
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Summer 8-1-2022

Data Collection and Machine Learning Methods for Automated Data Collection and Machine Learning Methods for Automated

Pedestrian Facility Detection and Mensuration Pedestrian Facility Detection and Mensuration

Joseph Bailey Luttrell IV
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Luttrell, Joseph Bailey IV, "Data Collection and Machine Learning Methods for Automated Pedestrian
Facility Detection and Mensuration" (2022). Dissertations. 2034.
https://aquila.usm.edu/dissertations/2034

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F2034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=aquila.usm.edu%2Fdissertations%2F2034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=aquila.usm.edu%2Fdissertations%2F2034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/2034?utm_source=aquila.usm.edu%2Fdissertations%2F2034&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

DATA COLLECTION AND MACHINE LEARNING METHODS FOR AUTOMATED

PEDESTRIAN FACILITY DETECTION AND MENSURATION

by

Joseph Bailey Luttrell IV

A Dissertation

Submitted to the Graduate School,

the College of Arts and Sciences

and the School of Computing Sciences and Computer Engineering

at The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved by:

Dr. Chaoyang Zhang, Committee Chair

Dr. Yuanyuan Zhang

Dr. Zhaoxian Zhou

Dr. Bo Li

Dr. James V. Lambers

August 2022

COPYRIGHT BY

Joseph Bailey Luttrell IV

2022

Published by the Graduate School

ii

ABSTRACT

Large-scale collection of pedestrian facility (crosswalks, sidewalks, etc.) presence

data is vital to the success of efforts to improve pedestrian facility management, safety

analysis, and road network planning. However, this kind of data is typically not available

on a large scale due to the high labor and time costs that are the result of relying on

manual data collection methods. Therefore, methods for automating this process using

techniques such as machine learning are currently being explored by researchers. In our

work, we mainly focus on machine learning methods for the detection of crosswalks and

sidewalks from both aerial and street-view imagery. We test data from these two

viewpoints individually and with an ensemble method that we refer to as our “dual-

perspective prediction model”. In order to obtain this data, we developed a data collection

pipeline that combines crowdsourced pedestrian facility location data with aerial and

street-view imagery from Bing Maps. In addition to the Convolutional Neural Network

used to perform pedestrian facility detection using this data, we also trained a

segmentation network to measure the length and width of crosswalks from aerial images.

In our tests with a dual-perspective image dataset that was heavily occluded in the aerial

view but relatively clear in the street view, our dual-perspective prediction model was

able to increase prediction accuracy, recall, and precision by 49%, 383%, and 15%,

respectively (compared to using a single perspective model based on only aerial view

images). In our tests with satellite imagery provided by the Mississippi Department of

Transportation, we were able to achieve accuracies as high as 99.23%, 91.26%, and

93.7% for aerial crosswalk detection, aerial sidewalk detection, and aerial crosswalk

mensuration, respectively. The final system that we developed packages all of our

iii

machine learning models into an easy-to-use system that enables users to process large

batches of imagery or examine individual images in a directory using a graphical

interface. Our data collection and filtering guidelines can also be used to guide future

research in this area by establishing standards for data quality and labelling.

iv

ACKNOWLEDGMENTS

 First, I would like to thank my main advisor and committee chair, Dr. Chaoyang

Zhang for his mentorship, support, and guidance during my academic career at the

University of Southern Mississippi. I would also like to extend equal gratitude to Dr.

Yuanyuan Zhang for her excellent management of my main research project during this

time. Also, I would like to thank all of the other members of my committee, including Dr.

James Lambers, Dr. Bo Li, and Dr. Zhaoxian Zhou for their participation and guidance.

Finally, I would like to thank Dr. Zheng Wang for his involvement in my early academic

career at the University of Southern Mississippi and for introducing me to computer

science research.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... ix

LIST OF ILLUSTRATIONS .. x

LIST OF ABBREVIATIONS .. xiv

CHAPTER I - INTRODUCTION .. 1

1.1 The need for automated pedestrian facility data collection 1

1.2 Literature review and related studies .. 2

1.2.2 Previous crosswalk data collection methods.. 4

1.2.3 Previous automated crosswalk detection studies ... 6

1.2.4 Overview of previous crosswalk detection models ... 7

1.2.5 Comparison with previous sidewalk detection studies 9

1.2.5.1 Overview of previous sidewalk studies using aerial imagery 9

1.2.5.2 Overview of previous sidewalk studies using street-view imagery 10

1.3 Research goals and contributions .. 12

1.3.1 Multi-perspective data processing overview ... 16

1.3.1.1 General methods for utilizing multi-perspective data 17

1.3.1.2 Methods for fusing aerial and street-view imagery 18

1.3.2 Application to Department of Transportation data .. 22

vi

CHAPTER II – DATA COLLECTION AND PROCESSING .. 23

2.1 Overview of dataset structure and design ... 23

2.2 Data collection pipeline .. 24

2.2.2 Street-view data collection and correction procedure 28

2.2.3 Data filtering .. 31

2.2.3.1 Distance-based filtering .. 32

2.2.3.2 Perceptual hash-based filtering ... 33

2.2.3.3 Manual verification and dataset cleaning ... 35

2.3 GIS data preparation ... 36

2.4 Summary of all datasets .. 37

2.4.2 Aerial datasets .. 39

2.4.3 Street-view datasets ... 40

2.4.4 Dual-perspective datasets... 40

2.4.5 Segmentation datasets .. 42

2.4.6 Department of Transportation datasets .. 43

2.4.7 Dataset partitioning .. 44

CHAPTER III – MACHINE LEARNING THEORY AND METHODOLOGY 48

3.1 Machine learning theory ... 48

3.1.2 Machine learning for image classification ... 50

3.1.2.1 Convolutional neural networks ... 51

vii

3.2 Methodology overview ... 54

3.3 The VGG16 architecture and Python implementation .. 56

3.4 DPPM operation.. 62

3.5 Mensuration overview .. 64

3.6 Segmentation implementation and architecture .. 65

3.6.2 Mask R-CNN python implementation ... 66

3.7 Standard evaluation metrics .. 69

3.8 Evaluation methods ... 70

3.8.1 Detection and segmentation evaluation ... 71

3.8.2 Prediction visualization procedure ... 72

3.9 Protype pedestrian facility data crowdsourcing app development 73

CHAPTER IV – RESULTS AND DISCUSSION.. 75

4.1 Local detection results .. 75

4.1.1 Local crosswalk detection test results .. 75

4.1.2 Local sidewalk detection results .. 79

4.2 Dual-perspective detection results .. 83

4.3 Local segmentation results .. 84

4.4 Department of Transportation results ... 86

4.4.1 DOT detection test results .. 86

4.4.2 DOT crosswalk segmentation test results .. 87

viii

4.5 Dual-perspective result analysis ... 91

4.6 DPPM external test results individual analysis ... 92

4.7 Time and cost estimate for large area processing ... 96

4.8 Final system and graphical interface prototype .. 98

4.9 Prototype pedestrian facility data crowdsourcing app testing 102

4.10 Preliminary visual analysis and manual object removal experimentation 105

CHAPTER V – CONCLUSIONS AND FUTURE WORK ... 109

5.1 Conclusion .. 109

5.2 Future work ... 113

5.2.1 Manuscripts in progress ... 114

5.2.2 Sliding window method for large satellite image processing 115

5.2.3 Future segmentation model improvements .. 117

5.2.4 Visual analysis of model operation for architecture optimization and

interpretability purposes.. 119

5.2.5 Identified challenges and future direction.. 121

REFERENCES ... 125

ix

LIST OF TABLES

Table 1.1 A summary of related studies that explore automated crosswalk detection 3

Table 2.1 Manual data filtering guidelines ... 35

Table 2.2 The size and description of our final datasets ... 38

Table 2.3 A description of all models used in our work ... 39

Table 2.4 Subset size for each final dataset .. 46

Table 3.1 Parameter configuration for our Keras (Python) VGG16 implementation....... 61

Table 3.2 The values of all parameters used when training our Mask R-CNN

segmentation model. ... 66

Table 4.1 Comparing SPPM and DPPM performance on an external crosswalk detection

dataset ... 84

x

LIST OF ILLUSTRATIONS

Figure 1.1 Example images of heavily occluded crosswalks in our aerial imagery data ... 4

Figure 2.1 An overview of the data collection process ... 26

Figure 2.2 An example of positive (“crosswalk”) images .. 27

Figure 2.3 An example of negative (“no-crosswalk”) images .. 27

Figure 2.4 An example of our street-view image correction method 31

Figure 2.5 An example of distance-based duplicate filtering ... 33

Figure 2.6 Searching for duplicates and removing them using a perceptual hashing script

... 34

Figure 2.7 Extracting processable images from the large format GIS data 37

Figure 2.8 An example crosswalk being labelled within the COCO annotator interface. 42

Figure 2.9 An example of two images from both of our MDOT testing datasets

(detection) ... 44

Figure 3.1 An illustrated example of a single layer perceptron .. 49

Figure 3.2 An example illustration of a multilayer perceptron with two hidden layers ... 50

Figure 3.3 An example illustration of a convolutional neural network for classifying

CIFAR [85] images. ... 53

Figure 3.4 An example of max pooling .. 54

Figure 3.5 Dual-perspective prediction workflow .. 56

Figure 3.6 A visual overview of our implementation of the VGG16 architecture 58

Figure 3.7 Visualizing VGG16 layer activations .. 58

Figure 3.8 An example of image augmentation during training. 60

Figure 3.9 An overview of the segmentation process from training to testing 65

xi

Figure 3.10 An overview of the two stages of the Mask R-CNN architecture 66

Figure 3.11 Visualizing four example input images and their corresponding masks as they

are loaded by the segmentation model. ... 68

Figure 3.12 Using python functions to generate a more accurate measurement of a

predicted crosswalk ... 72

Figure 3.13 Example layer activations displayed by Keras and matplotlib. 73

Figure 4.1 The confusion matrix for the local test of the aerial crosswalk detection model

(97.14% acc) ... 76

Figure 4.2 Aerial crosswalk detection training accuracy curve .. 77

Figure 4.3 Aerial crosswalk detection training loss curve .. 77

Figure 4.4 Street-view crosswalk detection local test confusion matrix (97.24% acc) 78

Figure 4.5 Street-view crosswalk detection training accuracy curve 78

Figure 4.6 Street-view crosswalk detection training loss curve 79

Figure 4.7 Aerial sidewalk detection model local test confusion matrix (91.55% acc) ... 80

Figure 4.8 Aerial sidewalk detection training accuracy curve .. 80

Figure 4.9 Aerial sidewalk detection training loss curve .. 81

Figure 4.10 Street-view sidewalk detection local test confusion matrix 81

Figure 4.11 Street-view sidewalk detection training accuracy curve 82

Figure 4.12 Street-view sidewalk detection training loss curve 82

Figure 4.13 Three examples of good local segmentation predictions. 85

Figure 4.14 Three examples of less successful local segmentation predictions. 85

Figure 4.15 The confusion matrices for two tests on the DOT data. 87

Figure 4.16 Evaluating length measurement accuracy. .. 89

xii

Figure 4.17 A correct prediction with only a difference of 0.13m from the true length. . 91

Figure 4.18 DPPM example 1 ... 94

Figure 4.19 DPPM example 2 ... 95

Figure 4.20 DPPM example 3 ... 95

Figure 4.21 DPPM example 4 ... 96

Figure 4.22 DPPM example 5 ... 96

Figure 4.23 An overview of the components of the final system 98

Figure 4.24 The main window of the interface ... 101

Figure 4.25 Performing aerial crosswalk detection on a single image using the interface

... 101

Figure 4.26 Performing aerial sidewalk detection on a single image using the interface

... 102

Figure 4.27 Example street images gathered using the prototype crowdsourcing app ... 103

Figure 4.28 The user interface of the prototype pedestrian facility data crowdsourcing app

... 103

Figure 4.29 An example of three images collected by the app and processed by the

webserver .. 104

Figure 4.30 Visualizing the average activation values from selected layers in the street-

view crosswalk detection model for the purpose of investigating the incorrect prediction

of the input image in row B. ... 106

Figure 4.31 Visualizing the average activation values from selected layers in the street-

view crosswalk detection model to investigate the effects of removing various important

image features. .. 108

xiii

Figure 5.1 A working example of the sliding window method 117

Figure 5.2 Experimenting with larger segmentation training images. 118

Figure 5.3 Successful segmentation results using larger input images 119

xiv

LIST OF ABBREVIATIONS

 ACC Accuracy

CNN Convolutional Neural Network

 DOT Department of Transportation

 DPPM Dual Perspective Prediction Model

 MDOT Mississippi Department of Transportation

 POI Point of Interest

 SPPM Single Perspective Prediction Model

1

CHAPTER I - INTRODUCTION

1.1 The need for automated pedestrian facility data collection

Collecting crosswalk presence data at scale is vital for improving the safety and

convenience of roadways for pedestrians. Such information is necessary for finding

pedestrian related crash causing factors, identifying locations that would benefit from

additional crosswalks, and evaluating the connectivity of the pedestrian network.

Recognizing the importance of crosswalk presence data to safety, thirty-seven U.S. State

Departments of Transportation (DOTs) have prioritized improving pedestrian facility

inventory, particularly concerning crosswalks, as an important action item in their

Strategic Highway Safety Plans. In a recently published guidebook on measuring

multimodal network connectivity [1], it is emphasized that ‘‘results are only informative

to the extent that they measure the ‘right’ network—the one that pedestrians are likely to

use in real life.’’ This “right” network is composed of crosswalks and sidewalks that are

present in the real world. However, the data about the presence of crosswalks is often not

available or collected on a large scale. A National Cooperative Highway Research

Program (NCHRP) synthesis on the availability of pedestrian infrastructure data

concluded that 31 of the 40 responding DOTs report collection of pedestrian

infrastructure data and only 12 of the 31 states have made the data available to the public.

Regarding crosswalk presence data, only 11 states reported collection of such data.

The limited availability of crosswalk data at scale could be caused mainly by

challenges inherent in the current data collection approaches, including field data

collection and manual digitization based on aerial images [2]–[4]. Human errors, high

cost for time and labor, safety concerns for data collectors, and the corresponding

2

concerns about standardizing, updating, and maintaining data could raise the hesitation of

decision makers to undergo large-scale collection of this complex and repetitive yet

essential data. To address these data collection challenges, promising automated methods

have been studied by researchers via employing computer science techniques to

automatically collect crosswalk presence data from aerial view or street-view images (see

Table 1.1). Aerial view imagery includes images taken from an airplane, drone, or

satellite, and provides pictures of the area from an overhead angle. Street-view imagery is

taken on the street by cameras mounted on a vehicle (e.g., Google Street View and Bing

Streetside View) or from cellphones. The idea of these automated methods is that, by

using image processing algorithms, crosswalk presence can be detected automatically

from images of locations of interest.

1.2 Literature review and related studies

There are several studies that have previously explored the automated detection of

pedestrian facilities. However, many limitations can be found in these existing automation

methods, such as the use of small training datasets, a lack of ground truth checking for

occluded candidates, and utilizing obsolete algorithms (classical image processing

techniques). Table 1.1 gives an overview of some other studies along with the accuracy

rates they report and a summary of the limitations that they face. Note that, due to

differences in the type of data being collected (different geographic areas, resolutions,

dataset sizes, etc.), it is not possible to directly compare these results. However, we believe

that our results are comparable to the best methods given our overall high performance in

our tests (see chapter IV). Also, it should be noted that our goals for this project (discussed

in section 1.3) did not involve optimizing the performance of all of the methods that we

3

implemented. The remaining subsections here go into more specific details by comparing

other aspects of our work (such as model combination strategies and architecture) to similar

published studies.

Table 1.1 A summary of related studies that explore automated crosswalk detection

Image

Types

Researchers Year Objects

Detected

Methods Accuracy

rates

Limitations

Aerial

Images

Riveiro et al.

[5]

2015 Zebra

crossings

Image

segmentation

83.33% - Small training

dataset size

- No ground truth

verification

- Traditional

algorithm

Luo et al.

[6]

2019 Sidewalks CNN

classification

92.6%-

97.22%
-no occlusion

handling

-image extraction

using automated

zooming in GIS

software is likely

slow for large areas

Chen et al.

[7]

2021 Crosswalks Image

segmentation

and CNN

object

detection

97.71% -no occlusion

handling

-Heavily tuned

parameters with no

blind test

Street side

images

Wang et al.

[8]

2014 Crosswalks Support

Vector

Machine

classifier

78.90% - Small training

dataset size

- No ground truth

verification

- Traditional

algorithm

Poggi et al.

[9]

2015 Crosswalks CNN

Classification

88.97% - Small training

dataset size

- No ground truth

verification

Ahmetovic

et al. [10]

2016 Zebra

crossings

 Image

segmentation

93% - Individual roads

(not a network)

- No ground truth

verification

R.F. Berriel

et al. [11]

2017 Crosswalks CNN

Classification

94.12% - No ground truth

verification

Dual

perspective

Ning et al.

[12]

2022 Sidewalks Image

segmentation

85.69%-

89.49%

(F1)

-occlusion handling

but no data filtering

guidelines

-segmentation only

4

Among all of these limitations, handling occluded crosswalks has been recognized

as the most challenging one that greatly impedes the development and application of these

automated methods in real world situations [9], [13]. The crosswalk in an image could be

partially or entirely occluded by cars, trees, pedestrians, etc. Figure 1.1 illustrates several

examples of occluded crosswalks in aerial view images. Occlusion often causes the

omission of a crosswalk [5], [13], [14], erroneous recognition of “crosswalk-like”

markings, or even malfunction of the algorithm [5]. However, the detection of crosswalks

that are mostly or even entirely occluded remains a difficult problem.

Figure 1.1 Example images of heavily occluded crosswalks in our aerial imagery data

1.2.2 Previous crosswalk data collection methods

According to a related study [15], there are two approaches commonly used to

collect crosswalk data, including field investigation and computer-based digitization. In

the first approach, data collectors will go out in the field to observe and measure the

5

facilities manually. They record the measurements either on paper or on handheld devices

for future digitization. The second approach is more advanced since data collection

would be conducted mainly on a computer using aerial images and video logs. However,

it still requires additional field investigation for ground truth verification whenever the

object of interest is occluded in the aerial images. For example, researchers in [16] were

able to manually review satellite imagery of roughly 6,400 intersections in San Francisco

and found that crosswalks are present at 58% of these locations. One researcher

performing this analysis required 90 hours to complete the task. This amount of time is

likely too high for any department of transportation or planning department to dedicate to

such a task on any regular basis. The amount of time they give for processing this one

city (~47 square miles) is comparable to the amount of time that we have estimated for

our system to process satellite imagery of the entire area of Forrest County in Mississippi

(see section 4.7). Furthermore, they only focus on intersections and do not consider

midblock crossings. However, our method scans the entire Satellite image and includes

all roadway surfaces. Our time estimate would be much lower if we focused only on

roadways, and midblock crossings would still be included.

The high level of human labor involvement of these two types of approaches

inevitably leads to specific limitations. First, errors may be introduced by human data

collectors becoming fatigued from traveling in the field or from looking at computer

screens for long periods of time. Second, time and labor cost for travel to data collection

sites is non-negligible for field data collection. Once the size of the network is fixed,

there is not much space to lower this cost. Third, there are safety concerns associated

6

with exposing data collectors to hazardous traffic conditions. These limitations motivated

our study and are compelling reasons for automated methods to be studied.

1.2.3 Previous automated crosswalk detection studies

In practice, pedestrian facility data are mainly collected manually. However, in

research settings there have been some attempts to automate the detection of crosswalks

[5], [8]–[10], [13], [14], [17]–[28]. A comprehensive review of these studies was

conducted based on thirty-seven journal papers found by searching the literature for

“crosswalk classification” or “crosswalk detection” and also by inspecting the reference

lists of the identified papers. The majority of the existing studies (92%) in our initial

review were motivated by the single goal of assisting visually impaired people to

navigate safely at urban intersections. The remaining projects aimed for improving driver

assistance systems, advancing road management [5], enhancing image processing

methods [28], and working on a broader range of goals related to navigation systems and

autonomous vehicles [13]. Ahmetovic et al. argued that, since the zebra crosswalk is the

most visible to drivers and grants right-of-way to pedestrians, it is a highly preferable

location for street crossing in terms of safety [17]. As a result, zebra crosswalks became

the target object in most of the previous studies, except in [19], [21] where both zebra

crosswalks and two-stripe crosswalks were studied. Another factor which constrained the

research of detecting types of marked crosswalks other than zebra crosswalks could be

the limitations of detection methods that are based on classical image processing

methods. A high-contrast texture in the image pattern is usually preferred by these

methods. Therefore, the zebra crosswalk pattern is much more visible to these algorithms

than other marked crosswalks [21]. Generally, images from either aerial view or street

7

view were used separately as the sole data source, and most of the existing crosswalk

detectors were based on images only in street view due to their high resolution and clear

view. Only very recently, a few studies began to use aerial view imagery for crosswalk

detection due to its potential for use in collecting data at large scale [10], [11]. Different

from these previous studies, our method aims to detect not only zebra crosswalks but also

other types of marked crosswalks. In addition, images in aerial view and street view are

combined as dual perspective sources to create an increasingly informed crosswalk

detection system. Ultimately, the goal of this study is to lay the foundation of building an

inventory of crosswalk presence data at large scale.

1.2.4 Overview of previous crosswalk detection models

Our review of the literature revealed that the models typically used for automated

crosswalk detection can be classified into three categories. The first category includes the

traditional approach which is based on simple image processing techniques, such as line

detection [5], [10], [28]and image segmentation [19], [20]. Edges and patterns in an

image can be extracted and analyzed to determine if these elements belong to a

crosswalk. The performance of image processing-based approaches heavily relies on the

quality of the image that is to be detected. Thus, this approach is appropriate for images

that are high-resolution, taken within a certain short distance from a specific angle,

contain the whole pattern, and use a specified orientation. The second category of models

is based on machine learning algorithms, such as the AdaBoost-algorithm [23], Cellular

Neural/Nonlinear Network Universal Machine (CNN-UM) [24], and Support Vector

Machine (SVM) [8], [14], [22]. These algorithms were trained using features extracted

from images containing a crosswalk to learn knowledge about what kind of images are

8

likely to contain a crosswalk. With this knowledge, the algorithms were able to classify a

new image as either “having a crosswalk” or “not having a crosswalk”. Features used to

build and train the algorithms were still extracted by using image processing techniques.

Machine learning-based models using pre-designed and hand-engineered features share

one critical limitation, which is that they cannot handle crosswalks affected by factors

other than those that have already been considered in the selection of the features.

Thus, these models only perform well when detecting crosswalks sharing specific,

similar features, such as special orientations, illumination conditions, and very limited

occlusion. Dealing with diverse situations with many unknown features in real-world

images becomes one of the biggest challenges. Recently, a third category of methods has

emerged to address this challenge. These approaches are based on deep learning

technologies, such as training a Convolutional Neural Network (CNN) to detect

crosswalks automatically from images [9], [11], [13]. Compared to the other approaches,

deep learning-based approaches are able to learn the appearance of crosswalks directly

from images without requiring the manual selection and extraction of features

beforehand. Thus, they are more appropriate for handling real-world conditions under

which images of crosswalks could contain clutter, shadows, saturation effects, distortion,

occlusion, and any other unknown features. Based on these considerations, our method

will also be based on CNN models but with additional advancements, including dual-

perspective data sources. We will introduce the details about our implementation of these

techniques starting in section 3.1.

9

1.2.5 Comparison with previous sidewalk detection studies

While there are some studies that focus on sidewalk detection as a classification

problem, our literature review found far more studies that engaged in “sidewalk

extraction” or other methods of identifying the sidewalk network from aerial imagery.

Starting with the methods that are most similar to our approach, sidewalk classification

methods that use aerial imagery can process wide areas at once and identify the presence

or absence of sidewalks in a given image. This is typically done by dividing a larger

aerial image into smaller slices that can be processed by a neural network. In our work,

we chose to explore sidewalk detection specifically as an image-level classification

problem. We discuss this as one of the main contributions of this project in section 1.3.

Other studies focus on detecting sidewalks (mostly using segmentation methods) from

the street-view perspective. We found that, instead of supporting pedestrian facility

detection by supplementing aerial imagery, the methods in these studies were typically

focused on other tasks such as classifying sidewalk accessibility or improving driverless

vehicle operation. The next two sections will give an overview of these two categories of

sidewalk-focused studies.

1.2.5.1 Overview of previous sidewalk studies using aerial imagery

Aerial imagery is widely used for a variety of tasks, such as remote sensing,

traffic management, and urban planning [29]. Many studies that are focused on land

cover classification or road extraction have used high resolution imagery at a zoom level

that makes it difficult to detect smaller features like sidewalks or crosswalks [30]–[32].

However, in recent years, many studies have also focused on classifying sidewalks and

other road features using images with a higher zoom level. Luo et al. extracted a dataset

10

of 1,832 labeled images (paved sidewalk vs. missing sidewalk) from an area around the

University of California, Riverside and a separate blind test dataset with 1,041 images

[6]. While they did also include some crosswalk data in their dataset, they were only

involved in their data collection process for purposes such as identifying intersections.

Much like our data collection process for aerial images (which sampled images directly

from the road path provided by Bing Maps), they were able to ensure that the collected

images (taken from a large satellite image) would be sampled along the lines of a known

road network. After collecting this data, they used a neural network based on a ResNet

architecture [33] and found that 964 of 1,041 (92.6%) images were correctly classified in

their blind test and 97.2% of their 180 initial testing images were correctly classified.

While the dataset used was not comparable in terms of geographic area or qualities other

than a focus on sidewalk presence, the performance of our model in a blind test (external

test) using aerial sidewalk imagery was comparable to theirs with an accuracy of 91.26%

(see section 4.4.1). Their paper also mentions occlusion, but it is not clear if they

addressed it with any filtering other than quality control that may have occurred in their

manual labelling process. Compared to their reported results of 62.4% and 59.0%

accuracy in their previous work [34], some optimization was clearly performed.

1.2.5.2 Overview of previous sidewalk studies using street-view imagery

Our literature review found that most of the studies that identified crosswalks in

street-view imagery were focused on sidewalk segmentation. While this is important for

driverless vehicle research or other tasks that need to know the exact location of the

sidewalk in an image [35], our goal was only to confirm the presence or absence of

sidewalks in the image. Other studies focus on sidewalk accessibility [36]–[39] and even

11

handling the detection of different sidewalk surfaces in historic urban environments [40].

In older works such as those by Smith et al. [41], sidewalk segmentation is performed

even though the final results are produced using a classification algorithm. In this case, it

is done with a random forest [42] classifier applied to initial segmentation results

produced by a graph-based algorithm [43]. With this, they were able to achieve a

sidewalk detection precision of 60.63% and a recall of 77.24% (based on pixel-level

metrics). Approaches that combined classical image processing techniques to extract

features from images before using a separate classification algorithm were common

before the current era of research that is dominated by the automatic feature extraction

capabilities of deep learning algorithms.

Another study by Kang et al. [44], also used a random forest classifier to generate

an image-level classification result from a basic, graph-based segmentation algorithm.

One of the only studies in our literature review that performed street-view sidewalk

detection using image-level classification techniques was a sidewalk accessibility study

[37]. They automatically assessed the accessibility of sidewalks in Google Street View

panorama images and automatically validated crowdsourced labels from Project

Sidewalk [38]. This was done using a modified Resnet-18 [33], [45] that introduced

positional and geographic features. Their input data was 224x224 pixel input images

cropped from the street-view panorama that were then processed with 7 features encoding

the position of a point in the scene and 5 features encoding other information about the

scene in a larger geographical context within the city. However, this study was only

focused on accessibility problems with sidewalks and not as concerned with the

challenges of detecting the sidewalk itself.

12

1.3 Research goals and contributions

For this project, our goal was to incorporate a wide variety of the various

pedestrian facility detection advances in recent years (discussed in section 1.2) into a

single project that investigated this topic both from the perspective of computer science

and from that of transportation research (guided by a panel of experts in the field). In

order to do this, we applied the knowledge and experience obtained from our previously

published machine learning research [46]–[48]. In [46] and [47], we implemented a face

classifier (based on the model described in [49]) and tested it on the FERET image

dataset [50]. The Python implementation of this model was heavily based on VGG16 and

became the foundation of our image-level classification work for the pedestrian facility

detection that is presented in this dissertation. Even though the datasets were very

different, much of our work with the various machine learning techniques, such as the

pretraining process and data preprocessing, in that study was relevant to our current

research. Also, in [46], we implemented and tested the procedure for visualizing layer

activations that would become an important part of interpreting the results of our current

project and the future work presented in this dissertation (see section 3.8.2 and section

5.2.4). Then, in [48], we tested a wide variety of machine learning and deep learning

algorithms for the purpose of performing protein residue-residue contact prediction. In

particular, our tests using stacked denoising autoencoders [51], [52] (a method that makes

predictions by combining multiple autoencoder models at the feature vector level)

provided important experience that we used to guide our decision when considering

methods to make predictions by combining aerial and street-view imagery (see section

3.4).

13

Of course, applying what we had learned from these past studies to this pedestrian

facility detection project came with a multitude of challenges that we carefully addressed

in various sections of this dissertation, including data collection (section 2.2), data

filtering and cleaning (section 2.2.3), sidewalk and crosswalk detection (section 4.1),

combining aerial and street-view imagery for improving occluded crosswalk detection

(section 3.4), and crosswalk mensuration (section 3.5). In particular, one of the most

important contributions of our work was the data collection and filtering guidelines that

we developed. This included implementing our data collection pipeline (section 2.2), the

street-view image correction method (section 2.2.2), distance-based filtering (section

2.2.3.1), perceptual hash (image-based) filtering (section 2.2.3.2), and manual dataset

cleaning (section 2.2.3.3). Portions of this dissertation have also been drafted into two

manuscripts that will be submitted for publication (see section 5.2.1). Another

contribution that the future of our research will have to this field is our plan to construct a

high-quality data repository that will benefit researchers that are working in this field by

providing standardized, clean data with properly annotated information (see section

5.2.5). The previously mentioned data collection and filtering guidelines that we

introduced will play a vital role in the acquisition, annotation, and maintenance of the

data in this repository. Our literature review did not reveal any other projects that

simultaneously incorporated this many aspects of pedestrian facility detection while also

laying the groundwork for improving future data collection work and testing the

prototype of an easy-to-use software package that will enable users to generate pedestrian

facility presence data with very little training (see section 4.8).

14

Since we explored this many different topics in this project, many of the other

contributions of our research are related to proposing solutions for various smaller

challenges that we encountered during this study. For example, there are many problems

associated with real-world pedestrian facility data sources, including occlusion and

incomplete coverage. In particular, satellite imagery for an area often suffers from heavy

cloud cover or interference from other objects (trees, shadows from buildings, etc.) that

obstruct (occlude) the view of crosswalks and sidewalks. Additionally, low resolution

and processing artifacts can also make it more difficult to automatically detect pedestrian

facilities in aerial imagery. While street-view imagery also faces challenges (such as

camera orientation and occlusion from objects on the street), it is typically much higher

quality and has a better chance of accurately representing the target pedestrian facility.

In our research we have attempted to address these problems by creating several

machine learning models that will handle various automated pedestrian facility tasks. In

total, our system is comprised of 4 detection models, a segmentation model, and a final

dual-perspective model covering various perspectives (viewpoints). (aerial crosswalk,

street-view crosswalk, aerial sidewalk, street-view crosswalk), In order to address the

aforementioned challenges, we have proposed to incorporate multiple data sources

through the use of dual-perspective prediction. By using data from multiple viewpoints

(perspectives) of the same location simultaneously, we can increase the prediction

accuracy and overall generalizability of our system when applied to real-world data.

Specifically, our contribution in this area is to develop a dual-perspective crosswalk

prediction model that can improve the detection of occluded crosswalks in aerial imagery

by simultaneously incorporating street-view imagery of the same location in the

15

prediction process. We refer to this system as our dual-perspective model (DPPM) and

have tested it on our own manually annotated datasets.

This method integrates information from images of the same crosswalk candidate

from two perspectives – aerial view and street view. In this DPPM, images from the aerial

view and street view of the same crosswalk candidate are retrieved from Bing Maps and

processed by two individual crosswalk detection sub-models, an aerial view sub-model and

a street view sub-model, in parallel. By combining the crosswalk presence predictions

generated by the two sub-models, a final prediction of the DPPM is produced considering

the confidence level of the sub-model predictions. This mimics the process in manual data

collection where the data collector will check the street view of a facility if it is occluded

in the aerial view. Our detection models are based on advanced Convolutional Neural

Networks (CNN) that were pretrained on large image datasets. These networks are

designed to train themselves automatically with much less manual preparation for the

training data (in terms of feature generation) than traditional methods require. To address

the challenge of automatically obtaining the images in different views for the same target

object, a special data collection pipeline was designed to retrieve the street-view image of

an object observed in the aerial view image. Moreover, special attention is given to testing

the method using images of crosswalks that are heavily occluded. Model performance was

compared using the traditional, single-perspective method and the proposed dual-

perspective method. The proposed method has potential to remove the bottleneck that

prevents the application of similar automation methods by facilitating the collection of data

at large scale in real-world situations. It also provides the opportunity for future expansion

16

of the automation method to observe other pedestrian facilities (e.g., sidewalks, curb ramps,

etc.) that are even harder to detect solely from aerial view images.

One exiting study aimed to solve the occluded crosswalk problem as well by using

human volunteers to validate the images of zebra crosswalks that are already classified

[17]. In their procedure, images that were mistakenly classified due to occlusion will be

corrected manually using the street-veiw image at the same location. Although this method

used street view images as well, our method is different. In Ahmetovic’s method, street

view image checking was done manually and only applied to the images that were

predicted as “having crosswalks”. In other words, they used aerial view and street-view

images sequentially. By doing this, their method could omit crosswalks that are heavily

occluded and were not detected (false negative predictions) at all in the first place. What

enhances our method and makes it different is that we use aerial view and street-view

images in parallel so that heavily occluded crosswalks will not be omitted. Furthermore,

the “ground truth” checking process is fully automated.

1.3.1 Multi-perspective data processing overview

As previously mentioned in section 1.3, our proposed method to address the

detection of occluded crosswalk candidates is to conduct the detection in parallel using

both images taken from aerial and street-view perspectives simultaneously. After that, the

final prediction of the presence of the crosswalk would be based on a combination of

predictions made using information learned from the two images for the same target.

Techniques for making predictions for individual targets using multiple data sources have

been rarely used specifically for crosswalk detection, although researchers in other fields

have studied these approaches applied to different problems. Real-world datasets often

17

contain many types of data which measure the same thing but were gathered with

different measurement techniques or formats. Taking advantage of multiple data sources

can be directly beneficial to the reliability and usability of a deep learning system when

processing images with an object that is difficult to detect accurately based only on a

single data source. While classical machine learning methods typically require the

extraction of manually designed features from each data source, deep learning has a

greater potential for incorporating data from multiple sources thanks to its innate ability

to automatically extract features from various types of data.

1.3.1.1 General methods for utilizing multi-perspective data

There are two types of general prediction combination techniques that are relevant

to this study but are not specifically limited to crosswalk detection. The first type of

technique combines the advantages of multiple models by incorporating their individual

results into a final prediction using different voting strategies [53]. Some studies [54],

[55] have used this idea to combine multiple types of data by training an individual

classifier for each one before performing final prediction with an ensemble classifier.

[55] tested various model combination techniques and showed that combining multiple

classifiers into an ensemble model can improve the accuracy of land cover classification.

[54] developed a system that used a block (ensemble) of individual ResNet models

trained on different data modalities to perform segmentation of multiple sclerosis lesions

and produce a final output 3D volume using majority voting. While the first type of

technique focuses on training whole, individual models to handle various prediction tasks

related to the end goal, the second type of technique instead uses various modifications to

a neural network architecture that allow single models to directly incorporate multiple

18

sources of data. For example, [56] demonstrated a multi-input method that produced an

increase in automated flower grading accuracy using a convolutional neural network that

is capable of simultaneously processing three input images of the same target (a pot of

flowers) captured with different views (rotations). Finally, methods like [57] and [58]

combined multiple types of data for remote sensing purposes that were more similar to

our work than the previously mentioned studies in this section.

1.3.1.2 Methods for fusing aerial and street-view imagery

One recent study that was related to our dual-perspective crosswalk detection

method was conducted by Ning et al. [12]. They extracted sidewalks from aerial imagery

and used street-view images to supplement the detection of occluded sidewalks. While

we did also consider applying our dual-perspective prediction method (see section 3.4) to

sidewalk data in this manner, the scope of our research was primarily focused on

crosswalk detection. In [12], they first use a segmentation network to extract a predicted

sidewalk network from aerial images. Then, this segmented network is refined by

extending the sidewalk segments according to the presence of sidewalks in street-view

imagery. Unlike our work which focused primarily on image-level classification of

sidewalks and crosswalks, their study used the YOLACT [59] architecture to perform

segmentation in both viewpoints. While this approach was suitable for sidewalks, the

resolution of the aerial imagery used in their work would not be suitable for the type of

crosswalk detection and mensuration that we needed to perform. However, this study

supports our assertion that, when detecting pedestrian facilities across large geographic

regions, street view imagery should be used as a supplementary data source that supports

aerial imagery. Similar to our position in section 1.3, they emphasize that publicly

19

available street-view imagery may not cover the entire area of interest and is often

outdated. Furthermore, street-view vehicles are often not able to access certain areas that

have pedestrian facilities visible from the aerial view. However, they do recognize the

utility of using street-view imagery (when it is available) to correct detection problems

caused by occlusion in aerial imagery.

Other studies focused on fusing street-view and aerial imagery to detect other

types of road objects and facilities [60]–[63]. In [60], aerial and street view imagery is

combined to detect trees near roadways. In [61], a new dataset of ground-level and aerial

images from Brooklyn and Queens (New York, USA) is obtained from Bing Maps and

Google Street View. They use kernel regression to integrate these ground view (street

view) images into a spatially dense feature map. This feature map is then fused with

features extracted by the CNN from aerial images before being combined with a small

multi-layer perceptron at the output of the network. Therefore, unlike our decision-level

approach, this is another method that combines feature vectors from different models and

requires that data from both sources must always be available. They also use the VGG16

architecture as the base for both of their viewpoints. However, they utilize some ideas

from PixelNet [64] and extend their method from image-level classification to pixel-level

labelling by extracting multiscale features with a hypercolumn and including a small

multi-layer perceptron at the end of the network. Unlike our work, they are focused on

classifying building function (206 classes, including Churches, Multi-Story Department

Stores, Funeral Homes, etc.), land use (11 categories), and building age (organized into

13 bins quantized by decade). Overall, they found that, by incorporating multiple

20

viewpoints, their network is better at resolving spatial boundaries and is also better at

estimating features that are difficult to observe from the aerial viewpoint.

In [62], Cao et al. use the dataset from [61] to test a modified model based on the

SegNet architecture [65]. They extended this architecture with an additional encoder and

then fused the convolutional layers with the first encoder network. One encoder is

responsible for aerial images and the other handles street-view images. The output feature

maps of selected layers of both encoders are fused and then fed to the remainder of the

network to generate the final segmentation results (another feature-level combination

method). In [63], one of the only studies we found that focused on image-level

classification like our facility detection models (instead of producing bounding boxes or

using segmentation), Hoffmann et al. classified buildings into four classes (commercial

residential, public, and industrial) by fusing aerial and street-view imagery. As we also

saw in [12], the results produced by Hoffmann et al. support the use of a decision-level

fusion of an ensemble of models that are trained from each image type (perspective)

independently. They argue that using feature-level fusion, as is common in the multi-

stream networks commonly discussed in the literature, can lead to a destructive effect in

the network due to the spatial misalignment of features (especially if this combination is

done in an early stage of the convolutional portion of the network). By instead using a

decision-level approach with model blending, they were able to increase precision scores

from 68% to 76%. They experimented with different ensemble configurations using

models based on both the Inception-v3 [66] architecture and VGG16. These models were

pretrained with ImageNet and the Places dataset [67]. Their model blending method took

the mean of the softmax layer of the aerial and street-view models. This is similar to our

21

method presented in section 3.4 and is just a decision-level combination of the predicted

probabilities instead of a voting function.

Another type of study by Wang et al. involved using a single camera to perform

segmentation on street-view imagery and then reconstructing a top-view (aerial)

representation for the purposes of road scene understanding [68]. They used this

representation to perform occlusion reasoning and detect different types of road features

(number of lanes, sidewalk and crosswalk presence, type of intersection, etc.). While this

type of approach is good for driverless vehicle research or other applications that are

more focused on street-level information, our work is more concerned with classifying

wider geographic regions and needs a georeferenced aerial view for mensuration and

facility location purposes. Other studies like [7] used one perspective (aerial) but fused

different types of predictions. In their case, road extraction (segmentation) was used to

enhance and filter crosswalk predictions made by an object detection CNN model.

After reviewing these studies, we determined that using deep learning to explore

the integration of aerial and street side imagery data into a single, combined prediction

could improve the accuracy and ability of our final model to adapt to real-world data in

which occlusion and other factors that often compromise data quality make it impossible

to rely on single sources of data. Therefore, we chose to use the first type of combination

technique (decision-level/voting) since we needed the ability to train independent models

that could perform predictions in the absence of data from one of the viewpoints (aerial

or street-view). In general, these strategies also give researchers more control when

determining which single-perspective models should have more weight (importance) in

the final multi-perspective prediction based on the quality and relevance of images

22

available from each of the corresponding perspectives in a given application area.

However, due to the scope of this study, we only experimented with a basic version of

these concepts as described in section 3.4.

1.3.2 Application to Department of Transportation data

A large portion of our research was performed in collaboration with the

Mississippi Department of Transportation (MDOT) and the California Department of

Transportation (Caltrans) with funding from the IDEA program of the Transportation

Research Board’s National Cooperative Highway Research Program. As a result, we

were able to test the final products of our research on real-world data provided by

MDOT. A considerable amount of work in this project was dedicated to incorporating

advice from the expert panel into our work and exploring various ways to apply our

methods to the unique GIS data formats that modern DOTs work with (see section 4.4

and section 4.8).

23

CHAPTER II – DATA COLLECTION AND PROCESSING

2.1 Overview of dataset structure and design

The two Single Perspective Prediction Models (SPPMs) need to be trained using a

large number of images annotated as “having a crosswalk” or “no crosswalk” in both the

aerial and street view. Manually labeling such a dataset would be very time and labor

intensive. Thus, we implemented a data collection pipeline to automatically collect

labelled crosswalk images from OpenStreetMaps (OSM) and Bing Maps. This pipeline is

similar to what was proposed in [11], but we made three major adjustments. One

adjustment is that our algorithm works with Bing Maps instead of Google Maps, which

was used in [11]. We chose Bing Maps since, at the time of writing, their service offers

an education license for making requests to the API free of charge. On the other hand,

Google Maps (at the time of writing) requires payment information to be provided and

charges fees for using their API after a small amount of free credit has been used. Thus,

using Bing Maps would make this method of obtaining annotated image data more

accessible to researchers with limited budgets. Furthermore, since very few studies in this

field use Bing Maps imagery, our work is beneficial for the community by increasing

access to more diverse datasets. The second improvement we made based on the work of

Berriel et al. is that we designed a software pipeline to automatically download the

matching street side image for a given aerial image location. While [11], [13] did conduct

street side and aerial tests, we did not find any reports of utilizing both data types

simultaneously when preparing the data and prediction models. This data pipeline also

was used in preparing street side images for training and testing. Our final improvement

was adding a user interface to allow for humans to manually verify the content of the

24

images, including the annotations and occlusion levels. This helped us prepare an

external test set of manually verified occluded images for testing the performance of the

DPPM. It also was used to determine the accuracy rate of the OSM tags for a facility

(crosswalks in an area we selected) by comparing the crowdsourced tags to ones that

were manually produced by a human. By checking the accuracy of the crowdsourced tags

from OSM for the locations in 1,000 aerial crosswalk images, we found that the OSM

tags had an accuracy rate of 86.7% (the remaining 13.3% of the images were found to be

incorrectly labeled or otherwise corrupted/unusable). The operation of our data collection

pipeline is described in section 2.2. For more details about the foundation of this study,

please refer to the works of Berriel et al. [11], [13].

2.2 Data collection pipeline

The sample data acquisition model was designed to prepare tagged images of

crosswalks and sidewalks for the purpose of training the detection model. To realize this

function, this model was designed as a pipeline of scripts that combines crowdsourced

tags of pedestrian facility locations from OpenStreetMap (OSM) with their corresponding

satellite images from Bing maps. As a result, the data acquisition model produced a large

number of images (tagged as “crosswalk”, “no-crosswalk”, “sidewalk”, and “no-

sidewalk”) for use in training and testing the deep learning models used in the project. In

addition to the sidewalk and crosswalk categories, the data was also organized by two

different viewpoints (aerial and street-view). Here, aerial images are slices of satellite

imagery and street-view images are slices of a panorama image taken from a Bing

Streetside view vehicle. Images with a crosswalk or sidewalk are stored in the “positive”

category while images with no crosswalk or sidewalk are stored in the “negative”

25

category. Figure 2.1 illustrates this sample data acquisition process and the different

processes used to gather positive and negative samples. First, a bounding box (depicted in

Figure 2.1 with a red rectangle) is defined and passed into the data acquisition program in

the form of a pair of latitude and longitude coordinates for the lower-left and upper-right

corners of the region. Then, locations within this bounding box corresponding to OSM

tagged crosswalks (blue markers in Figure 3) are sent to the Bing Maps RESTImagery

API in order to obtain aerial images of crosswalks (positive samples).

For crosswalk data, the OSM tag we used for this is “highway=crossing” as a

node query in the request Uniform Resource Locator (URL) sent to the OSM Overpass

API. This returned a list of coordinates representing locations that have had crosswalks

identified by the OSM mapping community. At the same time, using the process

described in [11], we also gathered points along the road between pairs of known

crosswalks to use as locations labelled as “no-crosswalk”. This done by sending the

known crosswalk locations to the Bing Maps RESTRoutes API which calculates a route

between a given pair of crosswalks. The resulting list of points between the two

crosswalk points is checked to ensure that these points do not contain any OSM tagged

crosswalks. Finally, these points (yellow markers in Figure 2.1) are used as our “no-

crosswalk” points. Also, rather than randomly selecting points within the input bounding

box region (which may produce images of forests, bodies of water, and other undesired

scenes), using this route-based method ensures that the negative samples will be images

of roads. Figure 2.2 and Figure 2.3 show actual examples of positive and negative

crosswalk images in our dataset.

26

 After this list of candidate locations was processed, the location information of

each resulting point was passed to Bing Maps (Rest V1 API) which returned a small slice

of the aerial imagery of 256 pixel by 256 pixel centered at the coordinates of the supplied

point. We used zoom level 20 (a configurable value in the Bing API that affects the

returned images) for aerial images and zoom level 0 for street-view images.

After crosswalk data had been obtained, the sidewalk data was collected using a

slightly modified version of the data collection procedure. The major difference between

collecting crosswalk data and sidewalk data is that locations are queried using different

tags in OpenStreetMap (OSM). For sidewalk points, this involves using “sidewalk=left”,

“sidewalk=right”, or “sidewalk=both”. Also, instead of generating negative samples by

following a routePath between crosswalks (as performed in the data acquisition for the

crosswalk data), OSM nodes with the tag “sidewalk=none” are directly requested from

the Overpass API. New areas (separate from the areas used in the crosswalk datasets)

were selected and all the previously mentioned data collection and filtering techniques

were applied.

Figure 2.1 An overview of the data collection process

27

Figure 2.2 An example of positive (“crosswalk”) images

Figure 2.3 An example of negative (“no-crosswalk”) images

28

2.2.2 Street-view data collection and correction procedure

The data acquisition process was adjusted for obtaining and filtering street-view

images. This was done by switching to the Bing streetside imagery API and

implementing a new method for obtaining images from each OSM location. The most

important technique for obtaining street-level images from a given OSM location is

attempting to extract the best possible view of the POI by properly calculating heading

and ensuring that the camera (street-view data collection vehicle) is at a proper distance.

This is due to the fact that the extracted OSM locations (such as a node tagged as having

a crosswalk) are represented by a single point (latitude, longitude). However, the street-

level imagery is stored as a panorama which can generate many possible images that are

the input size that the network uses. To solve this problem, it is first necessary to query

for the image metadata of the street-view panorama closest to the OSM point of interest.

This gives an image which is often too close to the facility of interest or directly on top of

it. Furthermore, since the default query simply faces the camera north, the returned

portion of the panorama will likely not contain the point of interest. Before calculating

the heading necessary to solve this problem, a query is formed to retrieve a new point 10

meters (an empirically determined distance) away from the initial location. After running

this query to retrieve the new point, the appropriate panorama slice is extracted by

“turning the camera” using the following formulas.

𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑎𝑡𝑎𝑛2(𝑋, 𝑌) (1)

𝑋 = cos 𝜃𝑏 ∗ sin ∆𝐿 (2)

29

𝑌 = cos 𝜃𝑎 ∗ sin 𝜃𝑏 − sin 𝜃𝑎 ∗ cos 𝜃𝑏 ∗ cos ∆𝐿 (3)

Where:

𝜃𝑎 – The latitude (in degrees) of the original point of interest

𝜃𝑏 – The latitude (in degrees) of the new point that is 10 meters away

∆L – The difference in longitude between the two points

The atan2 function is implemented in the default math package of Python and

many other programming languages, and this heading calculation is commonly used in

many navigation applications (such as the geometric tools in the Google Maps API) and

geography libraries (such as geographiclib [69]). This procedure has a much higher

chance of producing a reliable image with the point of interest in the frame. An example

of this procedure can be seen in Figure 2.4. This figure shows that, by default, the street

side image API of Bing Maps always returns a street-view image taken with the camera

heading pointed north (a heading of zero). Simply using the coordinates of the POI

without supplying an angle to direct the camera will often result in an image that is

captured at a poor angle or only depicts unwanted background objects, as shown in

Figure 2.4 (A). In addition, without a distance offset from the POI, the returned street

side image will often have the data collection vehicle directly on top of the targeted

crosswalk, as demonstrated by the poorly captured crosswalk in Figure 2.4 (A). In order

to address these challenges, we developed an algorithm based on the basic process

described in [13] with specific modifications.

30

First, in order to avoid capturing an image with the data collection vehicle directly

on top of the crosswalk, we defined a new point for the location of the camera that was 10

meters away from each POI along the data collection vehicle’s route. This new point was

calculated by using the reverse (reciprocal) heading (with respect to the current heading of

the camera on the data collection vehicle in the metadata) to approximate moving

backwards against the current direction of travel. Then, the API simply returns the

panorama image that is closest to this new point. An offset distance of 10 meters was

empirically chosen based on a few examples in order to move the camera viewpoint far

enough away from the crossing to produce an image that captured the entire crosswalk.

Then, the heading between the newly generated camera point and the original POI is

calculated using formula 1 – formula 3.

The heading measures the angle between true north and the line connecting the new

camera point and the POI. With this heading, the camera will be facing toward the target

from 10 meters away (instead of simply facing north always), which gives us the best

chance of correctly bringing the POI (crosswalk) into view (without having the data

collection vehicle incorrectly positioned directly over the target). An example of the result

of this algorithm is shown in Figure 2.4 (B), where a cropped crosswalk was successfully

corrected and captured from an appropriate distance by using our method. With this

correction method, we were able to correct many potential errors in the data collection

process for our street-view sidewalk and crosswalk datasets.

31

Figure 2.4 An example of our street-view image correction method

2.2.3 Data filtering

During the process of collecting images, certain tagged locations have the

potential of producing duplicate and partial duplicate images. For the purposes in this

study, we define a “duplicate” image as an exact copy of another image in the same

dataset and a “partial duplicate” image as an image containing part of another image (also

in the same dataset). These duplicate images might be caused by server errors or other

unpredictable problems (glitches with multi-threading, filesystem errors, etc.). They also

can be caused by retrieving images of the same location from two intersecting routes. The

obvious importance of removing these duplicate images is to prevent duplicates from

entering later stages of the data preparation process where the data are shuffled and

partitioned into training and testing subsets. If the same image existed in both the training

and testing subsets of a dataset, it would introduce bias into the test results.

32

For example, the local street-view sidewalk detection dataset (dataset 4),

originally contained 4,244 negative (no sidewalk) and 15,893 sidewalk locations.

However after applying the filtering techniques mentioned in section 2.2.3.1 and section

2.2.3.2, this was reduced to the size (11,270 positive and 3,268 negative) that is listed in

Table 2.2. Since we directly added this filtering procedure to the data collection pipeline,

each dataset was stored in this reduced form before the images were even downloaded

and before any machine learning operations were carried out.

2.2.3.1 Distance-based filtering

During the execution of the data collection processes of the data collection

pipeline, a list of coordinates for each candidate location (obtained from OSM) is

generated before images can be downloaded. For each pair of GPS (latitude/longitude)

coordinates, we use a python package [70] that converts these coordinates into the UTM

(Universal Transverse Mercator) coordinate system. This is a simple projection that

works well for the short distances that we are concerned with. For example, in Figure 2.5

(A), we have two crosswalk nodes in OSM that were close enough that downloading their

respective images with the data collection pipeline would have resulted in two images

with an overlapping region of pixels.

33

While the two crosswalks (seen together in Figure Figure 2.5 B) are not

duplicated in these images, having any opportunity for overlap can cause bias when

images are split between training and testing. Therefore, any instances like this are

filtered such that only one image in the group is stored in the final dataset. We use the

ground resolution formula [71] provided by Bing to determine an appropriate distance for

filtering cases such as this. This formula is also used for our mensuration process in

section 3.5 to determine the length of the crosswalk based on the segmented pixels.

Figure 2.5 An example of distance-based duplicate filtering

2.2.3.2 Perceptual hash-based filtering

Our second layer of filtering involved directly filtering the image results of the

data collection pipeline using a python implementation of a perceptual hashing algorithm

(pHash) to search our whole dataset for duplicate images [72] that slipped through the

distance-based filtering process. This usually only occurred in rare cases where an image

was assigned the wrong coordinates due to a bug in the data collection pipeline, and only

34

a few images were removed in this way. For example, using this process, we removed

only 102 duplicate images from the “no crosswalk” directory of the aerial crosswalk

imagery (no duplicates were found in the crosswalk directory). Figure 2.6 shows an

example of two image pairs and the decision made by the pHash algorithm. In row A, no

duplication is detected, so both images are retained. For cases such as row B, the

algorithm detects duplication and removes one of the occurrences from our dataset. This

method for detecting duplicates later proved to be very important in cases where two

images were erroneously assigned the same coordinates. In those cases, this method

prevented duplicates from making it into the final datasets even when the distance-based

filtering step described in 2.2.3.1 would fail.

Figure 2.6 Searching for duplicates and removing them using a perceptual hashing script

35

2.2.3.3 Manual verification and dataset cleaning

The manual verification procedures described here were used to ensure the quality

of our external and DOT testing datasets. Table 2.1 describes the criteria for excluding an

image from a testing dataset. The results in section 4.2 – section 4.4 were processed with

these criteria to remove images that have data collections errors or are otherwise not ideal

for testing the current formulation of our models. Specifically, all crosswalk images in

the test subsets of these datasets were filtered. This set of standards defined in Table 2.1

allows for consistency in future data collection projects and will allow for more detailed

studies of the relationship between model performance and various problems that are

often present in the data (occlusion, lens flares, blurred images, etc.).

Table 2.1 Manual data filtering guidelines

Tag Category Description

y/n Target info “yes” or “no” for the presence of a target

object in an image.

q Target info Road markings that appear to be the target

object, but the reviewer is not certain due to

image context or other issues.

o/mo/c Target info “occluded”, “majorly occluded”, or “clear”.

This tag references the clearest target object

in an image. ‘o’ indicates that there is some

occlusion (<50% of the crosswalk area).

‘mo’ indicates >50% occlusion of the

crosswalk area. ‘c’ is used for a crossing

that is almost entirely clear.

p/zm/z/ot/n Target info Identifies the type of target object. This

category is just for crossings in the image.

Parallel (p), at least one zebra crossing

mixed with other types (zm), other type (ot),

no crosswalk (n).

o/mo/c Target info Considers the occlusion of the image

overall (not only the target in question) This

is especially useful for tagging poor quality

negative samples. The same rules as the

o/mo/c tag for target info apply here.

36

Table 2.1 Continued

nc/b/w/co/e Image condition

info

This refers to the condition of the image

overall (more specific than occlusion vs. no

occlusion). Blurry image or otherwise low

resolution (b), worn target object or road

lanes (w), one or both ends of a target

object (specifically crosswalks) are

obscured by the image boundaries (co), any

other exception with the image itself (e)

r/rer/fl/br/de/ms/um extra conditions Other interesting conditions that may cause

problems. Mark image for deletion (r),

rotation error in a street-view image (rer),

lens flare (fl), bridge present (br), distance

error in a street-view image, a problem with

markings that resemble the target object

(ms), an unmarked target object

(specifically crosswalks) (um).

2.3 GIS data preparation

The GIS data provided by MDOT (available at the MARIS website [73]) was a

large format satellite image. With a file size of approximately 11gb, processing the entire

image at once would be infeasible with any modern image processing models due to the

immense memory requirements. Therefore, we used a freely available GIS (Geographic

Information System) software called QGIS [74] to help us extract images of the proper

size for our system to process. To start, we used a shapefile to manually draw square

volumes over all of the intersections that we could find in a selected area of the image.

This area was focused around the main areas of Hattiesburg (approximately within the

bounding box of WGS84 -89.349655, 31.342243 (upper left), and -89.282260, 31.301782

(lower right)). More information on how this data is extracted with gdal commands is

available in section 2.4.6). Error! Reference source not found. (A) shows the entire

37

“Forrest2013” SID file, and Error! Reference source not found. (B) shows the

intersections that we marked with the shapefile squares.

Figure 2.7 Extracting processable images from the large format GIS data

Forrest 2013 SID file

2.4 Summary of all datasets

During this project, we prepared 9 final datasets (summarized here in Table 2.2)

that were used for the training and testing of all of our models. For convenience when

cross referencing which datasets were used with which models in our various

experiments, we have also listed all of our final models in Table 2.3. The datasets listed

in Table 2.2 are in their final form after the filtering procedures described in section 2.2.3

were applied. Some of these datasets were used directly in the initial model development

(local datasets) while others were used only in testing (external datasets).

Here, we use the term “local” to refer to datasets that were only used for training

and testing SPPMs. All of the images in each local dataset are collected from a specific

38

geographical area. Therefore, since the SPPMs are trained and tested with these local

datasets, we introduced “external” test datasets to allow for testing on crosswalk images

that were from a new area (unseen by any of the SPPMs). It should be noted that the

DOT datasets were also only used as external test datasets. An overview of the

procedures governing these tests and the methods for training and evaluating the models

is given in section 3.1. In the remaining sections, the datasets and models will be

referenced by their ID in Table 2.2 and Table 2.3.

Table 2.2 The size and description of our final datasets

Dataset

ID

Data type Purpose Location Positive Negative Total

1 Aerial

crosswalk

Detection

(local)

Milan, Italy 1,467 1,599 3,066

2 Street-

view

crosswalk

Detection

(local)

Austin, Texas 476 1100 1,576

3 Aerial

Sidewalk

Detection

(local)

Tampa+Orlando,

Florida

20,926 9,943 30,869

4 Street-

view

sidewalk

Detection

(local)

Reno, Nevada 11,270 3,268 14,538

5 Aerial

crosswalk

Detection

(external)

Hartford,

Connecticut

344 345 689

6 Street-

view

crosswalk

Detection

(external)

Hartford,

Connecticut

344 345 689

7 Aerial

crosswalk

Detection +

Segmentation

(DOT)

Forrest county,

Mississippi

20 110 130

8 Aerial

sidewalk

Detection

(DOT)

Forrest county,

Mississippi

86 17 103

9 Aerial

crosswalk

Segmentation

(local)

Seattle,

Washington

91 n/a 91

39

Table 2.3 A description of all models used in our work

Model

ID

Training

Dataset

Data type Viewpoint Type Description

1 1 crosswalk aerial Detection aerial-view

crosswalk

SPPM

2 2 crosswalk street Detection

street-view

crosswalk

SPPM

3 n/a crosswalk+sidewalk aerial+street Detection

(ensemble)

dual-

perspective

prediction

model

(DPPM)

4 3 sidewalk aerial Detection aerial-view

sidewalk

SPPM

5 4 sidewalk street Detection street-view

sidewalk

SPPM

6 9 crosswalk aerial Segmentation Crosswalk

segmentation

2.4.2 Aerial datasets

For the image data used to train the aerial crosswalk detection SPPM (dataset 1),

we selected an area in Milan, Italy, limited by a bounding box (45.444139, 9.151489,

45.486364, 9.217274) where the first pair of numbers denotes the latitude and longitude

of the bottom left corner, and the second pair denotes the top right corner. This area was

selected since it was also used in a previously published study [11]. By using the same

location, it is possible for us to compare the results produced by our aerial image

40

detection model to their published results. Then, within this area, we queried OSM

Overpass for a list of locations (coordinates) that have been tagged as having a crosswalk.

2.4.3 Street-view datasets

For the image data used to train the street-view crosswalk image SPPM, we chose

an area around Austin, Texas defined by the bounding box (30.098458, -97.936766,

30.516626, -97.560529). Austin was chosen because of the high number of labeled

crosswalks that we found in that area and the relatively high coverage of street-view

image data. In other words, it was easier to find more images that contained crosswalks.

However, using Bing Maps to download street-view images of these locations required a

more complex solution than what was necessary for downloading aerial images. The two

main challenges with obtaining street-view crosswalk images using only OSM

coordinates is finding the location of the crosswalk in the 3D panorama captured by the

data collection vehicle and capturing an image of that crosswalk without it being blocked

by that same vehicle.

2.4.4 Dual-perspective datasets

Here, we describe a dual-perspective dataset as one in which each sample is a

single location described with two images obtained from different perspectives (aerial

view and street view). For our purposes, we searched for an area that was highly

occluded in the aerial view but relatively clear in the street view. The area selected for

this task was (41.590134, -72.904823, 41.907394, -72.461845) in Hartford, Connecticut,

USA. Hartford was selected due to the heavy occlusion we observed in the aerial imagery

in that area. Therefore, it was convenient for finding more images with occluded

41

crosswalks. In order to better evaluate the performance of the DPPM compared to the

SPPM, we developed a Python verification interface that allows humans to manually

verify the crowdsourced labels and the level of occlusion of the external test (Hartford)

images. After checking for occlusion and confirming the class label (crosswalk or no

crosswalk) of the image, the manual verification script presents several options to the

human verification worker. This includes the ability to delete the image, move it to the

opposite class (switch the label between crosswalk and no crosswalk), open a browser tab

with Bing maps showing the location on the map (to provide more context when the

image is unclear), or quit and save their progress. At the end of each session, the results

of the evaluation are stored as a json file which records the user’s decisions for each

image and allows the session to easily be resumed.

It should be noted that this filtering procedure was slightly different from the

guidelines and filtering process discussed in section 2.2.3.3. Mainly, the process in this

section allowed for the verification worker to view both viewpoints of a location

simultaneously so that each location (represented with two images) could be given a

single tag based on the ground truth (instead of only considering what was present in

each viewpoint independently). This difference in the filtering protocol is due to this test

focusing on the dual-perspective mechanism and not on assessing the individual quality

of a trained model on pure data (such as the in the DOT tests in section 4.4). We used this

information to filter our external test dataset (dataset 5 + 6), which contains images that

were collected from a different area than the SPPM training datasets, and to calculate the

percentage of occluded images it contained. Our manual verification revealed that an

42

estimated total of 57.41% of the images in this dataset were occluded (either fully

occluded or unrecognizable to a human without knowing the context of the image).

2.4.5 Segmentation datasets

The images for our segmentation datasets were manually labelled with a program

called COCO Annotator [75]. As seen in Figure 2.8, this image annotation program

provides users with a graphical interface for producing masks that can be used to train

and test segmentation models. The pixels within the yellow region in Figure 2.8 visually

represent this mask. Here, we created these masks by using the polygon tool to surround

the entire crosswalk and exclude the rest of the road surface that was not between the

crosswalk markings. This tool creates accurate masks by allowing the user to place

markers at each desired vertex of a polygonal region around the desired location for the

mask. These marker points are then stored as the mask for each image in the COCO

dataset format [76]. We later describe the process of using these masks to perform

segmentation in section 3.6.

43

Figure 2.8 An example crosswalk being labelled within the COCO annotator interface.

The pixels of the image within the yellow area represent the mask that will be fed into the segmentation model in the COCO dataset

format that is written by the COCO annotator software.

2.4.6 Department of Transportation datasets

In order to test the various components of the system using real-world data owned

by an agency, a set of 400 testing images was extracted from Satellite imagery of Forrest

County, MS. This data is available on the MARIS (Mississippi Automated Resource

Information System) website [73]. The images used in this test were manually extracted

from this data using predefined shapefiles that were calculated to produce 256x256 pixel

square images (at the resolution of 0.5 feet/pixel) that were then automatically extracted

with a gdal python script (examples displayed in Figure 12). This produced

georeferenced slices that were an appropriate size for the models with 200 images

focused on testing crosswalk detection/mensuration and 200 images for testing sidewalk

detection. The locations for the crosswalk images were extracted from intersections, and

the sidewalk images were chosen from road segments between two adjacent intersections

44

included in the crosswalk locations list. In the various tests conducted here, some of these

images were removed to compensate for problems caused by images that were not

optimal for processing. Due to a lack of available street view imagery, only aerial

imagery and the corresponding models were tested here in order to show an example of

the performance of the system specifically for data owned by DOTs.

Figure 2.9 An example of two images from both of our MDOT testing datasets (detection)

In Figure 2.9, row A shows positive and negative crosswalk samples, and row B

shows positive and negative sidewalk samples from our MDOT testing datasets

(detection). These datasets were designed so that tests could be conducted to show our

system’s performance in three key areas: (1) aerial crosswalk detection, (2) aerial

sidewalk detection, (3) aerial crosswalk mensuration. These results are given in section

4.4.

2.4.7 Dataset partitioning

45

For all of the datasets used to train models (not the external test or DOT datasets),

the images are randomly shuffled and then split into training (70%), validation (10%),

and test (20%) subsets. The test subsets from each of these datasets are referred to as our

“local test” datasets since their images are sampled from the same bounding box (they are

in the same city) that their training subsets are in. These images are kept from

overlapping using distance restraints on the coordinates and image similarity filtering via

perceptual hashing. Meanwhile, we created an “external test” dataset (Hartford) so that

we could test these models with a dataset which was geographically separate from each

training dataset. The external test dataset contains both aerial and street side imagery

(stored and processed separately by the relevant sub-models of the DPPM) and was

assigned an occlusion percentage based on the number of images marked as occluded in

the results of the manual verification described in the next section. Table 2 shows the

results of this data splitting process and describes how the images in each data subset are

distributed between the two classes (crosswalk and no crosswalk). Due to abnormalities

in the street view image data collection process that persisted even after the application of

previously described correction methods, the local testing portion of the street view

crosswalk imagery (Dataset 2 testing) was manually filtered to remove erroneous images

before prediction was performed.

46

Table 2.4 Subset size for each final dataset

Dataset Subset Positive Negative

1

(aerial crosswalk local

detection)

Training 1,467 1599

Validation 210 228

Testing 419 456

Total 2,096 2,283

2

(street-view crosswalk

local detection)

Training 374 847

Validation 53 121

Testing 49 132

Total 476 1,100

3

 (aerial sidewalk local

detection)

Training 16,120 6,960

Validation 200 995

Testing 4,606 1,988

Total 20,926 9,943

4

(street-view sidewalk

local detection)

Training 7,889 2,288

Validation 1,127 327

Testing 2,254 653

Total 11,270 3,268

5 (aerial crosswalk

external detection)

Testing 344 345

47

6 (street-view

crosswalk external

detection)

Testing 344 345

Table 2.4 Continued

7 (Aerial DOT

crosswalk detection)

Testing 20 110

8 (Aerial DOT sidewalk

detection)

Testing 86 17

9 (Aerial crosswalk

local segmentation)

Training 64 n/a

Validation 9 n/a

Testing 18 n/a

Total 91 n/a

48

CHAPTER III – MACHINE LEARNING THEORY AND METHODOLOGY

3.1 Machine learning theory

As described by Langley et al., “Machine learning is the study of computational

methods for improving performance by mechanizing the acquisition of knowledge from

experience” [77]. Machine learning algorithms generally do this by learning knowledge

from labelled data that form datasets of examples (in supervised learning). The larger the

dataset, the more effectively the algorithm can be “trained” on the data. The goal of a

machine learning algorithm is to use these datasets to form a trained “model” for the

purpose of correctly predicting the labels of unseen data in the future [78]. One of the

earliest machine learning methods was the perceptron [79], which was a supervised

learning algorithm for training binary classification models. This algorithm takes all input

values and multiplies them by weights to create a weighted sum. This weighted sum is

then sent to the activation function which produces the output of the perceptron (the

weight of an input shows the strength of that node). The output of a single layer

perceptron (as illustrated in Figure 3.1) can be used to perform binary classification since

the activation function results in a probability (between 0 to 1) that the given inputs

belong to one class or the other. Single layer perceptrons were effective for simple

problems with linearly separable classes, but more complex architectures with more

layers (multilayer perceptrons/neural networks) and various other improvements have

since been developed.

49

Figure 3.1 An illustrated example of a single layer perceptron

Multilayer perceptrons add one (or several) hidden layers between the input and

the output layers. Depending on the study and the computational resources that are

available, there could be hundreds of hidden layers. In this way, these networks can learn

a more complex and abstract representation. Also, by using the process of

backpropagation, the weights in each hidden layer can be iteratively corrected for the

purpose of improving the network’s prediction performance. Each iteration will update

the weights in the hidden layer and may be repeated multiple times until optimal results

are achieved. Figure 3.2 shows an example illustration of a simple multilayer perceptron

with two hidden layers.

50

Figure 3.2 An example illustration of a multilayer perceptron with two hidden layers

3.1.2 Machine learning for image classification

The basic unit of information in image classification is the pixel. In the context of

machine learning, images are represented as a 2D or 3D (RGB) array of pixel values.

Typically, each pixel is assigned a value from 0 to 255 that represents the color at that

point. For a color image in the RGB (red, green, blue) format, each pixel value is

represented by a vector of three numbers in this format that are stored as separate color

channels. Pixels from the array representation of an image can be flattened into vectors

and represented as a column of input features for use in a typical neural network (like

those described in section 3.1). In the case of images, the weights in the network

represent different patterns in the pixels of the input image that are being detected by the

network. This simple way to perform machine learning with image data has been

expanded upon in modern research.

51

3.1.2.1 Convolutional neural networks

Convolutional Neural Networks (CNNs) were first proposed by Fukushima et al.

under the name NeoCognitron [80]. Then, the concept was refined and used by LeCun et

al. as a novel machine learning method for recognizing hand-written numbers [81]. In the

early years of experimenting with CNN models, the computational complexity and

memory requirements hindered most research and only very small images were able to be

processed. However, modern GPUs (graphics processing units) have resulted in an

explosion in CNN performance by allowing for relatively powerful networks to be

trained even on common workstation computers [82]. Earlier modern CNN architectures

like AlexNet [83], which became famous for winning the 2012 ImageNet [84] challenge,

would go on to dominate the image-level classification scene for years to come.

While traditional computer vision models are greatly dependent on how ideal an

image is in both resolution and perspective, the translational invariance and automated

feature extraction capabilities of CNNs give them an advantage when dealing with real-

world images where crosswalks may not always be located in the same region of each

image. In other words, CNN models (instances of a CNN architecture trained to perform

a certain task) do not rely on human-generated descriptions of important aspects

(features) within each image and can learn robust representations of objects that do not

depend on the location of those objects in the image. These models are created by

processing input images in a way that enables them to identify objects in these input

images according to class labels. For the type of model used in this study, these labels are

object categories that are defined when the model is created and must be associated with

input images to form a labeled dataset. In our case, we used models designed for two

52

classes (“crosswalk” and “no crosswalk”) and trained them using the images and labels

that we collected. The network learns to assign objects to these labeled categories during

the training process using a procedure that automatically assigns importance (via weights

and biases learned during training) to various features (including hidden features) that it

identifies within the input images.

CNN architectures are typically composed of convolutional layers, pooling layers,

and fully-connected layers. Figure 3.3 shows an example illustration of a CNN used to

perform image classification. Convolutional layers are the core component of CNNs.

They help to reduce the excessively large number of parameters required by a normal

neural network when using an image as input. Furthermore, they are able to consider

spatial properties of an image and learn features that are independent of location in the

input. CNNs accomplish this by using a convolution process with a small 2D window

called a filter (or kernel). This small window is responsible for calculating features and

matching them to certain regions across the entire image. Images being processed by a

convolutional layer have each pixel value multiplied by the values in the filter before all

of the results are summed. This produces a filtered version of the input image which has

highlighted regions corresponding to specific features that are being learned by the

model.

53

Figure 3.3 An example illustration of a convolutional neural network for classifying

CIFAR [85] images.

Figure available at [86]

Often placed between convolutional layers, pooling layers are used to reduce the

size of the data at various positions in the network. They work by reducing the data

dimension using various operations (max pooling, average pooling, etc.). For example,

max pooling will iterate over the previous layer in a sliding window fashion and select

only the maximum values at each point within the scope of the pooling filter size that is

being used. Figure 3.4 shows a simple example of max pooling in which a 2x2 max

pooling operation is performed on a 4x4 input layer and the maximum value is selected to

represent each 2x2 submatrix. In this example, with a stride of two (shift two pixels for

each movement), 4 maximum values will be selected as the final, pooled output layer.

Finally, fully-connected layers are typically at the end of a CNN and connect every

activation in the previous layer to the output prediction vector. The features learned in the

convolutional layers will be flattened into a 1D vector and the typical process for training

a neural network will follow. This is the portion of the network that will decide the

classification results and make the final prediction with the output activation function.

54

Figure 3.4 An example of max pooling

Max pooling with a stride of 2 using 2x2 filters

3.2 Methodology overview

This chapter describes the technical and theoretical details behind the

development of the various components of our pedestrian facility detection system. We

focus particularly on the development of integrated CNN-based machine learning

models, and design and implementation of the software and libraries used to train and test

our object detection and segmentation models. First, we will give an overview of how the

SPPMs are integrated into the DPPM for performing dual-perspective predictions. Then,

in addition to an overview of the theoretical background of designing convolutional

neural networks, a detailed description of the SPPM architecture, hyperparameter

configuration, and training details will be given. Finally, we will provide the same

information with respect to the development of the segmentation and mensuration models

as well as a detailed description of the methods we use to evaluate the performance of

each model. Our proposed DPPM is composed of two individual single perspective

prediction models (SPPMs) built using a CNN with the VGG16 architecture [87]. One

SPPM can detect crosswalk presence from aerial view images while the other uses street

55

side images. Figure 3.5 presents the structure of the DPPM. For a given location where

the presence of a crosswalk needs to be detected, an aerial image centered at that point of

interest (POI) will be automatically acquired from Bing Maps. At the same time, a data

collection pipeline was implemented to address the challenge of retrieving the

corresponding street side image from the default panorama view obtained from Bing

Maps by automatically focusing on that same POI. After that, the two images were fed

into the aerial-view SPPM and the street-view SPPM separately. The two SPPMs process

the images and generate predictions of crosswalk presence simultaneously. The final

algorithm merges these SPPM predictions into a single crosswalk presence prediction

(the output of the DPPM) by using a soft voting method based on the confidence level

(predicted class probability) of each prediction. Therefore, each prediction made using an

aerial image of a candidate object will be balanced by the corresponding prediction of a

street side image of the same object to improve the final prediction (especially for cases

of heavy occlusion). Since the street-view image provides a closer view of the object at

the POI, this process acts as an additional check that may be able to observe the ground

truth of the POI rather than relying only on a prediction based on an aerial view image

only. Furthermore, this modular structure allows our system to be easily expanded to

accept new data types or detect new object types in the future. The process of developing

the DPPM includes training and testing image preparation, SPPM training and testing,

corresponding street side image retrieval, and final prediction generation. These tasks

will be presented in detail in the following sections.

56

Figure 3.5 Dual-perspective prediction workflow

3.3 The VGG16 architecture and Python implementation

Each SPPM (detection) in our study was an instance of VGG16 trained on a large

number of labeled images and tested to verify the performance of their predictions based

on a single perspective (aerial or street view). This was done on a server with four Nvidia

Titan Xp GPUs (Graphics Processing Unit) and an Intel Xeon E5-1650 CPU (Central

Processing Unit). However, all of the necessary code also ran with comparable

performance on a laptop with an Nvidia RTX 2080 Super Max-Q GPU. The models

57

(CNNs) are based on the VGG16 architecture and implemented in Python using Keras. The

VGG16 architecture is a powerful CNN architecture which is typically known for its simple

design using only 3x3 convolutional layers (with max pooling) stacked in increasing depth.

While it is sometimes slow to train and heavy in terms of parameters compared to smaller

networks (such as MobileNetV2 [88]) that we tested (see section 3.9), it typically can

provide consistent results with high accuracy. Also, even though CNN architectures are

continually being improved and new state-of-the-art models are being developed

constantly, we chose the VGG16 architecture because it was proven to be effective for

crosswalk detection in previous studies [11], [13]. Furthermore, using this approach, we

could quickly start this project by working with code for a model that was previously

implemented and tested by our research group in another object detection study [46]. Given

our previous experience with this model and its relative simplicity compared to more

complex architectures, VGG16 was chosen as a base model that offered both high

performance and enough interpretability to enable easier customization in our future work.

Due to our relatively small dataset size, we utilized pre-trained weights (ImageNet

[84]) to initialize the training process (pretraining). This is similar to the process used in

our previous work. Figure 3.6 shows an illustration of the architecture used for both

SPPMs. During training, the input of the network is an image labeled as “crosswalk” or

“no-crosswalk” with a size of 224x224 pixels (3 channel RGB). The output of the network

is a crosswalk presence prediction with two possibilities (either class 1 for “crosswalk” or

class 2 for “no-crosswalk” images). The network mainly consists of thirteen convolutional

layers arranged in blocks (labelled conv in Figure 5) that are each followed with max

pooling.

58

Figure 3.6 A visual overview of our implementation of the VGG16 architecture

A portion of this figure was generated using the network drawing code from [89]

Figure 3.7 Visualizing VGG16 layer activations

The features thus obtained are fed to two fully connected layers that use the ReLU

(Rectified Linear Unit) activation function. Then, using the Softmax activation function,

the output layer (fully connected) produces the crosswalk/sidewalk presence prediction.

To illustrate what happened at each layer, we projected the activation function values at

selected convolutional layers back onto an example input image, as shown in Figure 3.7.

The resulting activation maps revealed how our models perform predictions by showing

the regions of pixels that are the most recognized by various layers of the network. To be

specific, these images were created using the average of the activation values produced by

the convolutional filters in each selected layer, and the brighter areas of the image

essentially show features that the layer has learned to detect (not necessarily only

crosswalks). As illustrated by these activation maps, CNN models learn features from

59

training images using various filters applied at each layer. These layers are named

according to the “convolutional block” (group of convolutional layers) that they come from

in the network as depicted in Figure 3.6. For example, “block2_conv1” is the first

convolutional layer in the second block (group) of convolutional layers. The features

learned at each convolutional layer significantly vary. In general, the initial layers are more

interpretable and retain the majority of the easily discernable features in the input image.

At this stage, more general features such as edges, object orientation, and colors are

captured. As the depth of the layer increases, features become less interpretable and more

specific. CNN models also capture high-level features such as shapes and collections of

shapes. The last layer is able to combine all of the information previously learned from

both general and crosswalk-specific image features to produce the final pedestrian facility

presence prediction.

Table 3.1 lists and explains several other technical details about the architecture

and parameter settings that were important during our model training process. The SPPMs

perform these operations on each input image during the training process and slowly learn

a more useful representation of common crosswalk features after repeated training

iterations. Also, during each iteration of training (not in the testing or validation phases),

we used augmentation in the DataGenerator object. Augmentation is a process that applies

changes (transformations, noise, cropping, etc.) to input images during training for the

purpose of adding some variety to the dataset. These parameters that we used for this

augmentation procedure are listed in Table 3.1 and are randomly applied at each training

iteration. Figure 3.8 shows an example of how these random changes to an example input

image (A in Figure 3.8) produce different output images (B in Figure 3.8).

60

Figure 3.8 An example of image augmentation during training.

Input image (A) vs. several randomly augmented output images (B).

61

Table 3.1 Parameter configuration for our Keras (Python) VGG16 implementation

Model name VGG16
VGG16 model available as part of the

Keras Applications library

Weights ImageNet

Sets of values for the parameters within

the network (pretrained on the ImageNet

dataset).

Input image size 224x224 (3 channel)

Image size in pixels (height, width) of

the images passed into the model (both

input and output). This is a fixed value

required by the VGG16 network.

optimizer stochastic gradient descent

Keras implementation using default

parameters. Controls how the weights

are updated during training.

Pretrained weights

status
All layers unfrozen

The pretrained weights in all layers will

be updated during training, and the new

output layer was created with the default

initialization in Keras.

Learning rate 1e-4

Affects how quickly the model is fit to

the data (small values are typically

important in transfer learning to avoid

dramatic changes to the pretrained

weights).

Batch size

16 (aerial) How many images to pass through the

network at a time. Has a direct effect on

GPU memory usage and often on

convergence speed.
4 (street view)

Augmentation

parameters

(augmentation is

applied during

training only)

featurewise_center=False Keras ImageDataGenerator class that is

used here to apply augmentation

(randomized transformations and

deformations) to each batch of images

passed into the network during training.

featurewise_std_normalization=False

rotation_range=20

width_shift_range=0.2

height_shift_range=0.2

horizontal_flip=True

vertical_flip=True

Epochs
200 (aerial) Number of iterations of the training

process to run. 1000 (street view)

Total parameters 134,268,738
Total of all parameters in the network

(all are trainable)

Output layer

activation
Softmax

The output layer is a 2 unit dense (fully

connected) layer with a Softmax

activation function.

62

3.4 DPPM operation

After each SPPM was built and trained, the final DPPM was configured to

generate the final prediction based on information combined from two distinct

perspectives of a candidate crosswalk location. In other words, the DPPM is a

combination (ensemble) of the previously trained SPPMs rather than a separately trained

model. We began with treating each location as a single item to be predicted using both

the aerial and street side images. Thus, each candidate crosswalk that the DPPM

processed was detected using two images of the same location (one image from the aerial

perspective and one image captured from the street-view perspective). In order to obtain a

single prediction result for each location that is less sensitive to aerial imagery occlusion,

we combined the prediction results from the aerial and street-view models in an ensemble

using soft voting. This simply performs two predictions for each location separately and

then sums the class probabilities together as the final prediction, which we call the output

of the DPPM. Compared to combination methods that fuse models at the feature vector

level (as discussed in section 1.3.1.2), this approach allows for independent models to be

trained and used separately in situations that demand it (such as in cases of missing

street-view imagery). Also, performance can be tuned after training since the results are

essentially a post-processing of the final predictions. As seen below in formula 4, each

location’s predicted class is determined by picking the maximum of the sum of the

probability values between the aerial and street side models.

𝑦 = argmax
𝑖

∑ 𝑤𝑗𝑝𝑖𝑗
𝑚
𝑗=1 (4)

63

This equation represents a single prediction from our final DPPM by creating a soft

voting ensemble of the two SPPMs using the following values:

𝑖 ⎯ the 𝑖th class label predicted. “𝑖=0 means the predicted label is “no crosswalk”

and “𝑖=1” means “crosswalk”.

𝑗 ⎯ the 𝑗th SPPM model. “𝑗=0” means aerial SPPM and “𝑗=1” means street side

SPPM.

𝑚 ⎯ the total number of SPPMs (𝑚=2 in this case) used to perform separate

predictions.

𝑝𝑖𝑗 ⎯ the probability of the input image belonging to class 𝑖 predicted by SPPM 𝑗.

𝑤𝑗 ⎯ a weight assigned specifically to a model 𝑗, where the sum of all weights is

equal to 1

𝑦 ⎯ the largest number obtained by combining the predicted class probabilities

from each model according to the equation. This is the output from the DPPM and

indicates whether an input image is predicted to contain a crosswalk or not.

The value of 𝑤𝑗 is critical and can be empirically determined or optimized for better

results. For example, in the case of low resolution and heavily occluded aerial imagery, it

may be better to place more weight on the predictions of the street view model. To illustrate

this idea first, in the results we report here, we used equal weight (𝑤 = 1.0) for both models

to obtain a simple combination of the prediction results that can serve as a baseline for any

future work in this area. Since this voting function is performed as the last step before

reporting the final prediction, this value is easily adjustable in the validation step. Even

64

without adjusting the model weights, this method provides the user of the final system with

a more concise prediction and increases robustness when processing real-world data by

resolving many cases of aerial view occlusion. It is also easily expandable since new

models that use any other available perspectives or data formats, such as Lidar, can be

directly added into the system with no need to retrain any of the other components. In fact,

in the final production environment for a system like this, retraining the entire system to

add new object categories or additional data types may be impossible due to data storage

and computational requirements. Therefore, our method is much more flexible as a final

system than methods that rely on a single model only.

3.5 Mensuration overview

One of the primary tasks of our project was to measure the length of crosswalks in

satellite images. This is an important task for agencies that collect pedestrian facility data

and gave us another chance to automate a process that traditionally requires time-

consuming, large-scale manual data collection projects. We chose segmentation as our

method for predicting the length of crosswalks in our aerial images. This is possible

thanks to the fact that these images have a known ground resolution. In other words, each

pixel represents a known distance in the real world. Segmentation models, a type of

machine learning model that identifies the location of a predicted class in the image, can

output a bounding box around the region that they predict. Given this information, we

performed some adjustments and were able to produce a segmentation model that can

accurately measure crosswalks in aerial imagery. Figure 3.9 shows an overview of our

segmentation process. In total, 100 images (with 65 used for training) were processed and

used in this manner to create the trained segmentation (mensuration) model. The

65

highlighted yellow pixels in the training input image represent a manually drawn mask

used to train the model to identify the crosswalks in the training images. The output is a

blue box drawn around the predicted crosswalk region and a green dot at the center of

this region. The length of the longest side of this bounding box is used as the predicted

length of the crosswalk and the coordinates (latitude/longitude) of the center point are

used as the location of the crosswalk.

Figure 3.9 An overview of the segmentation process from training to testing

3.6 Segmentation implementation and architecture

Our segmentation model was implemented based on a forked version [90] of

Matterport’s Mask R-CNN library [91]. Both of these libraries implement the Mask R-

CNN network as it is described in [92]. Figure 3.10 shows an illustrated example of the

operation of the Mask R-CNN network on one of our input images. Region proposals

generated by the region proposal portion of the network (A in Figure 3.10) are processed

by the CNN portion of the network (C in Figure 3.10) to produce a final output prediction

that can be mapped back onto the input image to produce a predicted mask.

66

Figure 3.10 An overview of the two stages of the Mask R-CNN architecture

3.6.2 Mask R-CNN python implementation

For the training of our segmentation model, we used a Jupyter notebook in order to both

train the Mask R-CNN network and to visualize the results and loaded data

simultaneously. Our training images were 200x200 pixels and were fed into the network

with the following parameters in Table 3.2 (listed by the display method of this library’s

[90] Config class). Figure 3.11 shows an example of the model loading these images and

the associated training mask that was generated with CoCo annotator (as described in

section 2.4.5). After training was complete, we used a separate Python script to modify

the output format of the predictions by drawing a custom bounding box using the

minimum enclosing rectangle around the predicted mask (see section 3.8.1).

Table 3.2 The values of all parameters used when training our Mask R-CNN

segmentation model.

Parameter Values

BACKBONE resnet50

BACKBONE_STRIDES [4, 8, 16, 32, 64]

BATCH_SIZE 1

BBOX_STD_DEV [0.1 0.1 0.2 0.2]

COMPUTE_BACKBONE_SHAPE None

DETECTION_MAX_INSTANCES 100

67

Table 3.2 (continued)

DETECTION_MIN_CONFIDENCE 0.7

DETECTION_NMS_THRESHOLD 0.3

FPN_CLASSIF_FC_LAYERS_SIZE 1024

GPU_COUNT 1

GRADIENT_CLIP_NORM 5

IMAGES_PER_GPU 1

IMAGE_CHANNEL_COUNT 3

IMAGE_MAX_DIM 256

IMAGE_META_SIZE 14

IMAGE_MIN_DIM 256

MEAN_PIXEL [123.7 116.8 103.9]

MINI_MASK_SHAPE (56, 56)

NAME crosswalk

NUM_CLASSES 2

POOL_SIZE 7

POST_NMS_ROIS_INFERENCE 500

POST_NMS_ROIS_TRAINING 1000

PRE_NMS_LIMIT 6000

ROI_POSITIVE_RATIO 0.33

RPN_ANCHOR_RATIOS [0.5, 1, 2]

RPN_ANCHOR_SCALES (8, 16, 32, 64, 128)

RPN_ANCHOR_STRIDE 1

RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]

RPN_NMS_THRESHOLD 0.7

RPN_TRAIN_ANCHORS_PER_IMAGE 256

STEPS_PER_EPOCH 500

TOP_DOWN_PYRAMID_SIZE 256

TRAIN_BN FALSE

TRAIN_ROIS_PER_IMAGE 32

USE_MINI_MASK TRUE

USE_RPN_ROIS TRUE

VALIDATION_STEPS 50

WEIGHT_DECAY 0.0001

68

Figure 3.11 Visualizing four example input images and their corresponding masks as they

are loaded by the segmentation model.

69

3.7 Standard evaluation metrics

The performance of a model is obtained by evaluating prediction results with the

metrics of accuracy, precision, recall, and F1 score, described by the following equations.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (5)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (6)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (7)

𝐹1 = 2 (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) (8)

Where:

𝑡𝑝 ⎯ the number of true positive predictions (crosswalks correctly predicted as a

crosswalk),

𝑡𝑛 ⎯ the number of true negative predictions (correctly predicted images containing no

crosswalks),

𝑓𝑝 ⎯ the number of false positive predictions (images that contain no crosswalk but are

predicted to contain one), and

𝑓𝑛 ⎯ the number of false negative predictions (images that contain a crosswalk but are

predicted to not contain one).

Instead of solely relying on accuracy, looking at these four metrics together can

provide a more detailed explanation of model performance. While accuracy is a more

general measure of performance, precision and recall are particularly useful in situations

with heavily occluded image data. For example, a poorly performing model may have very

70

high precision by only marking a few images as crosswalks (a low number of true positive

and false positive predictions). However, it will likely have low recall due to missing many

true images of crosswalks (either because of occlusion or other factors). Looking at this

relationship between precision and recall allows us to see how our methods can boost the

number of crosswalks that are actually detected by our DPPM method. One way to quantify

this relationship is by using the 𝐹1 score, which is a widely used metric for analyzing both

precision and recall by providing a single value that describes the balance between these

two metrics.

3.8 Evaluation methods

Each type of model used in our research requires different data and solves a

different challenge. Therefore, we utilize a variety of evaluation methods to generate

results that are used to judge the overall quality of the final models. These evaluations

mainly include numerical scores when determining the quality of a detection model

during local and external testing. However, we also defined some empirical rules that are

used in two situations. First, when manually validating the label of images in a test

dataset (especially the DOT data), we have defined a set of criteria for removing

erroneous or otherwise problematic images (described in section 2.2.3.3 and applied in

section 4.4.1). This is done in order to create an ideal dataset that can show the true

quality of the model without introducing performance issues due to errors in the data.

Second, we designed the masks for training our segmentation model according to another

set of guidelines described in section 2.4.5.

71

3.8.1 Detection and segmentation evaluation

The detection models were evaluated mainly with accuracy (described in section

3.7). Of course, the other metrics can be calculated from the provided confusion matrices.

The models with the best accuracy during training (judged using the local test sets) were

later selected as the sub-models for the DPPM and for our final system. These results are

later discussed in section 4.1. On the other hand, the quality of our final segmentation

model was primarily determined empirically by manual, visual analysis of the resulting

predictions during training, even though a metric known as IoU (Intersection over Union)

was considered when evaluating some of the early models. This is because, while a

model that focused more on filling in all of the area of the crosswalk could obtain a

higher IoU, we were focused on training a model that could predict a mask with the

proper length for mensuration purposes.

An important method that we used to properly measure length from these

segmentation results was to draw a rotated bounding box around the actual predicted

crosswalk mask. Measuring the default bounding box often will result in a skewed

measurement if the angle of the detected crossing does not match this box (which is

always exactly horizontal or vertical). To do this, we used a few functions from the cv2

library in python. First, the findCountours function returned a line that was drawn around

the predicted segmentation inside the original bounding box. Then, we drew the

minimum enclosing rectangle around this calculated contour line by using the

minAreaRect function. This returned the length, width, and centerpoint of a bounding

box that was able to fit much better to our predictions. This process is illustrated in

Figure 3.12 where the original bounding box (A) is corrected to match the angle of the

72

predicted crossing (B). The specific calculation we used for determining the mensuration

performance is described in section 4.4.2 with the results of the DOT segmentation test.

Also, it should be noted that the color shift that is sometimes seen in our results (see

Figure 3.12 B) is a result of passing the image between different libraries that use RGB or

BGR color format. This does not affect results since it happens only during the time that

the final image is displayed (when the bounding box is redrawn), and it can be easily

reversed.

Figure 3.12 Using python functions to generate a more accurate measurement of a

predicted crosswalk

3.8.2 Prediction visualization procedure

At various stages in this project, we found it useful to visualize the operations of

our models on various input images. This was mostly done to increase the interpretability

of the models and aid in the future work for this project by providing some suggestions

for possible architecture improvements. We later apply this method to analyze different

aspects of how input images affect the trained models (see section 5.2.4). Figure 3.13

demonstrates an example of this using a crosswalk image and displaying the average

73

activations using matplotlib. Specifically, Keras allows for this functionality by allowing

you to iterate through each layer and obtain the output at that layer. Then, we used numpy

to find the mean and display each selected layer as a heatmap (brighter colors indicate

areas of more intense activation).

Figure 3.13 Example layer activations displayed by Keras and matplotlib.

3.9 Protype pedestrian facility data crowdsourcing app development

In order to build a well-connected pedestrian facility network that will improve

safety and walkability, accurate and thorough data of existing pedestrian facilities must

be available [93]. However, there is a shortage of efficient methods for collecting these

facility data, such as sidewalk and crosswalk presence [15]. To address this, we

developed a prototype pedestrian facility data crowdsourcing system that consisted of a

smartphone (Android) application and a remote webserver running a MySQL [94]

database. This webserver also was running a machine learning model for detecting the

presence of crosswalks in street-view imagery collected by the users of the smartphone

application. By doing this, we were able to extend our pedestrian facility detection

methods to a new platform for crowdsourcing high quality data from smartphone

cameras.

This application makes use of the Android software development kit’s Camera2

API [95], which allows for direct access to the hardware camera instead of the default

camera app. This makes it possible to directly display the live feed from the camera view

74

within the app and to add custom elements to the user interface, such as custom buttons,

visual overlays (potentially useful for guiding users to keep the phone held in the

appropriate orientation), and other customizations. It also allows us to programmatically

change the aspect ratio and resolution of the output image supplied by the camera. After

being captured, this output image is automatically processed (checked for the proper

orientation) and sent to the data storage server

These collected images are sent to this webserver along with the device’s location

using a multipart POST request. The server then saves the image data and creates a

record in a MySQL database that includes the upload time, the file path of the newly

stored image on the webserver’s filesystem, and GPS coordinates that correspond to the

location of the device at the time that the image was captured. Once this storage

procedure is complete, the image data is then passed to a street-view crosswalk detection

(image-level classification) model for classification into either the “crosswalk” or “no-

crosswalk” category. After classification is complete, the predicted class will also be

stored with the previously generated MySQL database entry. Since this webserver would

need to handle many requests and process data quickly, we chose the MobileNetV2 [88]

architecture (available as part of the Keras applications API [96]). The model was well-

suited for our purposes since it was lightweight and pretrained on the ImageNet [84]

dataset. After being trained on the GOPRO street-view crosswalk detection dataset

available at [97], this model was able to quickly perform predictions on this webserver

using only the CPU (larger models would require a GPU). We conducted a small test of

this system using images collected at the University of Southern Mississippi’s

Hattiesburg campus (see section 4.9).

75

CHAPTER IV – RESULTS AND DISCUSSION

4.1 Local detection results

Here, we refer to the “local test” for each model as an evaluation of a model’s

performance on a randomly sampled set of labelled images from the same dataset that the

model was trained on. This only means that the images are from the same geographical

region, but our filtering methods (see section 2.2.3) and random sampling procedure (see

section 2.4.7) ensure that there are no duplicates between the training, validation, and test

sets. Each model and dataset in the following results is referenced by the naming system

presented in Table 2.2 and Table 2.3.

4.1.1 Local crosswalk detection test results

The local test of the aerial crosswalk detection model (model 1 applied to the

testing subset of dataset 1) resulted in an accuracy of 97.14% (confusion matrix and

training information shown in Figure 4.1-Figure 4.3). Next, the local test of the street-

view crosswalk detection model (model 2 applied to the testing subset of dataset 2) had

an accuracy of 97.24% (confusion matrix and training information shown in Figure 4.4-

Figure 4.6). Some of the graphs displayed here, such as Figure 4.5 and Figure 4.6,

contain large spikes in the training loss and accuracy. This did not affect the final results

since only the model from the epoch with the highest validation accuracy was saved.

However, any number of reasons could explain this type of variation in the result graphs.

First, it is expected for mini-batch gradient descent to have some spikes. Using a learning

rate that is too large may lead to larger spikes. In the case of extremely large spikes,

randomly applied augmentation may have created bad batches that result in a model that

is unable to learn as well from the training data at that epoch. Ensuring better shuffling of

76

batches and using various batch normalization methods can be used to eliminate some of

these spikes. Differences in the various datasets that we collected likely required more

specific attention to these parameters to produce smoother training graphs.

Figure 4.1 The confusion matrix for the local test of the aerial crosswalk detection model

(97.14% acc)

These results are for model 1 applied to the testing subset of dataset 1

77

Figure 4.2 Aerial crosswalk detection training accuracy curve

Model 1 trained on the training subset of dataset 1. The yellow line represents testing on the validation subset of dataset 1 at each

epoch.

Figure 4.3 Aerial crosswalk detection training loss curve

Model 1 trained on the training subset of dataset 1

78

Figure 4.4 Street-view crosswalk detection local test confusion matrix (97.24% acc)

Model 2 trained on dataset 2 and tested on the testing subset of dataset 2

Figure 4.5 Street-view crosswalk detection training accuracy curve

Model 2 training on dataset 2. Large spikes were irrelevant since the model was saved at the epoch with the greatest validation

accuracy

79

Figure 4.6 Street-view crosswalk detection training loss curve

Model 2 training on the training subset of dataset 2

4.1.2 Local sidewalk detection results

As shown in Figure 4.7-Figure 4.9, the local test of the aerial sidewalk detection

model (model 4 tested on the testing portion of dataset 3) achieved an accuracy of

91.55%. For the local test of the street-view sidewalk detection model (model 5 tested on

the testing portion of dataset 4), the accuracy was 89.03%.

80

Figure 4.7 Aerial sidewalk detection model local test confusion matrix (91.55% acc)

Model 4 tested on the testing subset of dataset 3

Figure 4.8 Aerial sidewalk detection training accuracy curve

Model 4 trained on the training subset of dataset 3.

81

Figure 4.9 Aerial sidewalk detection training loss curve

Model 4 trained on the training subset of dataset 3

Figure 4.10 Street-view sidewalk detection local test confusion matrix

Model 5 tested on the testing subset of dataset 4

82

Figure 4.11 Street-view sidewalk detection training accuracy curve

Model 5 trained on the training subset of dataset 4

Figure 4.12 Street-view sidewalk detection training loss curve

Model 5 trained on the training subset of dataset 4

83

4.2 Dual-perspective detection results

In order to test if the DPPM could improve the detection of occluded crosswalks

in aerial images, we used an external test dataset which contains imagery that is relatively

clear in the street side view but is heavily occluded in the aerial view (the target

crosswalk is often blocked with trees, shadows, image artifacts, etc.). Specifically, this

dual-perspective dataset was a combination of Dataset 5 and Dataset 6 (see Table 2.2).

These two datasets contain crosswalk images that are captured from different viewpoints

(aerial vs. street-view), but they both depict the same list of locations. In other words,

each image in dataset 5 (aerial) has a counterpart in dataset 6 (street-view) that was

captured at the same location (GPS coordinates). For the test images having a crosswalk,

54.07% of them are heavily occluded. This occlusion rate for the test images not having a

crosswalk is 60.76%.

After using this combined dataset to test the aerial view SPPM and DPPM

separately and compare their performance, we obtained the results shown in Table 4.1.

Unsurprisingly, the metrics reveal that the performance of the aerial crosswalk detection

model suffers greatly in this external evaluation that is focused on handling heavily

occluded aerial imagery. When processing the internal test images with an ideal aerial

view, the accuracy rate of the aerial view SPPM was 97.14%. However, it dropped to

55.59% when the model was applied to this external dataset. Particularly, the recall

indicator is only 15.41%, which means most occluded images couldn’t be detected only

using aerial view SPPM. Fortunately, by using our proposed DPPM, we obtained a

relative increase in external test crosswalk detection accuracy of about 49% (from

55.59% to 83.02%). More importantly, the recall improved by about 382% from 15.41%

84

to 74.42%. This substantial increase in recall means that a large majority of the occluded

or otherwise unrecognizable crosswalks in the aerial imagery that were initially missed

were able to be recovered and correctly classified by incorporating the street side view

information as an approximation of a “ground truth” check. As for precision, while the

aerial-view SPPM was fairly precise (77.94%), the DPPM still improved this by about

15%. In other words, when the DPPM decided to predict that a location contained a

crosswalk in this test, it was more trustworthy than the aerial view SPPM. This,

combined with the previously mentioned recall increase, is reflected by the equally

impressive relative increase in the F1 score from 25.73% to 81.40%. Together, these

metrics numerically quantify our observation that the DPPM has increased the

performance and reliability of our final system when detecting crosswalks in situations

with heavily occluded aerial imagery.

Table 4.1 Comparing SPPM and DPPM performance on an external crosswalk detection

dataset

Model Dataset Acc. F1 Prec. Rec.

1 (Aerial View SPPM) 5 55.59% 25.73% 77.94% 15.41%

3 (DPPM) 5+6 83.02% 81.40% 89.82% 74.42%

4.3 Local segmentation results

In this section, we show examples of several segmentation predictions generated

during the development of the segmentation (mensuration) model. These results are for

model 6 tested on the testing subset of dataset 9 (see Table 2.2 and Table 2.3). As we

discussed in section 3.6, these results were evaluated visually and by a crosswalk

mensuration metric that we used for more extensive testing of this model in section 4.4.2.

85

Figure 4.13 Three examples of good local segmentation predictions.

Model 6 tested on the testing subset of dataset 9.

Figure 4.14 Three examples of less successful local segmentation predictions.

Note that even though the predictions were incorrectly split into two regions, the total length of the crossing was still covered.

86

4.4 Department of Transportation results

This portion of our research was dedicated to applying the models that we had

trained on a specialized image data format used by MDOT (described in section 2.4.6).

These results also count as an external test of these models. However, the images are

higher quality (manually filtered) and there was no street-view data available. Compared

to the dual-perspective prediction tests in 4.2, these tests focused on testing the models

with ideal data and ensuring that the data format used by MDOT could be properly

utilized by our system.

4.4.1 DOT detection test results

This test used our DOT detection datasets (dataset 7 and dataset 8). The aerial

crosswalk detection model was 99.23% accurate in this test (A in Figure 4.15). For aerial

sidewalk detection, the model was 80.5% accurate on the original 200 images, but it was

then able to achieve 91.26% accuracy (B in Figure 4.15) using only ideal images. Of

course, CNN-based models typically require very large image datasets to reach high

levels of performance. Small image datasets may not have enough variance to reflect the

true performance of the model. Using a larger dataset of ideal images would likely

provide a better representation of this.

87

The ideal images used here (Dataset 8) were extracted by removing images where

the sidewalk (or the side of the road in images with no sidewalk) was occluded, damaged,

or otherwise not optimal for the model to process as described in section 2.2.3.3.

Specifically, only images that were tagged as ‘c’ (clear) and ‘nc’ (normal condition) with

nothing in the eCon (extra condition) list were selected. The aerial crosswalk images also

were filtered in the same way from an initial set of 200 (20 positive images were found to

be ideal). For these images, the same filtering tags applied except that only the ‘z’ (zebra)

tag was allowed.

Figure 4.15 The confusion matrices for two tests on the DOT data.

4.4.2 DOT crosswalk segmentation test results

Just as in section 4.3, the segmentation data used here was only captured from the

aerial view. In this test, the aerial crosswalk DOT data was used (dataset 7). The purpose

of this test was to test the mensuration capabilities of the segmentation model (model 6).

In these images, it was found that there were 37 zebra crossings, and 20 of them were

ideal (no occlusion or worn markings). For the full set of 37 zebra crossings, 30 of the

88

crossings were detected with an average length measurement accuracy of 74.3%

(calculated as 1 minus the percent error of the predicted and real measurement of the

crossings). For the 20 ideal zebra crossings, 17 were detected (the 3 remaining

crosswalks were not detected) with an average measurement accuracy of 93.7%

according to the following formula where 𝑐 is a zebra crosswalk, 𝑛 is the total number of

zebra crosswalks that were detected by the mensuration model (17 here), 𝑦_𝑡𝑟𝑢𝑒𝑐 is the

true length of crosswalk 𝑐 (obtained from the measurement tool in Bing Maps or QGIS),

and 𝑦_𝑝𝑟𝑒𝑑𝑐 is the predicted length of crosswalk 𝑐.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
∑

|𝑦_𝑝𝑟𝑒𝑑𝑐 − 𝑦_𝑡𝑟𝑢𝑒𝑐|
𝑦_𝑡𝑟𝑢𝑒𝑐

𝑛
𝑐=1

𝑛

(9)

Figure 4.16 shows the process of obtaining these measurements for one input

image (A in Figure 4.16). The first step for scoring a segmentation model is to create the

ground truth by manually labeling the crosswalks in the image (done here by using an

annotation program called coco annotator in Figure 4.16 (B). The general procedure used

when manually creating these masks was to keep the drawn labels as close to the crossing

as possible and to extend the labeled region all the way to the curb unless it intersects

another crossing. This information was mostly used for training the models, but it also

can be used for various other types of accuracy calculations during testing.

89

Figure 4.16 Evaluating length measurement accuracy.

The process of evaluating the length measurement accuracy for an input image (A) using five steps (B-E).

However, for this test, manual measurements of the crosswalks were taken

according to some simple rules that were followed when creating annotations for the

original training data. As demonstrated by the yellow line in Figure 4.16 (E), the

measurement tool in QGIS was used to measure from curb to curb through the middle of

crossing (trying to follow the angle of the crossing like the labels drawn in B in Figure

4.16). Then, this value (13.703m in this case) is compared with a measurement of the

results of the segmentation model (C in Figure 4.16) generated from the input (A in

Figure 4.16). In Figure 4.16 (C), there are actually 5 separate detections for the 4

crosswalks. In this test, the pixels of multiple detections within a single crosswalk were

90

measured as one detection, as shown in Figure 4.16 (D). This measurement is obtained by

counting the number of pixels that make up the combined length of the predicted

bounding box/boxes (not counting any overlap between boxes) on a crosswalk and

multiplying by the ground resolution of the image. Here, it was seen that 89.4 pixels (D

in Figure 4.16) multiplied by the ground resolution of 0.1524 meters/pixel gave a

distance of 13.626m and a difference of only 0.56% from the true measurement.

Repeating this procedure and averaging the results produced the previously mentioned

measurement accuracy scores for this test. Figure 15 shows a correctly working example

where the true length (9.251m) and the predicted length (9.113m) are very close. The

relatively noisy predictions in Figure 4.16 can likely be attributed to a number of things,

such as a car blocking a portion of crossing detection 1, and a shadow intersecting the

corner of the crosswalk that was detected as 4 and 5. The current segmentation model

seems to be more likely to skip or split a detection if there are any obstacles in the

crossing region.

91

Figure 4.17 A correct prediction with only a difference of 0.13m from the true length.

4.5 Dual-perspective result analysis

These results demonstrate the fine balance that exists between the two SPPMs and

the importance of having multiple SPPMs that can correct each other's mistakes. Also, we

can see that, because of using the default, equal weights for the soft voting operation, we

often observe a very small difference between the sums of the predicted class

probabilities of the two SPPMs. In cases such as Figure 4.20 where the aerial SPPM very

confidently predicts the lack of a crosswalk, the DPPM heavily depends on the street side

SPPM model to correct the final score. Of course, since this difference in the final class

probabilities can be so small, there is a lot of room for error given the vast amount of

possible defects that input images can have in both viewpoints. Part of our ongoing work

will be to provide solutions to this problem in the future.

The most critical component of the DPPM is the voting function which defines the

mechanism to combine the two predictions produced by the two SPPMs. Our soft voting

method is just one of the many possible ways to demonstrate the capability of the DPPM

to improve final predictions by incorporating multiple data sources for each target. One

92

way to merge the votes could be to heavily (or fully) rely on the street side view SPPM’s

prediction whenever the two predictions from the two SPPMs contradict each other. This

is equivalent to assuming that street side view images can always provide more detailed

information than aerial images, especially when occlusion is present. Another method is to

always trust the street side view SPPM’s prediction when the time stamp of the street view

images is more recent than that of the aerial view images. This would be done in order to

always gather the most recent information of the facilities. A more advanced technique

could be to automatically evaluate the level of occlusion in the street side and aerial view

images of the same target and then put more weight on the one with the lowest level of

occlusion. However, this method requires another model to detect and assess the level of

occlusion first. When needed, more than one angle of the street side view image of the

same target could be gathered as well to inform the final prediction. Thus, questions about

when and how to combine multiple image sources are critical for the improvement of our

method for better solving the problem of occlusion.

4.6 DPPM external test results individual analysis

While the results in section 4.3 are good for reflecting the average performance of

our DPPM on our external test dataset, looking at the individual predictions from each of

the constituent models can reveal the reason for incorrect predictions and help us gain

valuable insight for future model development. Therefore, in order to provide more

informative examples of the DPPM's predictions, we selected a few interesting results

from individual crosswalks to discuss here. Figure 4.18-Figure 4.22 contain input images

of the same location captured from both viewpoints (aerial and street view) and their

corresponding predictions from the aerial (section A) and street-view (section B) models.

93

In these figures, the numbers in the brackets are predicted class probabilities given as [%

negative, % positive], and the final result of the DPPM is represented by the bold number

in section C (the largest class probability is chosen as the prediction result). Here, the

positive class represents images containing crosswalks and the negative class represents

images without crosswalks. This can be interpreted as the amount of "confidence" that

the model has in predicting the presence or absence of a crosswalk in the given input

image.

Looking at Figure 4.18, the crosswalks in both the aerial view (section A) and the

street view (section B) are clearly visible, and both models produced correct predictions.

Also, since the models are confident in the presence of a crosswalk, the difference between

the predicted positive and negative class probabilities in section C is very large. Figure

4.19, on the other hand, depicts a situation in which both crosswalks are occluded by a

shadow. This caused the aerial model (A) to be less confident in its choice, but the

crosswalk was correctly predicted by both models. Interestingly, the street-view model (B)

was still able to detect the crosswalk despite the shadow, and the final prediction of the

DPPM was still very confident. In Figure 4.20, the occlusion in the aerial image was much

more severe while the street-view image was relatively clear. As a result, the aerial model

(A) produced an incorrect prediction that was corrected in the final DPPM result by the

street-view model's correct prediction (B). However, the aerial-model was overly confident

in its incorrect prediction and caused the difference in C to be very small.

Analyzing each of these unique cases that arose during the development of the

DPPM demonstrates the fine balance that exists between the two sub-models (aerial and

street-view crosswalk SPPMs) and the importance of having multiple SPPMs that can

94

correct each other's mistakes. Also, we can see that, because of using the default, equal

weights for the soft voting operation, we often observe a very small difference between

the sums of the class probabilities of the two models. In cases such as Figure 4.20 where

the aerial model very confidently predicts the lack of a crosswalk, the DPPM heavily

depends on the street-view model to correct the final score. Of course, since this

difference in the final class probabilities can be so small, there is a lot of room for error

given the vast amount of possible defects that input images can have in both viewpoints.

For example, Figure 4.21 depicts a situation where the aerial model (A) was not able to

detect a crosswalk, and image retrieval issues caused the street-view model (B) to miss

the crosswalk in the image. Interestingly, the input images in Figure 4.22 are similar, but

the final result of the DPPM (C) was still correct thanks to the street-view model (B)

correctly predicting the presence of a crosswalk.

Figure 4.18 DPPM example 1

An example of a dual perspective prediction showing a crosswalk that is clearly visible in both perspective

95

Figure 4.19 DPPM example 2

An example of a dual perspective prediction n which a crosswalk that was occluded in its aerial image was correctly detected by

incorporating the corresponding street-view image into the final prediction instead of only relying on the aerial model alone (which

produced a false negative in this case)

Figure 4.20 DPPM example 3

An example of a dual perspective prediction where an incorrect prediction on heavily occluded imagery was corrected by the street

view model. This demonstrates the importance of experimenting with different weights for the DPPM output when processing an area

that is known to have occluded or otherwise low quality aerial imagery.

96

Figure 4.21 DPPM example 4

An example of an incorrect prediction from both models caused by occlusion in the aerial view and an obstruction of the street-view

image caused by an incorrectly retrieved street-view image due to an error in the data collection pipeline.

Figure 4.22 DPPM example 5

An example of an incorrect prediction from the aerial model that was still corrected by the street-view model despite street-view

image retrieval pipeline issues.

4.7 Time and cost estimate for large area processing

The amount of time and funding necessary to apply the system to a new area can

be estimated using the data available for Forrest County, MS. Given the current input

image size used by this system (256x256 pixels) and the total pixel size of the Forrest

County satellite imagery, it is possible to calculate the following value for the maximum

97

number of images needed to process the area from one viewpoint. Here, 𝑡𝑎𝑒𝑟𝑖𝑎𝑙 is the

currently required time for processing one of these images with the aerial view detection

model (~0.2361 seconds). Given the same image, 𝑡𝑠𝑡𝑟𝑒𝑒𝑡 is the time necessary to apply

the street view model (0.0347 seconds) and 𝑡𝑚𝑒𝑛𝑠𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is the time needed to apply the

mensuration model (0.261808 seconds). These runtime estimates were obtained using a

standard Windows 10 desktop equipped with an Nvidia GTX 1070 GPU and an Intel i7-

6700k CPU. The following formulas show how these numbers are used in the estimates

here.

𝑡𝑜𝑡𝑎𝑙_𝑖𝑚𝑎𝑔𝑒𝑠 =
81,900,000,00 total pixels

65,536 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
= ~1,249,695 𝑖𝑚𝑎𝑔𝑒𝑠 (10)

𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 = required_images(𝑡𝑎𝑒𝑟𝑖𝑎𝑙 + 𝑡𝑠𝑡𝑟𝑒𝑒𝑡 + 𝑡𝑚𝑒𝑛𝑠𝑢𝑟𝑎𝑡𝑖𝑜𝑛) = ~8 days (11)

𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 = required_images(𝑐𝑎𝑙𝑙𝑠𝑎𝑒𝑟𝑖𝑎𝑙 + 𝑐𝑎𝑙𝑙𝑠𝑠𝑡𝑟𝑒𝑒𝑡) = ~3,749,084 API calls (12)

Here, the value of 𝑡𝑜𝑡𝑎𝑙_𝑖𝑚𝑎𝑔𝑒𝑠 represents all of the possible images that can be

extracted from the 466.31 square miles of satellite imagery contained in this test data.

Using this, Formula 9 shows how the total processing time can be estimated. Then,

Formula 10 shows an estimate for the total cost of these operations in terms of maps API

calls (Google and Bing both offer different rates and various options for bulk pricing

when many calls are needed). Here, 𝑐𝑎𝑙𝑙𝑠𝑎𝑒𝑟𝑖𝑎𝑙 is equal to one call and 𝑐𝑎𝑙𝑙𝑠𝑠𝑡𝑟𝑒𝑒𝑡 is

equal to two calls. For aerial images, one call will provide one aerial image of a location

(256x256 pixel images centered at the given coordinates). For street view images, one

call also provides one street view image for the same location. However, two API calls

98

are currently needed to properly frame the crosswalk within a street view image and

extract it from the full street view image. Also, it is important to note that the number of

images required to process this example area can be greatly reduced by extracting images

only along roadways. Furthermore, street view imagery would not be available for areas

that are not located on a road. All of the necessary processing to extract road locations

from the list of all possible locations could be done with existing GIS data and would not

require additional API calls.

4.8 Final system and graphical interface prototype

The models that were developed and tested in this project have been organized in

a software package that allows users to automatically run them on their own input

images. Figure 4.23 shows an overview of all of the developed models that are part of the

final system (including the ones not currently shown in the interface) and how they work

together.

Figure 4.23 An overview of the components of the final system

99

This program organizes the scripts that control the data input, model loading, and

prediction processes for all of the previously developed models into a single system that

can be used with little knowledge of Python and the other technologies involved in this

project. It uses a simple graphical interface developed with PySimpleGUI to allow users

to automatically apply any of the models to either one image or an entire directory of

images at once. Each function is programmed to run independently to save processing

time if only one type of prediction is needed, but they can be combined with others to

produce more detailed reports using any combination of prediction methods that the user

chooses.

Figure 4.24 shows a screenshot of the main interface of the system and one of the

options for processing aerial images. The main window (A in Figure 4.24) launches when

the program starts and allows users to pick an operation mode based on the type of

prediction they want to perform. The two main choices are the option to process one

image at a time or to batch process an entire directory of images. From there, if

performing crosswalk or sidewalk detection, the user is asked to also choose the model

that matches the viewpoint (aerial or street-view) that their data is captured in. It should

be noted that this interface can be used to launch any of the models developed in this

project, but it is currently only tested to work on the options shown in Figure 4.25 (A).

Figure 4.25 shows an example of using the interface to examine a single

crosswalk at a time in an aerial image. The aerial crosswalk detection model is

automatically loaded in addition to all of the relevant python libraries, scripts, and data

necessary to perform a prediction. The interface then displays all available images in the

directory chosen by the user (as seen in the window displayed in Figure 4.25 B). Upon

100

selecting an image from the list, the system performs the prediction and displays both the

input image and the result produced by the model (displayed as a percent confidence for

the positive class). In Figure 4.25 (B), the positive prediction resulted in the text

“detected a crosswalk” to be displayed a long with the 99.96% confidence score. This

confidence score is simply the predicted probability of this image belonging to the

“positive” (crosswalk) class. This operation mode of the final system can be used to

quickly check the model’s performance on a few images without committing to

processing a large number of images at once.

If a batch (directory) processing option is chosen, then a spreadsheet is produced

that stores these detection predictions instead of displaying each image individually. For

the directory mensuration option (“Aerial Measure and Locate”), each input crosswalk

image is processed with the segmentation model (model 6). Then, the final results for

each detected crossing in each input image, including the GPS coordinates of the

centerpoint and the predicted crossing dimensions (length and width), are stored in a

similar spreadsheet. Once all operations for a user’s chosen operation have been

completed, the main window becomes available again for starting another task.

101

Figure 4.24 The main window of the interface

Note that the window on the right is actually drawn by PySimpleGUI while the textboxes to the left are illustrations added here to

explain the functions of the system.

Figure 4.25 Performing aerial crosswalk detection on a single image using the interface

The output of the model associated with the choice in the main window (A) is presented in the results window (B). The result

(highlighted in green) is a percentage (prediction confidence).

102

Figure 4.26 Performing aerial sidewalk detection on a single image using the interface

4.9 Prototype pedestrian facility data crowdsourcing app testing

As discussed in section 3.9, we developed a prototype Android application for

collecting and verifying crosswalk images from smartphone cameras. After developing

this application and the corresponding webserver that handled verification and data

storage, we conducted a test of this system’s features at the University of Southern

Mississippi’s Hattiesburg campus. Figure 4.27 shows an example of images that were

collected during this test by using the prototype Android application. Figure 4.28 shows

an example of the process of capturing one of those images and uploading it to the remote

webserver using the application. Figure 4.29 shows three example images collected by

the app that were uploaded to the server. The predicted class probabilities for each image

are shown on the right with each corresponding input image as it stored on the server

(left).

103

Figure 4.27 Example street images gathered using the prototype crowdsourcing app

Images were gathered from the University of Southern Mississippi’s Hattiesburg campus before being sent to the prediction server for

further processing.

Figure 4.28 The user interface of the prototype pedestrian facility data crowdsourcing

app

104

Figure 4.29 An example of three images collected by the app and processed by the

webserver

Each input image (left) is shown in the form that is stored on the server after being processed. The detection results (right) are the

predicted class probabilities (confidence) produced by the model for these images.

105

4.10 Preliminary visual analysis and manual object removal experimentation

Based on the ideas for future work discussed in section 5.2.4, we performed a few

small tests to determine if modifications to the input images could produce an effect on

the final prediction produced by our detection models. Specifically, we used our street-

view crosswalk detection model (model 2) to process several images that were manually

modified based on the activation patterns identified by our previously described

visualization procedure (see section 3.8.2 for more details). This was done simply to

examine if different features in our images could potentially affect the prediction results

and to gather evidence for potential architecture improvements in the future.

For both of the street-view input images in Figure 4.21 and Figure 4.22 (section B

of both figures), the target crosswalk is cropped due to miscellaneous issues in the data

acquisition process. Even though the crosswalk placement in these images appears to be

similar, the large difference in the predicted class probabilities encouraged us to perform

an additional analysis. Starting with row A of Figure 4.30, we see that the crosswalk (also

shown in Figure 4.22) closest to the camera is partially obscured but there is a significant

amount of other common road features present (traffic lights, cars, etc.). On the other

hand, in row B of Figure 4.30, we see that the crosswalk (also shown in Figure 4.21) is

similarly obscured by the position of the camera, but there is also a noticeable lack of

other road features compared to the image in row A. Therefore, we believe that these

common road features that are more prevalent in row A may increase the model’s ability

to detect crosswalks, especially in situations where the crosswalk is occluded or cropped.

In order to investigate this and perhaps to understand the reason for the street-view model

producing differing predictions for the similar images in Figure 4.21 and Figure 4.22

106

(section B in each figure), we visualized the average layer activations for each input

image. Figure 4.30 shows the results of this process and depicts the average layer

activations at a few layers that we selected (listed in order of increasing depth after the

input layer). The brighter pixels in these images represent features that are more

important to the model’s decision.

Figure 4.30 Visualizing the average activation values from selected layers in the street-

view crosswalk detection model for the purpose of investigating the incorrect prediction

of the input image in row B.

These images are unmodified and were examined to observe similarities between these input images that both have similar cropping

issues caused by the data collection pipeline yet have very different predictions from the street-view SPPM.

Looking at the activation patterns in Figure 4.30, we can see that the network

places emphasis not only on the crosswalk pixels, but also on common road features

(cars, lane markings, traffic lights, etc.). This is consistent with our observed differences

between the two input images. To further test this, we modified the input image in row A

using the clone and heal tools in GIMP (the GNU Image Manipulation Program) to

remove various features of interest. Figure 4.31 shows 3 examples of this and also shows

107

the model’s prediction for each image after they were modified. In this figure, we

removed only the traffic light in row A.

The activation values show that the region that used to contain the traffic light is

no longer being focused on by the model. Furthermore, the predicted positive class

probability dropped by a small amount compared to the result in column B of Figure

4.22. In row B, of Figure 4.31, we retained the crosswalk but removed most of the road

features, including the traffic light, cars, and lane markings. This had a very large effect

on the confidence of the model’s prediction and actually caused it to miss the crosswalk

in the image. Given that the class probabilities in row B were almost evenly split and

there still was a significant number of regions with high activation values (the horizon,

edges of sidewalks, etc.), we wanted to test if removing the crosswalk itself would result

in an equally large change in the prediction results or if the other road features were

somehow collectively more important to the model.

To test this, we took the same image from row A of Figure 4.31 and removed the

crosswalk using the same photo editing methods. The results from this, shown in row C

of Figure 4.31, were much more dramatic than removing the other road features and

resulted in an almost completely confident negative prediction. Therefore, at least for this

input image and likely for other images similar to it, these results suggest that the street-

view model has a robust ability to detect crosswalks that depends not only on the

presence of a crosswalk in the image but also on the presence of other common road

features. It also suggests that even partial crosswalks are useful features when in the

presence of other features (cars, etc). As a result, we believe that the lower evaluation

metrics obtained using our local test dataset were likely due to problems with our data

108

rather than the street-view SPPM’s ability to detect crosswalks. In the following section,

we will discuss these challenges and other opportunities that this analysis has opened up

for our future work.

Figure 4.31 Visualizing the average activation values from selected layers in the street-

view crosswalk detection model to investigate the effects of removing various important

image features.

The input images in each row were edited using photo editing software to remove various features that were identified as important by

the average of the model’s layer activations in these selected layers.

109

CHAPTER V – CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

Our research developed a machine learning-based system to automatically detect,

classify, and measure specific types of major pedestrian facilities, including sidewalks

and crosswalks, from aerial and street-view imagery. This system also includes a dual-

perspective prediction model that we designed to increase the accuracy of crosswalk

detection from occluded aerial images by simultaneously utilizing both aerial and street-

view images of each location when making predictions. The output of the system is

information about the presence of sidewalks and crosswalks as well as crosswalk length

and location for each processed image. To achieve this goal, we first focused on

developing a mechanism and functional models for automatically acquiring labeled aerial

images, training the facility detection models using machine learning methods, improving

the predictions for aerial images of occluded facilities by innovatively developing a dual-

perspective model which uses aerial and street-view imagery simultaneously, and

measuring the length of crosswalks. After developing these core components, we

completed the data collection system by integrating the functional models to evaluate the

system’s accuracy and efficiency by testing aerial images provided by MDOT. The

results generated by our research can be summarized in the following list of

contributions:

1) A data collection workflow was developed to automatically prepare labeled

sample data for sidewalk and crosswalk detection training and testing. This process

automatically generated several large image datasets with images tagged as “having

crosswalks”, “not having crosswalks”, “having sidewalks”, and “not having sidewalks”.

110

After filtering, the datasets used for development and testing contain 6,241 images tagged

for crosswalk detection and 45,510 images tagged for sidewalk detection. These labeled

data served as the positive and negative samples that were used to train and test the

facility detection model.

2) Based on these sample data, a prototype of each facility detection model has

been developed using machine learning techniques. Specifically, a convolutional neural

network (CNN) model was used to automatically detect and classify images into one of

four classes (crosswalk, no-crosswalk, sidewalk, or no-sidewalk). These models were

tested and achieved an accuracy rate of 97.14% for crosswalk detection and 97.24% for

sidewalk detection, respectively. These testing results demonstrate the high accuracy and

efficiency of collecting the data automatically with zero cost (not including the cost for

tool development), compared to the cost of Caltrans’ recent effort to award an Asset

Collection Service Contract for millions of dollars.

3) Innovatively, to overcome situations where sidewalks or crosswalks are

occluded in the aerial imagery, a dual-perspective mechanism was developed to double

check the ground truth information for target objects by making use of both aerial and

street-view images simultaneously. A test on an image dataset with heavily occluded

aerial crosswalk imagery showed that this model can increase detection accuracy by 49%.

4) The crosswalk mensuration model was developed using a dataset of 100

images that were manually prepared. This model can automatically obtain measurements

such as crosswalk length by identifying a bounding box that contains all the pixels that

belong to a crosswalk. In addition, the coordinates of the center of the bounding box are

obtained and recorded as the location of the detected crosswalk.

111

5) A graphical user interface was created to package all of our developed models

into single system that allows users to test images without knowing Python or any

machine learning methodology. A test of 233 images from Forrest County Mississippi

presented the accuracy of the system as high as 99.23% for crosswalk detection, 91.26%

for sidewalk detection, and 93.7% for crosswalk length mensuration.

 The results of this research have proved the feasibility of using machine learning

methods and image processing techniques to automate the data collection process for

pedestrian facilities such as sidewalks and crosswalks. Detection methods and core

functional models were developed based on deep learning and computer vision

technology for performing multiple pedestrian facility detection and mensuration with

high accuracy. Particularly, the application of deep learning methodologies, such as

training a Convolutional Neural Network (CNN) to automatically detect crosswalks and

sidewalks from images, showcased that deep learning-based methods enable knowledge

extraction from images without requiring humans to manually select features beforehand.

This also demonstrated that the deep learning method is more appropriate for handling

the real-world conditions under which candidate images could contain clutter, shadows,

saturation effects, distortion, occlusion, and many other unknown features. This makes

the deep learning method surpass the previously used methods based on traditional image

processing or machine learning methods.

 Another contribution to the field is that it provided an effective solution to solve

the “occlusion” problem in real-world aerial images. Occlusion has been recognized as

the most challenging problem [9], [11], causing omission of a crosswalk [8] during

analysis or even malfunction of the algorithm. Occlusion of a crosswalk in an image

112

could be caused by cars, trees, pedestrians, etc. The suggested treatment in previous

studies for the occlusion problem is to exclude images with occlusion during model

development, which was common in global segmentation-based image processing

approaches. As a result, the detection could only reach high accuracy when analyzing

near-ideal pictures of crosswalks or sidewalks. Therefore, it was not applicable for

generating data for an inventory of pedestrian facilities [5], [11], [13]. Our solution to

detect crosswalks and sidewalks from real-world images (especially with heavy

occlusion) was to develop a dual-perspective, deep learning-based prediction method to

utilize the aerial view and street view of the same location simultaneously. Using this,

occluded crosswalks can be verified automatically by checking the ground truth in their

street view images using a combined model that takes advantage of both aerial images

and street view images. One model was used as the initial detector for processing aerial

images while a second one was used as an additional check of an alternative perspective

(street-level) for the purpose of verifying the prediction made by the first detector.

Combined, this ensemble model was proved to increase accuracy for occluded view

detection by 49% (from 55.59% to 83.02%). More importantly, the recall value increased

by 382.9% (from 15.41% to 74.42%), which means that a large majority of the occluded

or unrecognizable crosswalks in the aerial view imagery were initially missed but were

able to be recovered and correctly classified by the new method. However, this dual

perspective method requires the availability of street view images at target locations.

State DOTs need to provide either street view images or video logs to capture the images

needed. Another solution to obtain street view level images is to query Google or Bing

Maps through paid API calls.

113

 The models and system that we developed form the foundation for developing a

next-generation data collection method which could automatically detect, measure, and

generate in-depth pedestrian facility information from images of the built environment on

a large scale. The methods we developed not only promote the application of automated

methods for pedestrian facility data collection, but also provide a potential solution for

detecting other transportation facilities, such as sidewalks or curb ramps, that are

frequently occluded in real-world aerial images. The innovative methods for automating

the data collection process provide “building blocks” for practitioners and researchers to

adapt in building next-generation data collection tools for automatically collecting

specific infrastructure information of interest.

5.2 Future work

Our research was mostly focused on working with DOT collaborators to study the

data science aspects of automated pedestrian facility detection. This included image

annotation and manual image filtering, applying machine learning models to large area

satellite imagery, and creating the framework (and prototype) for a new all-in-one system

with a graphical user interface that DOT workers could use to apply our research to their

daily work. Guided by our understanding of the behavior of our early models, the rich

guidelines for image filtering that we developed to create our “ideal” image subsets (see

section 2.2.3.3), have produced results that support the importance of having a clean,

well-labeled, and high-quality pedestrian facility detection dataset. Designing such a

dataset using the protocols we have defined would greatly benefit future work related to

our research and the entire field of automated pedestrian facility detection.

114

Once this is complete, the machine learning methodology in our research could be

expanded on using new state-of-the-art models and other methods to fully benefit from a

large, pure training dataset. In addition to trying a wide variety of different architectures,

we would like to explore the possibility of creating custom architectures that are

specifically designed for performing automated pedestrian facility detection tasks. The

main machine learning architectures utilized in our work (VGG16 and Mask R-CNN) and

the Python libraries used to implement them are versatile and relatively easy to modify.

Therefore, we would like to explore different ways for these models to process data (see

section 5.2.2) as well as possible modifications to the architecture that take expert advice

from our DOT collaborators into consideration. Also, guided by heuristics such as

visualization of layer activations and the information gained by manually manipulating

input images to learn which features are important to our trained models, we would like

to explore the possibility of making more interpretable pedestrian facility detection

models with a custom training process guided by this information.

5.2.1 Manuscripts in progress

A portion of the results presented in this dissertation have been drafted into two

manuscripts that will be submitted for publication. The first manuscript is focused on

aerial and street-view crosswalk prediction as well as the dual-perspective prediction

model results discussed in section 4.2. We also discuss some of the data filtering and

image collection correction procedures (covered in section 2.2.3). The second manuscript

is focused on improving crowdsourced pedestrian facility data collection by developing

an easy-to-use smartphone application that interfaces with a webserver running a

machine learning model for data verification. In order to build a well-connected

115

pedestrian facility network that will improve safety and walkability, accurate and

thorough data of existing pedestrian facilities must be available [93]. However, there is a

shortage of efficient methods for collecting these facility data, such as sidewalk and

crosswalk presence [15]. To address this, we developed a prototype pedestrian facility

data crowdsourcing system that consisted of a smartphone (Android) application and a

remote webserver running a MySQL [94] database. This webserver also was running a

machine learning model for detecting the presence of crosswalks in street-view imagery

collected by the users of the smartphone application. We discuss the development of this

application in section 3.9 and present initial results from a test conducted on the

University of Southern Mississippi’s Hattiesburg campus in section 4.9.

5.2.2 Sliding window method for large satellite image processing

The existing aerial images owned by DOTs cover large areas which contain many

pedestrian facilities in different locations. To process these large area images, a workflow

should be developed to pre-process the images so that only the aerial images of the

candidate locations will be extracted and used as input for the data collection system

where further processing will be performed. The candidate locations would include

locations where a crosswalk or a sidewalk could possibly exist. A few possibilities for

this include 1) the location of every approaching lane at an intersection could possibly

contain a crosswalk, 2) one side of a roadway segment could possibly contain a sidewalk,

or 3) the roadway segment between two intersections could possibly contain a mid-block

crosswalk. Narrowing down the input images to only focus on images of these candidate

locations will reduce the processing time of the data collection system and decrease false

116

detections by filtering out irrelevant but disruptive factors such as parking lots with

parallel white lines.

Another challenging problem to solve in this task is to extract the aerial image

surrounding a candidate crosswalk and ensure that the entire crosswalk would be

contained in the image. Only in this way, can the length of the full crosswalk be

measured automatically. We have already developed a prototype “sliding window”

method to adjust the extraction window automatically to cover the entire candidate

crosswalk in one image. This method is necessary since deep learning models are only

able to process images of a much smaller size than large area satellite imagery (256x256

pixel tiles in the tests here). Therefore, the imagery around candidate locations needs to

be sliced into tiles intelligently.

This sliding window method works by detecting crosswalks that may be partially

obscured by the boundary of the sliced image tile. Once a predicted bounding box is

found near the edge of an image, the coordinates for the centerpoint of the partial

detection are translated to the center of the current image before slicing a new image with

gdal_translate. This has the effect of roughly centering the crosswalk candidate in the

center of the image and allows the image to be reprocessed by the segmentation model.

Figure 5.1 shows an example of this method being used to obtain a more accurate

segmentation result for a crosswalk where the other curb was obscured by the tile

boundary.

117

Figure 5.1 A working example of the sliding window method

5.2.3 Future segmentation model improvements

In addition to the potential to improve our mensuration results by continuing the

implementation of the prototype sliding window method that we discussed in section

5.2.2, we also conducted a small-scale test that produced some promising results using

larger input images. Specifically, we were able to use the same procedures described in

section 3.5 with images that were 1024x1024 pixels instead of the smaller 200x200 or

224x224 images used in the other models. This difference in size resulted in a much

clearer view of areas such as intersections where multiple crosswalks are present (see

Figure 5.2). While this is promising for reducing the need for correction methods such as

our sliding window process, there will always be a need for such methods if the road

images are being sampled blindly before predictions are made. Furthermore, increasing

the field of view will include more trees, parking lots (with markings that are similar to

crosswalks), and other objects that may increase the noise in large datasets. However,

using images of this size could also greatly reduce the amount of cut-off crosswalks in

situations where the coordinates of the roadway in the full satellite image are known (a

fairly safe assumption for most DOTs).

118

 Therefore, for the purpose of testing the feasibility of this concept (memory

limitations, architecture limitations, the increasing presence of noise from background

objects with a similar appearance to crosswalks, etc.), we used a small set of aerial

images (30 training, 10 validation, 9 testing) with this new size (1024x1024 pixels) that

were also sampled from the Seattle area. Judging by the results in Figure 5.3, this is

worth pursuing in future work (note that it can also detect parallel crossings).

Figure 5.2 Experimenting with larger segmentation training images.

Original input size that is consistent with the other models in this project (A) vs the expanded input size (B).

119

Figure 5.3 Successful segmentation results using larger input images

5.2.4 Visual analysis of model operation for architecture optimization and

interpretability purposes

For convolutional neural networks, one of the most useful methods for observing

the internal behavior of a trained model involves utilizing various techniques that provide

visual representations of the activations at selected layers within the network. The

visualization method that we used (based on the average of the activations at each chosen

layer) could be refined in future work with a number of alternative options, such as class

activation mapping [98] or gradient-weighted class activation mapping (which does not

require any retraining or architectural changes to the model) [99]. The idea of describing

the importance of regions of an image to the final classification decision of a

convolutional neural network can be traced back to the idea of saliency maps [100]. Later

methods would expand on this, such as guided backpropagation [101] and DaSaliNet

[102] (both built on the DeConvNet [103] method). As exploration into these

120

visualization techniques continued, methods such as SmoothGrad [104] focused on ways

to refine the final visualization. They presented a straightforward method that can

visually sharpen gradient-based sensitivity maps by introducing additional noise to the

input image. Such techniques could be useful for enhancing visualizations in datasets like

ours where occlusion in the original image may interfere with visualization quality. A

very thorough description and overview of these visualization methods and some of their

shortcomings is provided by Adebayo et al. [105].

Based on these studies that emphasized the importance of certain regions of pixels

to the final prediction of a classification CNN, we decided to investigate the effect of

manipulating various regions of one of our input images. Based on simple observations of

our own data, we noticed that predictions for some classes (such as crosswalks in street-

view images) may be dependent on context derived from other features that the model

has learned. The idea that the visual context of an image and various contextual clues

(such as unrelated objects that appear frequently in images of a target object) can affect

segmentation [106] and object detection/recognition [107]–[110] has been explored in

several past studies.

One study by Shetty et al. [111] supported our idea of using all of this information

about the visual context of objects in images to directly experiment on the input images

themselves rather than modifying the model architecture or visualization method. They

also focused on both segmentation and image-level classification using data that was very

relevant to our research (roads and sidewalks). In fact, the base of the model they used for

classification (VGG19), also available as a part of the Keras Applications library [112], is

very similar to our VGG16 street-view sidewalk classification model. Compared to our

121

approach, discussed in section 4.10, they performed automatic object removal through the

use of an in-painting network that learns to remove objects from general scene images

[113]. In [111], they observe that segmentation of the “sidewalk” class is very sensitive to

the presence of objects in the “cars” class. We also observed an example of this kind of

intertwined relationship between object categories in our data where the presence of cars

seems to have a very pronounced effect on the classification of a partially occluded

crosswalk in a street-view image (see Figure 4.31). Their results show that their

automated object removal-based data augmentation method can help mitigate the effects

of this kind of relationship in a dataset. This could be interpreted as sanitizing or

otherwise removing noise from the model’s internal representation of a certain class.

Given the high frequency of cars in road imagery datasets, simply adding more training

data to produce a model that is not biased by the presence of vehicles may be extremely

difficult. Even if it is viable, we believe that studies exploring model interpretability and

methods that produce improvement using smaller datasets and field-specific knowledge

are equally important to studies that enhance performance through the use of larger

models and datasets.

5.2.5 Identified challenges and future direction

The implementation of the findings of this project faces several challenges that

are worth being noted as lessons learned. The first challenge is the availability of the

street view images of the candidate location. If the system is adopted by state DOTs,

street view images should be provided by the DOTs internally, instead of using the street

view images obtained from commercial databases like BingMaps or Google Maps. Even

though some DOTs are able to collaborate with commercial image databases to extract

122

their street view images, street view images are usually not available in many areas, such

as undeveloped areas, local roads, or gated subdivisions. One possible solution is to bring

in crowdsourced street view images taken by pedestrians as a supplementary data source

to cover areas without publicly available street view images. In addition, even when the

street view images are available, in some cases the street view of a crosswalk or sidewalk

can possibly be occluded by cars and other objects. Therefore, it is important to

incorporate multiple angles of observation when designing a robust prediction system.

Another problem with street view images is that their time stamp is not always the same

as the corresponding aerial view images. There could be cases when the street view

image was taken after a crosswalk was removed, but it might still be present when the

aerial view image was taken (or vice versa).

The second challenge is regarding the quality of the training dataset of images

tagged as having a crosswalk/sidewalk or not from OSM. The method developed here for

extracting sample images of crosswalks and sidewalks from the large amount of aerial

imagery covering a given area requires the crowdsourced tags for each crosswalk or

sidewalk to accurately mark the location of the crosswalk or sidewalk. If the coordinates

of a tag are not sufficiently close to the physical location of the crosswalk, the cropped

images used as input for the facility detection model may not depict the actual target

crosswalk or sidewalk. Also, nearby crosswalks or sidewalks can show up in an image

that is marked as not having a crosswalk or sidewalk, which creates false positive

samples. All these issues can lead to mismatched, incorrect images in both the training

and testing data. In addition to the possibility of incorrect coordinates in crowd sourced

data, it is also possible to obtain images that have a completely incorrect label. To

123

investigate this, two evaluators looked through a subset of 1000 labelled crosswalk

locations and 1000 labelled sidewalk locations from OSM and found the crowd sourced

tags to be 78% accurate on average for crosswalk labels and 94% for sidewalk. This

preliminary result implies that there is a certain amount of incorrectly labeled images that

likely affected the system performance adversely. Therefore, a training image repository

would be recommended to be developed for the benefit of the automated data collection

field. This repository, consisting of a large amount of diverse sample images of different

types of pedestrian infrastructures accurately tagged by human evaluators with types and

features, is critical to training a high-performance facility detection model. It is also

recommended that additional, fine-grained classifications of image sets (e.g., “images

with object in clear view”, “images of partial objects”, or “images with occlusion”)

should be included in the repository as well. This will greatly improve the capability of

the detection models to handle special views of facilities in real-world images. Sample

images in both aerial view and street view from imagery data available online or in

government agencies should be obtained and manually tagged to guarantee high

accuracy.

Except for the above-mentioned methodology related challenges, there are also

certain application related challenges required for fully implementing the existing results.

First, an input preprocessing module is required to extract aerial images from candidate

locations to feed the data collection system. This is because that the aerial images owned

by DOTs are of the entire district area instead of each target facility and pre-processing of

these large area images needs to be conducted before feeding them directly into the

models developed by the project. This task may include dividing an area image into small

124

images containing just one approaching leg of an intersection or a short segment of a

roadway. Second, as the output of the data collection system, information about

sidewalks and crosswalks needs to be organized and stored in a ready-to-use format and

structure by an output function module. Without any standard database structure for

pedestrian facility data, a few questions need to be answered by DOT collaborators. For

example, should the output be stored in a GIS layer or a table format? More importantly,

how should the output be associated with the existing inventory of roadways and

intersections owned by the DOT? Finally, the customized models, input preprocessing

module, and output function module all need to be packaged into a user-friendly

computer application so that the DOT officers can easily use the system without complex

training. Answering these questions will also enhance the final products of this research

for the pedestrian facility data collection research community or users in other agencies.

125

REFERENCES

[1] H. Twaddell et al., “Fhwa Guidebook for Measuring Network Connectivity,” 2018.

[2] F. Cevallos, “Safe and Accessible Pedestrian Facilities Inventory Model (SAPFIM):

Development,” 2018.

[3] C. Quiroga and S. Turner, “ADA Compliance at Transportation Agencies : A Review

of Practices,” 2008.

[4] Y. Zhang, F. R. Proulx, D. R. Ragland, R. J. Schneider, and O. Grembek, “Develop a

Plan to Collect Pedestrian Infrastructure and Volume Data for Future Incorporation

into Caltrans Accident Surveillance and Analysis System Database,” Berkeley, CA,

2014.

[5] B. Riveiro, H. González-Jorge, J. Martínez-Sánchez, L. Díaz-Vilariño, and P. Arias,

“Automatic detection of zebra crossings from mobile LiDAR data,” Opt. Laser

Technol., vol. 70, pp. 63–70, 2015, doi: 10.1016/j.optlastec.2015.01.011.

[6] J. Luo, G. Wu, Z. Wei, K. Boriboonsomsin, and M. Barth, “Developing an aerial-

image-based approach for creating digital sidewalk inventories,” Transp. Res. Rec.,

vol. 2673, no. 8, pp. 499–507, 2019.

[7] Z. Chen, R. Luo, J. Li, J. Du, and C. Wang, “U-Net based road area guidance for

crosswalks detection from remote sensing images,” Can. J. Remote Sens., vol. 47, no.

1, pp. 83–99, 2021.

[8] S. Wang, H. Pan, C. Zhang, and Y. Tian, “RGB-D image-based detection of stairs,

pedestrian crosswalks and traffic signs,” J. Vis. Commun. Image Represent., vol. 25,

no. 2, pp. 263–272, 2014, doi: 10.1016/j.jvcir.2013.11.005.

[9] M. Poggi, L. Nanni, and S. Mattoccia, “Crosswalk recognition through point-cloud

processing and deep-learning suited to a wearable mobility aid for the visually

impaired,” Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinforma., vol. 9281, pp. 282–289, 2015, doi: 10.1007/978-3-319-23222-5_35.

[10] D. Ahmetovic, J. M. Coughlan, R. Manduchi, and S. Mascetti, “Zebra crossing

spotter: Automatic population of spatial databases for increased safety of blind

travelers,” ASSETS 2015 - Proc. 17th Int. ACM SIGACCESS Conf. Comput. Access.,

pp. 251–258, 2015, doi: 10.1145/2700648.2809847.

[11] R. F. Berriel, A. T. Lopes, A. F. De Souza, and T. Oliveira-Santos, “Deep Learning-

Based Large-Scale Automatic Satellite Crosswalk Classification,” IEEE Geosci.

Remote Sens. Lett., vol. 14, no. 9, pp. 1513–1517, 2017, doi:

10.1109/LGRS.2017.2719863.

[12] H. Ning, X. Ye, Z. Chen, T. Liu, and T. Cao, “Sidewalk extraction using aerial and

street view images,” Environ. Plan. B Urban Anal. City Sci., vol. 49, no. 1, pp. 7–22,

Jan. 2022, doi: 10.1177/2399808321995817.

[13] R. F. Berriel, F. S. Rossi, A. F. de Souza, and T. Oliveira-Santos, “Automatic large-

scale data acquisition via crowdsourcing for crosswalk classification: A deep learning

approach,” Comput. Graph. Pergamon, vol. 68, pp. 32–42, 2017, doi:

10.1016/j.cag.2017.08.004.

[14] M. C. Ghilardi, J. Jacques Junior, and I. Manssour, “Crosswalk localization from low

resolution satellite images to assist visually impaired people,” IEEE Comput. Graph.

Appl., vol. 38, no. 1, pp. 30–46, 2018, doi: 10.1109/MCG.2016.50.

126

[15] F. R. ; Proulx, Y. Zhang, and O. Grembek, “Database for Active Transportation

Infrastructure and Volume,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2527, pp.

99–106, 2015.

[16] M. E. Moran, “Where the Crosswalk Ends: Mapping Crosswalk Coverage via

Satellite Imagery in San Francisco,” Environ. Plan. B Urban Anal. City Sci., p.

23998083221081530, 2022.

[17] D. Ahmetovic, R. Manduchi, J. M. Coughlan, and S. Mascetti, “Mind your crossings:

Mining GIS imagery for crosswalk localization,” ACM Trans. Access. Comput., vol.

9, no. 4, 2017, doi: 10.1145/3046790.

[18] D. Ahmetovic, C. Bernareggi, A. Gerino, and S. Mascetti, “ZebraRecognizer:

Efficient and precise localization of pedestrian crossings,” Proc. - Int. Conf. Pattern

Recognit., no. February 2018, pp. 2566–2571, 2014, doi: 10.1109/ICPR.2014.443.

[19] J. M. Coughlan and H. Shen, “Crosswatch: a system for providing guidance to

visually impaired travelers at traffic intersection,” J. Assist. Technol., vol. 7, no. 2,

pp. 131–142, Jun. 2013, doi: 10.1108/17549451311328808.

[20] A. Haselhoff and A. Kummert, “On visual crosswalk detection for driver assistance

systems,” IEEE Intell. Veh. Symp. Proc., pp. 883–888, 2010, doi:

10.1109/IVS.2010.5548074.

[21] V. Ivanchenko, J. Coughlan, and H. Shen, “Staying in the Crosswalk: A System for

Guiding Visually Impaired Pedestrians at Traffic Intersections.,” Assist. Technol. Res.

Ser., vol. 25, no. 2009, pp. 69–73, 2009, doi: 10.3233/978-1-60750-042-1-69.

[22] D. Koester, B. Lunt, and R. Stiefelhagen, “Zebra crossing detection from aerial

imagery across countries,” Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinforma., vol. 9759, pp. 27–34, 2016, doi: 10.1007/978-3-319-41267-

2_5.

[23] L. Lausser, F. Schwenker, and G. Palm, “Detecting zebra crossings utilizing

AdaBoost,” ESANN 2008 Proc. 16th Eur. Symp. Artif. Neural Netw. - Adv. Comput.

Intell. Learn., no. May 2014, pp. 535–540, 2008.

[24] M. Radványi, B. Varga, and K. Karacs, “Advanced crosswalk detection for the bionic

eyeglass,” 2010 12th Int. Workshop Cell. Nanoscale Netw. Their Appl. CNNA 2010,

2010, doi: 10.1109/cnna.2010.5430281.

[25] S. Se and M. Brady, “Road feature detection and estimation,” Mach. Vis. Appl., vol.

14, no. 3, pp. 157–165, 2003, doi: 10.1007/s00138-002-0119-5.

[26] T. Shioyama, “Computer vision based travel aid for the blind crossing roads,” Lect.

Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol.

4179 LNCS, pp. 966–977, 2006, doi: 10.1007/11864349_88.

[27] M. S. Uddin and T. Shioyama, “Bipolarity- And projective invariant-based zebra-

crossing detection for the visually impaired,” IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit. Workshop, vol. 2005-Septe, no. August, 2005, doi:

10.1109/CVPR.2005.423.

[28] S. Utcke, “Grouping based on projective geometry constraints and uncertainty,”

Proc. IEEE Int. Conf. Comput. Vis., vol. 2, pp. 739–746, 1998, doi:

10.1109/iccv.1998.710800.

[29] G. Bhattacharjee and S. Pujari, “Aerial Image Segmentation: A Survey,” Int. J. Appl.

Inf. Syst., vol. 12, pp. 28–34, Aug. 2017, doi: 10.5120/ijais2017451702.

127

[30] N. Goswami, K. Kathiriya, S. Yadav, J. Bhatt, and S. Degadwala, “Object Detection

in High resolution using Satellite Imagery with Deep Learning,” 2021.

[31] L. Gao, W. Song, J. Dai, and Y. Chen, “Road Extraction from High-Resolution

Remote Sensing Imagery Using Refined Deep Residual Convolutional Neural

Network,” Remote Sens., vol. 11, no. 5, Art. no. 5, Jan. 2019, doi:

10.3390/rs11050552.

[32] Q. Shi, X. Liu, and X. Li, “Road Detection From Remote Sensing Images by

Generative Adversarial Networks,” IEEE Access, vol. 6, pp. 25486–25494, 2018, doi:

10.1109/ACCESS.2017.2773142.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778.

[34] J. Luo and G. Wu, “Developing an Interactive Machine-Learning-based Approach for

Sidewalk Digitalization,” 2018, Accessed: Jun. 23, 2022. [Online]. Available:

https://escholarship.org/uc/item/6ht5185q

[35] E. Horváth, C. Pozna, and M. Unger, “Real-time LIDAR-based urban road and

sidewalk detection for autonomous vehicles,” Sensors, vol. 22, no. 1, p. 194, 2021.

[36] H.-Y. Yoon, J.-H. Kim, and J.-W. Jeong, “Classification of the Sidewalk Condition

Using Self-Supervised Transfer Learning for Wheelchair Safety Driving,” Sensors,

vol. 22, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/s22010380.

[37] G. Weld, E. Jang, A. Li, A. Zeng, K. Heimerl, and J. E. Froehlich, “Deep Learning

for Automatically Detecting Sidewalk Accessibility Problems Using Streetscape

Imagery,” in The 21st International ACM SIGACCESS Conference on Computers

and Accessibility, New York, NY, USA, Oct. 2019, pp. 196–209. doi:

10.1145/3308561.3353798.

[38] M. Saha et al., “Project sidewalk: A web-based crowdsourcing tool for collecting

sidewalk accessibility data at scale,” in Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, 2019, pp. 1–14.

[39] A. Abbott, A. Deshowitz, D. Murray, and E. Larson, “WalkNet: A Deep Learning

Approach to Improving Sidewalk Quality and Accessibility,” SMU Data Sci. Rev.,

vol. 1, no. 1, Apr. 2018, [Online]. Available:

https://scholar.smu.edu/datasciencereview/vol1/iss1/7

[40] D. Treccani, L. Díaz-Vilariño, and A. Adami, “Sidewalk detection and pavement

characterisation in historic urban environments from point clouds: Preliminary

results,” in 24th ISPRS Congress on Imaging Today, Foreseeing Tomorrow,

Commission IV, 2021, vol. 43, no. 4–2021, pp. 243–249.

[41] V. Smith, J. Malik, and D. Culler, “Classification of sidewalks in street view

images,” in 2013 International Green Computing Conference Proceedings, Jun.

2013, pp. 1–6. doi: 10.1109/IGCC.2013.6604476.

[42] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001,

doi: 10.1023/A:1010933404324.

[43] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Graph-Based Image

Segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, Sep. 2004, doi:

10.1023/B:VISI.0000022288.19776.77.

128

[44] B. Kang, S. Lee, and S. Zou, “Developing sidewalk inventory data using street view

images,” Sensors, vol. 21, no. 9, p. 3300, 2021.

[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, Inception-

ResNet and the Impact of Residual Connections on Learning,” presented at the

Thirty-First AAAI Conference on Artificial Intelligence, Feb. 2017. Accessed: Jun.

22, 2022. [Online]. Available:

https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806

[46] J. Luttrell et al., “A deep transfer learning approach to fine-tuning facial recognition

models,” in 2018 13th IEEE Conference on Industrial Electronics and Applications

(ICIEA), May 2018, pp. 2671–2676. doi: 10.1109/ICIEA.2018.8398162.

[47] J. B. Luttrell IV, Z. Zhou, C. Zhang, P. Gong, and Y. Zhang, “Facial Recognition via

Transfer Learning: Fine-Tuning Keras_vggface,” in 2017 International Conference

on Computational Science and Computational Intelligence (CSCI), 2017, pp. 576–

579.

[48] J. Luttrell, T. Liu, C. Zhang, and Z. Wang, “Predicting protein residue-residue

contacts using random forests and deep networks,” BMC Bioinformatics, vol. 20, no.

2, p. 100, 2019.

[49] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition.,” in BMVC,

2015, vol. 1, p. 6.

[50] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The FERET database and

evaluation procedure for face-recognition algorithms,” Image Vis. Comput., vol. 16,

no. 5, pp. 295–306, 1998.

[51] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

Composing Robust Features with Denoising Autoencoders,” in Proceedings of the

25th International Conference on Machine Learning, New York, NY, USA, 2008,

pp. 1096–1103. doi: 10.1145/1390156.1390294.

[52] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked

Denoising Autoencoders: Learning Useful Representations in a Deep Network with a

Local Denoising Criterion,” J Mach Learn Res, vol. 11, pp. 3371–3408, Dec. 2010.

[53] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,”

Front. Comput. Sci., vol. 14, no. 2, pp. 241–258, 2020, doi: 10.1007/s11704-019-

8208-z.

[54] S. Aslani et al., “Multi-branch convolutional neural network for multiple sclerosis

lesion segmentation,” NeuroImage, vol. 196, pp. 1–15, 2019, doi:

10.1016/j.neuroimage.2019.03.068.

[55] H. Shen, Y. Lin, Q. Tian, K. Xu, and J. Jiao, “A comparison of multiple classifier

combinations using different voting-weights for remote sensing image classification,”

Int. J. Remote Sens., vol. 39, no. 11, pp. 3705–3722, 2018, doi:

10.1080/01431161.2018.1446566.

[56] Y. Sun, L. Zhu, G. Wang, and F. Zhao, “Multi-Input Convolutional Neural Network

for Flower Grading,” J. Electr. Comput. Eng., vol. 2017, 2017, doi:

10.1155/2017/9240407.

[57] Y. Xu, B. Du, and L. Zhang, “Multi-Source Remote Sensing Data Classification via

Fully Convolutional Networks and Post-Classification Processing,” in IGARSS 2018 -

129

2018 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2018, pp.

3852–3855. doi: 10.1109/IGARSS.2018.8518295.

[58] X. Du and A. Zare, “Multiresolution Multimodal Sensor Fusion for Remote Sensing

Data With Label Uncertainty,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp.

2755–2769, Apr. 2020, doi: 10.1109/TGRS.2019.2955320.

[59] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT: Real-Time Instance

Segmentation,” 2019, pp. 9157–9166. Accessed: Jun. 26, 2022. [Online]. Available:

https://openaccess.thecvf.com/content_ICCV_2019/html/Bolya_YOLACT_Real-

Time_Instance_Segmentation_ICCV_2019_paper.html

[60] S. Branson, J. D. Wegner, D. Hall, N. Lang, K. Schindler, and P. Perona, “From

Google Maps to a fine-grained catalog of street trees,” ISPRS J. Photogramm.

Remote Sens., vol. 135, pp. 13–30, Jan. 2018, doi: 10.1016/j.isprsjprs.2017.11.008.

[61] S. Workman, M. Zhai, D. J. Crandall, and N. Jacobs, “A Unified Model for Near and

Remote Sensing,” 2017, pp. 2688–2697. Accessed: Jun. 22, 2022. [Online].

Available:

https://openaccess.thecvf.com/content_iccv_2017/html/Workman_A_Unified_Model

_ICCV_2017_paper.html

[62] R. Cao et al., “Integrating Aerial and Street View Images for Urban Land Use

Classification,” Remote Sens., vol. 10, no. 10, Art. no. 10, Oct. 2018, doi:

10.3390/rs10101553.

[63] E. J. Hoffmann, Y. Wang, M. Werner, J. Kang, and X. X. Zhu, “Model Fusion for

Building Type Classification from Aerial and Street View Images,” Remote Sens.,

vol. 11, no. 11, Art. no. 11, Jan. 2019, doi: 10.3390/rs11111259.

[64] A. Bansal, X. Chen, B. Russell, A. Gupta, and D. Ramanan, “PixelNet:

Representation of the pixels, by the pixels, and for the pixels.” arXiv, Feb. 21, 2017.

doi: 10.48550/arXiv.1702.06506.

[65] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017, doi:

10.1109/TPAMI.2016.2644615.

[66] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

Inception Architecture for Computer Vision,” 2016, pp. 2818–2826. Accessed: Jun.

28, 2022. [Online]. Available: https://www.cv-

foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Incept

ion_CVPR_2016_paper.html

[67] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 Million

Image Database for Scene Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 40, no. 6, pp. 1452–1464, Jun. 2018, doi: 10.1109/TPAMI.2017.2723009.

[68] Z. Wang, B. Liu, S. Schulter, and M. Chandraker, “A Parametric Top-View

Representation of Complex Road Scenes,” 2019, pp. 10325–10333. Accessed: Jun.

26, 2022. [Online]. Available:

https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_A_Parametric_Top-

View_Representation_of_Complex_Road_Scenes_CVPR_2019_paper.html

130

[69] C. Karney, geographiclib: The geodesic routines from GeographicLib. Accessed:

Jun. 12, 2022. [OS Independent]. Available:

https://geographiclib.sourceforge.io/Python/2.0

[70] Center for History and New Media, “Zotero Quick Start Guide.”

http://zotero.org/support/quick_start_guide

[71] rbrundritt, “Bing Maps Tile System - Bing Maps.” https://docs.microsoft.com/en-

us/bingmaps/articles/bing-maps-tile-system (accessed Jun. 13, 2022).

[72] J. Buchner, “imagehash/imagehash.py at master · JohannesBuchner/imagehash ·

GitHub,” Github, 2020.

https://github.com/JohannesBuchner/imagehash/blob/master/imagehash.py (accessed

Oct. 17, 2021).

[73] “MARIS.” https://www.maris.state.ms.us/Home.html#gsc.tab=0 (accessed Jun. 05,

2022).

[74] “Welcome to the QGIS project!” https://qgis.org/en/site/ (accessed Jun. 13, 2022).

[75] J. Brooks, coco-annotator. 2022. Accessed: Jun. 05, 2022. [Online]. Available:

https://github.com/jsbroks/coco-annotator

[76] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in European

conference on computer vision, 2014, pp. 740–755.

[77] P. Langley and H. A. Simon, “Applications of machine learning and rule induction,”

Commun. ACM, vol. 38, no. 11, pp. 54–64, Nov. 1995, doi: 10.1145/219717.219768.

[78] G. Rebala, A. Ravi, and S. Churiwala, “Machine Learning Definition and Basics,” in

An Introduction to Machine Learning, G. Rebala, A. Ravi, and S. Churiwala, Eds.

Cham: Springer International Publishing, 2019, pp. 1–17. doi: 10.1007/978-3-030-

15729-6_1.

[79] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para.

Cornell Aeronautical Laboratory, 1957.

[80] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition,” in Competition and

cooperation in neural nets, Springer, 1982, pp. 267–285.

[81] Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recognition,”

Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989, doi:

10.1162/neco.1989.1.4.541.

[82] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and Scalability of GPU-Based

Convolutional Neural Networks,” in 2010 18th Euromicro Conference on Parallel,

Distributed and Network-based Processing, Feb. 2010, pp. 317–324. doi:

10.1109/PDP.2010.43.

[83] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, 2012, pp. 1097–1105. Accessed: Sep. 18, 2017. [Online]. Available:

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-

neural-networks

[84] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,” Int. J.

Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[85] “CIFAR-10 and CIFAR-100 datasets.” https://www.cs.toronto.edu/~kriz/cifar.html

(accessed Jun. 28, 2022).

131

[86] “Image Classification using CNN for Beginners.”

https://kaggle.com/code/anandhuh/image-classification-using-cnn-for-beginners

(accessed Jun. 28, 2022).

[87] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.,

pp. 1–14, 2015.

[88] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:

Inverted Residuals and Linear Bottlenecks,” ArXiv180104381 Cs, Jan. 2018,

Accessed: Mar. 28, 2019. [Online]. Available: http://arxiv.org/abs/1801.04381

[89] H. Iqbal, PlotNeuralNet. 2022. Accessed: Jun. 05, 2022. [Online]. Available:

https://github.com/HarisIqbal88/PlotNeuralNet

[90] A. Kelly, Mask R-CNN for Object Detection and Segmentation. 2022. Accessed: Jun.

04, 2022. [Online]. Available: https://github.com/akTwelve/Mask_RCNN

[91] Mask R-CNN for Object Detection and Segmentation. Matterport, Inc, 2022.

Accessed: Jun. 04, 2022. [Online]. Available:

https://github.com/matterport/Mask_RCNN

[92] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” arXiv,

arXiv:1703.06870, Jan. 2018. doi: 10.48550/arXiv.1703.06870.

[93] T. A. Petritsch, C. B. Fellerhoff, J. P. Kubicki, and T. Scorsone, “Non-Motorized

Facility Data Collection for Large Networks: Methods, Accuracy, and Application,”

presented at the Transportation Research Board 94th Annual MeetingTransportation

Research Board, 2015. Accessed: Jun. 27, 2022. [Online]. Available:

https://trid.trb.org/view/1337524

[94] “MySQL :: Developer Zone.” https://dev.mysql.com/ (accessed Jun. 22, 2022).

[95] “Camera2 overview,” Android Developers.

https://developer.android.com/training/camera2 (accessed Jun. 22, 2022).

[96] Keras, “Keras documentation: MobileNet, MobileNetV2, and MobileNetV3.”

https://keras.io/api/applications/mobilenet/ (accessed Jun. 23, 2022).

[97] R. Berriel, Automatic Large-Scale Data Acquisition via Crowdsourcing for

Crosswalk Classification: A Deep Learning Approach. 2022. Accessed: Jun. 24,

2022. [Online]. Available: https://github.com/rodrigoberriel/streetview-crosswalk-

classification

[98] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning Deep

Features for Discriminative Localization,” 2016, pp. 2921–2929. Accessed: Jun. 18,

2022. [Online]. Available:

https://openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_Deep_Featur

es_CVPR_2016_paper.html

[99] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-

CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,”

in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp.

618–626. doi: 10.1109/ICCV.2017.74.

[100] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps.” arXiv, Apr. 19, 2014.

doi: 10.48550/arXiv.1312.6034.

132

[101] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for

Simplicity: The All Convolutional Net.” arXiv, Apr. 13, 2015. doi:

10.48550/arXiv.1412.6806.

[102] A. Mahendran and A. Vedaldi, “Salient Deconvolutional Networks,” in Computer

Vision – ECCV 2016, Cham, 2016, pp. 120–135. doi: 10.1007/978-3-319-46466-4_8.

[103] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”

in European conference on computer vision, 2014, pp. 818–833.

[104] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “SmoothGrad:

removing noise by adding noise.” arXiv, Jun. 12, 2017. doi:

10.48550/arXiv.1706.03825.

[105] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, “Sanity

Checks for Saliency Maps,” in Advances in Neural Information Processing Systems,

2018, vol. 31. Accessed: Jun. 24, 2022. [Online]. Available:

https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b873

7-Abstract.html

[106] H. Zhang et al., “Context Encoding for Semantic Segmentation,” 2018, pp. 7151–

7160. Accessed: Jun. 24, 2022. [Online]. Available:

https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Context_Encoding_fo

r_CVPR_2018_paper.html

[107] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick, “Inside-Outside Net: Detecting

Objects in Context With Skip Pooling and Recurrent Neural Networks,” 2016, pp.

2874–2883. Accessed: Jun. 24, 2022. [Online]. Available:

https://openaccess.thecvf.com/content_cvpr_2016/html/Bell_Inside-

Outside_Net_Detecting_CVPR_2016_paper.html

[108] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert, “An empirical

study of context in object detection,” in 2009 IEEE Conference on Computer Vision

and Pattern Recognition, Jun. 2009, pp. 1271–1278. doi:

10.1109/CVPR.2009.5206532.

[109] R. Mottaghi et al., “The Role of Context for Object Detection and Semantic

Segmentation in the Wild,” 2014, pp. 891–898. Accessed: Jun. 24, 2022. [Online].

Available: https://www.cv-

foundation.org/openaccess/content_cvpr_2014/html/Mottaghi_The_Role_of_2014_C

VPR_paper.html

[110] A. Oliva and A. Torralba, “The role of context in object recognition,” Trends Cogn.

Sci., vol. 11, no. 12, pp. 520–527, Dec. 2007, doi: 10.1016/j.tics.2007.09.009.

[111] R. Shetty, B. Schiele, and M. Fritz, “Not Using the Car to See the Sidewalk --

Quantifying and Controlling the Effects of Context in Classification and

Segmentation,” 2019, pp. 8218–8226. Accessed: Jun. 24, 2022. [Online]. Available:

https://openaccess.thecvf.com/content_CVPR_2019/html/Shetty_Not_Using_the_Car

_to_See_the_Sidewalk_--_Quantifying_CVPR_2019_paper.html

[112] Keras, “Keras documentation: VGG16 and VGG19.”

https://keras.io/api/applications/vgg/ (accessed Jun. 24, 2022).

[113] R. R. Shetty, M. Fritz, and B. Schiele, “Adversarial Scene Editing: Automatic Object

Removal from Weak Supervision,” in Advances in Neural Information Processing

Systems, 2018, vol. 31. Accessed: Jun. 24, 2022. [Online]. Available:

133

https://proceedings.neurips.cc/paper/2018/hash/c911241d00294e8bb714eee2e83fa47

5-Abstract.html

	Data Collection and Machine Learning Methods for Automated Pedestrian Facility Detection and Mensuration
	Recommended Citation

	tmp.1657223441.pdf.flrNN

