally, the customized models, input preprocessing 

module, and output function module all need to be packaged into a user-friendly 

computer application so that the DOT officers can easily use the system without complex 

training. Answering these questions will also enhance the final products of this research 

for the pedestrian facility data collection research community or users in other agencies. 
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