The University of Southern Mississippi

The Aquila Digital Community

Dissertations

Summer 8-1-2022

Data Collection and Machine Learning Methods for Automated
Pedestrian Facility Detection and Mensuration

Joseph Bailey Luttrell IV
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

6‘ Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

Recommended Citation

Luttrell, Joseph Bailey 1V, "Data Collection and Machine Learning Methods for Automated Pedestrian
Facility Detection and Mensuration" (2022). Dissertations. 2034.
https://aquila.usm.edu/dissertations/2034

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F2034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=aquila.usm.edu%2Fdissertations%2F2034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=aquila.usm.edu%2Fdissertations%2F2034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/2034?utm_source=aquila.usm.edu%2Fdissertations%2F2034&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

DATA COLLECTION AND MACHINE LEARNING METHODS FOR AUTOMATED
PEDESTRIAN FACILITY DETECTION AND MENSURATION

by

Joseph Bailey Luttrell IV

A Dissertation
Submitted to the Graduate School,
the College of Arts and Sciences
and the School of Computing Sciences and Computer Engineering
at The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Approved by:

Dr. Chaoyang Zhang, Committee Chair
Dr. Yuanyuan Zhang
Dr. Zhaoxian Zhou
Dr. Bo Li
Dr. James V. Lambers

August 2022

COPYRIGHT BY
Joseph Bailey Luttrell IV

2022

Published by the Graduate School

THE UNIVERSITY OF

4 SOUTHERN
NN MISSISSIPPL

—A

)

ABSTRACT

Large-scale collection of pedestrian facility (crosswalks, sidewalks, etc.) presence
data is vital to the success of efforts to improve pedestrian facility management, safety
analysis, and road network planning. However, this kind of data is typically not available
on a large scale due to the high labor and time costs that are the result of relying on
manual data collection methods. Therefore, methods for automating this process using
techniques such as machine learning are currently being explored by researchers. In our
work, we mainly focus on machine learning methods for the detection of crosswalks and
sidewalks from both aerial and street-view imagery. We test data from these two
viewpoints individually and with an ensemble method that we refer to as our “dual-
perspective prediction model”. In order to obtain this data, we developed a data collection
pipeline that combines crowdsourced pedestrian facility location data with aerial and
street-view imagery from Bing Maps. In addition to the Convolutional Neural Network
used to perform pedestrian facility detection using this data, we also trained a
segmentation network to measure the length and width of crosswalks from aerial images.
In our tests with a dual-perspective image dataset that was heavily occluded in the aerial
view but relatively clear in the street view, our dual-perspective prediction model was
able to increase prediction accuracy, recall, and precision by 49%, 383%, and 15%,
respectively (compared to using a single perspective model based on only aerial view
images). In our tests with satellite imagery provided by the Mississippi Department of
Transportation, we were able to achieve accuracies as high as 99.23%, 91.26%, and
93.7% for aerial crosswalk detection, aerial sidewalk detection, and aerial crosswalk
mensuration, respectively. The final system that we developed packages all of our

machine learning models into an easy-to-use system that enables users to process large
batches of imagery or examine individual images in a directory using a graphical
interface. Our data collection and filtering guidelines can also be used to guide future

research in this area by establishing standards for data quality and labelling.

ACKNOWLEDGMENTS

First, I would like to thank my main advisor and committee chair, Dr. Chaoyang
Zhang for his mentorship, support, and guidance during my academic career at the
University of Southern Mississippi. | would also like to extend equal gratitude to Dr.
Yuanyuan Zhang for her excellent management of my main research project during this
time. Also, | would like to thank all of the other members of my committee, including Dr.
James Lambers, Dr. Bo Li, and Dr. Zhaoxian Zhou for their participation and guidance.
Finally, I would like to thank Dr. Zheng Wang for his involvement in my early academic
career at the University of Southern Mississippi and for introducing me to computer

science research.

TABLE OF CONTENTS

ABSTRACT . et i
ACKNOWLEDGMENTS ... 1\
LIST OF TABLES. ... oottt b e be e e IX
LIST OF ILLUSTRATIONS ...t X
LIST OF ABBREVIATIONSo Xiv
CHAPTER | - INTRODUCTION ...ttt 1
1.1 The need for automated pedestrian facility data collectioncccccvevviieinennns 1
1.2 Literature review and related StUTIESccoivieriiiiiieicireee e 2
1.2.2 Previous crosswalk data collection methods............ccocovviiiniiiincncicc 4
1.2.3 Previous automated crosswalk detection StUTIescccevvvvrereiicncnicnnnenn 6
1.2.4 Overview of previous crosswalk detection modelsccccccveveiveieiicinennns 7
1.2.5 Comparison with previous sidewalk detection StUdi€sS...........cccccevveveiieieennns 9
1.2.5.1 Overview of previous sidewalk studies using aerial imagery.................... 9

1.2.5.2 Overview of previous sidewalk studies using street-view imagery.......... 10

1.3 Research goals and CONIIDULIONS...........ccciiiiiiiiieeie e 12
1.3.1 Multi-perspective data processing OVEIVIEWcccevvvereeieereeriesreeseeseneenns 16
1.3.1.1 General methods for utilizing multi-perspective data................cccceveennnns 17

1.3.1.2 Methods for fusing aerial and street-view imagerycccceevevveiiieiinnns 18

1.3.2 Application to Department of Transportation data...............ccceevveiiieiiieiinennn. 22

\Y

CHAPTER Il - DATA COLLECTION AND PROCESSINGccccocvviiiiiiiiici 23

2.1 Overview of dataset structure and deSIgNcccveiiierieiesie e 23
2.2 Data collection PIPEIINEooiiiiiiiii e 24
2.2.2 Street-view data collection and correction procedure...........cccevererenenenenn. 28
2.2.3 Data fIITEIINGeeeeeee e 31
2.2.3.1 Distance-based filteringcccvoveiiiiii i 32
2.2.3.2 Perceptual hash-based filteringc.cccoveiiiiicii i 33
2.2.3.3 Manual verification and dataset Cleaningcccocevvveveviievieiesiieseenns 35

2.3 GIS data PreParationcccoeeeiirierieesieee ettt 36
2.4 Summary of @ll datasetsS..........ccoiiriiiiiiiec e 37
2.4.2 ALTTAl JALASELS ..ot 39
2.4.3 SEreet-VIeW QaAASELScovviriiieiiiieee s 40
2.4.4 Dual-perspective datasets..........cccvveieeieiieie e 40
2.4.5 SegMENtation dALASELScieiiririeieiee e 42
2.4.6 Department of Transportation datasetscocevereririeniieieiesesc s 43
2.4.7 Dataset PartitioNINgcoereriiiiiiiei e 44
CHAPTER Il - MACHINE LEARNING THEORY AND METHODOLOGY 48
3.1 Machine 1earning thEOIYccovveiii it 48
3.1.2 Machine learning for image classification.............c.cccovveviviiieiie i, 50
3.1.2.1 Convolutional neural networks_, ... 51

4

3.2 MethodolOgy OVEIVIEWc..ciuieiicieieece et 54

3.3 The VGG16 architecture and Python implementation.............cccccccovevveieiieieenenn, 56
3.4 DPPM OPEIALION. ...ttt bbbt 62
3.5 MENSUItION OVEIVIEWuviiviiiieiieiiesiee ettt ste e sttt e st e e eneesneenaeenee e 64
3.6 Segmentation implementation and architeCture...........cccooeveveiieninnece e 65
3.6.2 Mask R-CNN python implementation.............c.ccoccveveiiieie e 66
3.7 Standard evaluation MELIICS........ccoiiiiiiiieieiee e e 69
3.8 EVAlUAtION MELNOUS.eciiieiiie e 70
3.8.1 Detection and segmentation eValuationccoevirinieieienesc s 71
3.8.2 Prediction visualization ProCEAUNE.ccueiveiireiiresieieeee e 72
3.9 Protype pedestrian facility data crowdsourcing app development 73
CHAPTER IV — RESULTS AND DISCUSSION......cctiiiiiiiiiieiiiee it sivee e 75
4.1 LoCal deteCtioN FESUILSocveeeieieie e e 75
4.1.1 Local crosswalk detection teSt reSUILS.........cccovireriiininieeee e 75
4.1.2 Local sidewalk detection reSUILSccooveiveie i 79
4.2 Dual-perspective deteCtion reSUILSccoviiiiiieiiiee s 83
4.3 Local segmentation reSUIS..........ccveiiiiiii i 84
4.4 Department of Transportation reSUILSccceviviiie e 86
4.4.1 DOT detection teSt reSUIS.......ccuiiiiiiee e 86
4.4.2 DOT crosswalk segmentation test _r_esults .. 87

VII

4.5 Dual-perspective reSult analySisccccveieiieiieie e 91

4.6 DPPM external test results individual analysis..........cccccvevevieieeieiie v 92
4.7 Time and cost estimate for large area proCessingc.coevreeeeeeierenenesesesennns 96
4.8 Final system and graphical interface prototypeccccooevvireiiniiienenc e 98
4.9 Prototype pedestrian facility data crowdsourcing app testingc.cc.ccecevvrvnins 102
4.10 Preliminary visual analysis and manual object removal experimentation.......... 105
CHAPTER V — CONCLUSIONS AND FUTURE WORKccoeiiiiieiieeeeieeis 109
5.1 CONCIUSION ...ttt et 109
5.2 FULUIE WOTK ...ttt bbb 113
5.2.1 ManUSCIIPLS 1N PrOGIESSc.veviviiiiiieieeieieie sttt sttt se bbb eneas 114
5.2.2 Sliding window method for large satellite image processingcccoue..... 115
5.2.3 Future segmentation model improvements..........c.ccocvveveveeveevesiese e 117

5.2.4 Visual analysis of model operation for architecture optimization and

INtErpretability PUIPOSES.cviiieeiece ettt re e 119
5.2.5 ldentified challenges and future direCtion.............ccocovvvreiiieieneiencne s 121
REFERENGES ...ttt e et e e e sna e e e nnae e e snaeeenneeeans 125

viii

LIST OF TABLES

Table 1.1 A summary of related studies that explore automated crosswalk detection....... 3
Table 2.1 Manual data filtering guidelingsc.cooveiviieiicie e 35
Table 2.2 The size and description of our final datasets.............cccocevveveiieiiereseiees 38
Table 2.3 A description of all models used in our Work............ccccoeviiieiieii e 39
Table 2.4 Subset size for each final datasetccoeiiiiiiieiin e 46
Table 3.1 Parameter configuration for our Keras (Python) VGG16 implementation....... 61

Table 3.2 The values of all parameters used when training our Mask R-CNN
SegMENtatioN MOMEL.cviiiiiice e e 66

Table 4.1 Comparing SPPM and DPPM performance on an external crosswalk detection

LIST OF ILLUSTRATIONS

Figure 1.1 Example images of heavily occluded crosswalks in our aerial imagery data ... 4

Figure 2.1 An overview of the data collection procCess...........ccccevviverivereeiesieese e 26
Figure 2.2 An example of positive (“crosswalk™) imagesccccvevverriiieniiieniiieesiiee e, 27
Figure 2.3 An example of negative (“no-crosswalk™) imagesccvevvrrriieeniieeniveesninnn. 27
Figure 2.4 An example of our street-view image correction methodcccccoeevernennn. 31
Figure 2.5 An example of distance-based duplicate filteringccccocevveveiieieciesnenn, 33

Figure 2.6 Searching for duplicates and removing them using a perceptual hashing script

Figure 2.7 Extracting processable images from the large format GIS data....................... 37
Figure 2.8 An example crosswalk being labelled within the COCO annotator interface. 42
Figure 2.9 An example of two images from both of our MDOT testing datasets

(0 LC] (=Tod 1o) OSSOSO 44
Figure 3.1 An illustrated example of a single layer perceptron...........cccccevevvvevvcciesnenne. 49
Figure 3.2 An example illustration of a multilayer perceptron with two hidden layers ... 50

Figure 3.3 An example illustration of a convolutional neural network for classifying

CIFAR [85] IMAQES. ..c.veeuieivieiteeie sttt ettt ettt e e e s st e e sbeereesteebeannesaeereenne e 53
Figure 3.4 An example of Mmax POOlINGccoveiieiiiiciice e 54
Figure 3.5 Dual-perspective prediction WOrkflowccccoeoveiiiiiiieiiccceeece e, 56
Figure 3.6 A visual overview of our implementation of the VGGL16 architecture 58
Figure 3.7 Visualizing VGG16 layer aCtivatioNnS...........cccueivveiieiiiieiie e siee e 58
Figure 3.8 An example of image augmentation during training.cccceeeevvvevieesiveeenne. 60
Figure 3.9 An overview of the segmentation process from training to testing................. 65

X

Figure 3.10 An overview of the two stages of the Mask R-CNN architecture.................. 66
Figure 3.11 Visualizing four example input images and their corresponding masks as they
are loaded by the segmentation Model............cccooviiieiiiieieec e 68
Figure 3.12 Using python functions to generate a more accurate measurement of a

PrediCted CrOSSWALK..........cciiiieie ettt rs 72
Figure 3.13 Example layer activations displayed by Keras and matplotlib...................... 73

Figure 4.1 The confusion matrix for the local test of the aerial crosswalk detection model

T Vol o) OSSR 76
Figure 4.2 Aerial crosswalk detection training acCuraCy CUrVe...........ccocvevveeeerreevesueenns 77
Figure 4.3 Aerial crosswalk detection training 10SS CUIVE...........cccccoevvevecieiee e 77

Figure 4.4 Street-view crosswalk detection local test confusion matrix (97.24% acc) 78
Figure 4.5 Street-view crosswalk detection training accuraCy CUrVeccceccvevverveenne. 78
Figure 4.6 Street-view crosswalk detection training l0SS CUIVEcccccveeveieecieciesieenne. 79

Figure 4.7 Aerial sidewalk detection model local test confusion matrix (91.55% acc) ... 80

Figure 4.8 Aerial sidewalk detection training aCCuraCy CUrVe...........ccccevveveieesreervesreenns 80
Figure 4.9 Aerial sidewalk detection training 10SS CUIVE...........cccvivevvevieeiie i 81
Figure 4.10 Street-view sidewalk detection local test confusion matrixcc......... 81
Figure 4.11 Street-view sidewalk detection training accuracy CUrveccceeevevverveenne. 82
Figure 4.12 Street-view sidewalk detection training 10SS CUIVEc.cccoevveieececiecieenne. 82
Figure 4.13 Three examples of good local segmentation predictions.ccccccvevvveenen. 85
Figure 4.14 Three examples of less successful local segmentation predictions. 85
Figure 4.15 The confusion matrices for two tests on the DOT data.cccccovevveiveennn. 87
Figure 4.16 Evaluating length measurement aCCUraCy.cccouevvuverieiieesieeriee e eiee e 89

Xi

Figure 4.17 A correct prediction with only a difference of 0.13m from the true length. . 91

Figure 4.18 DPPM eXaMPIE L.....ccviiiiiieiiee ettt 94
Figure 4.19 DPPM eXaMPIE 2....ccveiieiieie ettt 95
Figure 4.20 DPPM eXamMPIE 3....ccviiieiieie ettt 95
Figure 4.21 DPPM eXaMPIE 4.....cveiieiieie ettt 96
Figure 4.22 DPPM eXaMPIE 5....ocviiieiieieee sttt 96
Figure 4.23 An overview of the components of the final systemcccccccoveviiieiennn. 98
Figure 4.24 The main window of the interface..........c.cccoovvvii i 101

Figure 4.25 Performing aerial crosswalk detection on a single image using the interface

Figure 4.27 Example street images gathered using the prototype crowdsourcing app... 103

Figure 4.28 The user interface of the prototype pedestrian facility data crowdsourcing app

Figure 4.29 An example of three images collected by the app and processed by the
WEDSEIVE ...ttt et bbbttt et et et e ettt e e s e e st e st et be st benrenreas 104
Figure 4.30 Visualizing the average activation values from selected layers in the street-
view crosswalk detection model for the purpose of investigating the incorrect prediction
of the INPUt IMAJE INTOW B ..o e 106
Figure 4.31 Visualizing the average activation values from selected layers in the street-
view crosswalk detection model to investigate the effects of removing various important
IMAQJE TRALUIES. ...eivieiie ettt e e e b e e et e e sbeeeteesree e 108

Xii

Figure 5.1 A working example of the sliding window methodccccceieiieieennn 117
Figure 5.2 Experimenting with larger segmentation training images.cccocvevvvevnene. 118

Figure 5.3 Successful segmentation results using larger input images..........c.c.ccocvveveee. 119

Xiii

LIST OF ABBREVIATIONS

ACC Accuracy

CNN Convolutional Neural Network

DOT Department of Transportation

DPPM Dual Perspective Prediction Model
MDOT Mississippi Department of Transportation
POI Point of Interest

SPPM Single Perspective Prediction Model

Xiv

CHAPTER I - INTRODUCTION
1.1 The need for automated pedestrian facility data collection

Collecting crosswalk presence data at scale is vital for improving the safety and
convenience of roadways for pedestrians. Such information is necessary for finding
pedestrian related crash causing factors, identifying locations that would benefit from
additional crosswalks, and evaluating the connectivity of the pedestrian network.
Recognizing the importance of crosswalk presence data to safety, thirty-seven U.S. State
Departments of Transportation (DOTSs) have prioritized improving pedestrian facility
inventory, particularly concerning crosswalks, as an important action item in their
Strategic Highway Safety Plans. In a recently published guidebook on measuring
multimodal network connectivity [1], it is emphasized that ‘‘results are only informative
to the extent that they measure the ‘right’ network—the one that pedestrians are likely to
use in real life.”” This “right” network is composed of crosswalks and sidewalks that are
present in the real world. However, the data about the presence of crosswalks is often not
available or collected on a large scale. A National Cooperative Highway Research
Program (NCHRP) synthesis on the availability of pedestrian infrastructure data
concluded that 31 of the 40 responding DOTS report collection of pedestrian
infrastructure data and only 12 of the 31 states have made the data available to the public.
Regarding crosswalk presence data, only 11 states reported collection of such data.

The limited availability of crosswalk data at scale could be caused mainly by
challenges inherent in the current data collection approaches, including field data
collection and manual digitization based on aerial images [2]-[4]. Human errors, high
cost for time and labor, safety concerns for data collectors, and the corresponding

1

concerns about standardizing, updating, and maintaining data could raise the hesitation of
decision makers to undergo large-scale collection of this complex and repetitive yet
essential data. To address these data collection challenges, promising automated methods
have been studied by researchers via employing computer science techniques to
automatically collect crosswalk presence data from aerial view or street-view images (see
Table 1.1). Aerial view imagery includes images taken from an airplane, drone, or
satellite, and provides pictures of the area from an overhead angle. Street-view imagery is
taken on the street by cameras mounted on a vehicle (e.g., Google Street View and Bing
Streetside View) or from cellphones. The idea of these automated methods is that, by
using image processing algorithms, crosswalk presence can be detected automatically
from images of locations of interest.

1.2 Literature review and related studies

There are several studies that have previously explored the automated detection of
pedestrian facilities. However, many limitations can be found in these existing automation
methods, such as the use of small training datasets, a lack of ground truth checking for
occluded candidates, and utilizing obsolete algorithms (classical image processing
techniques). Table 1.1 gives an overview of some other studies along with the accuracy
rates they report and a summary of the limitations that they face. Note that, due to
differences in the type of data being collected (different geographic areas, resolutions,
dataset sizes, etc.), it is not possible to directly compare these results. However, we believe
that our results are comparable to the best methods given our overall high performance in
our tests (see chapter V). Also, it should be noted that our goals for this project (discussed
in section 1.3) did not involve optimizing the performance of all of the methods that we

2

implemented. The remaining subsections here go into more specific details by comparing
other aspects of our work (such as model combination strategies and architecture) to similar

published studies.

Table 1.1 A summary of related studies that explore automated crosswalk detection

Image Researchers | Year Objects Methods Accuracy Limitations
Types Detected rates
Riveiroetal. | 2015 | Zebra Image 83.33% - Small training
[5] crossings segmentation dataset size
- No ground truth
verification
- Traditional
Aerial _ algorithm
Images Luo et al. 2019 | Sidewalks CNN- o 92.6%- -no occlusion
[6] classification | 97.22% | handling
-image extraction
using automated
zooming in GIS
software is likely
slow for large areas
Chen et al. 2021 | Crosswalks | Image 97.71% -no occlusion
[7] segmentation handling
and CNN -Heavily tuned
object parameters with no
detection blind test
Wangetal. | 2014 | Crosswalks | Support 78.90% - Small training
[8] Vector dataset size
Machine - No ground truth
classifier verification
- Traditional
algorithm
Poggietal. | 2015 | Crosswalks | CNN 88.97% | - Small training
. [9] Classification dataset size
Street side
images - Np_gro_und truth
verification
Ahmetovic 2016 | Zebra Image 93% - Individual roads
etal. [10] crossings segmentation (not a network)
- No ground truth
verification
R.F. Berriel | 2017 | Crosswalks | CNN 94.12% | - No ground truth
etal. [11] Classification verification
Dual Ning et al. 2022 | Sidewalks | Image 85.69%- | -occlusion handling
perspective | [12] segmentation | 89.49% but no data filtering
(F1) guidelines
-segmentation only

Among all of these limitations, handling occluded crosswalks has been recognized
as the most challenging one that greatly impedes the development and application of these
automated methods in real world situations [9], [13]. The crosswalk in an image could be
partially or entirely occluded by cars, trees, pedestrians, etc. Figure 1.1 illustrates several
examples of occluded crosswalks in aerial view images. Occlusion often causes the
omission of a crosswalk [5], [13], [14], erroneous recognition of “crosswalk-like”
markings, or even malfunction of the algorithm [5]. However, the detection of crosswalks

that are mostly or even entirely occluded remains a difficult problem.

Figure 1.1 Example images of heavily occluded crosswalks in our aerial imagery data

1.2.2 Previous crosswalk data collection methods
According to a related study [15], there are two approaches commonly used to
collect crosswalk data, including field investigation and computer-based digitization. In

the first approach, data collectors will go out in the field to observe and measure the

4

facilities manually. They record the measurements either on paper or on handheld devices
for future digitization. The second approach is more advanced since data collection
would be conducted mainly on a computer using aerial images and video logs. However,
it still requires additional field investigation for ground truth verification whenever the
object of interest is occluded in the aerial images. For example, researchers in [16] were
able to manually review satellite imagery of roughly 6,400 intersections in San Francisco
and found that crosswalks are present at 58% of these locations. One researcher
performing this analysis required 90 hours to complete the task. This amount of time is
likely too high for any department of transportation or planning department to dedicate to
such a task on any regular basis. The amount of time they give for processing this one
city (~47 square miles) is comparable to the amount of time that we have estimated for
our system to process satellite imagery of the entire area of Forrest County in Mississippi
(see section 4.7). Furthermore, they only focus on intersections and do not consider
midblock crossings. However, our method scans the entire Satellite image and includes
all roadway surfaces. Our time estimate would be much lower if we focused only on
roadways, and midblock crossings would still be included.

The high level of human labor involvement of these two types of approaches
inevitably leads to specific limitations. First, errors may be introduced by human data
collectors becoming fatigued from traveling in the field or from looking at computer
screens for long periods of time. Second, time and labor cost for travel to data collection
sites is non-negligible for field data collection. Once the size of the network is fixed,

there is not much space to lower this cost. Third, there are safety concerns associated

with exposing data collectors to hazardous traffic conditions. These limitations motivated
our study and are compelling reasons for automated methods to be studied.
1.2.3 Previous automated crosswalk detection studies

In practice, pedestrian facility data are mainly collected manually. However, in
research settings there have been some attempts to automate the detection of crosswalks
[5], [8]-[10], [13], [14], [17]-[28]. A comprehensive review of these studies was
conducted based on thirty-seven journal papers found by searching the literature for
“crosswalk classification” or “crosswalk detection” and also by inspecting the reference
lists of the identified papers. The majority of the existing studies (92%) in our initial
review were motivated by the single goal of assisting visually impaired people to
navigate safely at urban intersections. The remaining projects aimed for improving driver
assistance systems, advancing road management [5], enhancing image processing
methods [28], and working on a broader range of goals related to navigation systems and
autonomous vehicles [13]. Ahmetovic et al. argued that, since the zebra crosswalk is the
most visible to drivers and grants right-of-way to pedestrians, it is a highly preferable
location for street crossing in terms of safety [17]. As a result, zebra crosswalks became
the target object in most of the previous studies, except in [19], [21] where both zebra
crosswalks and two-stripe crosswalks were studied. Another factor which constrained the
research of detecting types of marked crosswalks other than zebra crosswalks could be
the limitations of detection methods that are based on classical image processing
methods. A high-contrast texture in the image pattern is usually preferred by these
methods. Therefore, the zebra crosswalk pattern is much more visible to these algorithms
than other marked crosswalks [21]. Generally, images from either aerial view or street

6

view were used separately as the sole data source, and most of the existing crosswalk
detectors were based on images only in street view due to their high resolution and clear
view. Only very recently, a few studies began to use aerial view imagery for crosswalk
detection due to its potential for use in collecting data at large scale [10], [11]. Different
from these previous studies, our method aims to detect not only zebra crosswalks but also
other types of marked crosswalks. In addition, images in aerial view and street view are
combined as dual perspective sources to create an increasingly informed crosswalk
detection system. Ultimately, the goal of this study is to lay the foundation of building an
inventory of crosswalk presence data at large scale.
1.2.4 Overview of previous crosswalk detection models

Our review of the literature revealed that the models typically used for automated
crosswalk detection can be classified into three categories. The first category includes the
traditional approach which is based on simple image processing techniques, such as line
detection [5], [10], [28]and image segmentation [19], [20]. Edges and patterns in an
image can be extracted and analyzed to determine if these elements belong to a
crosswalk. The performance of image processing-based approaches heavily relies on the
quality of the image that is to be detected. Thus, this approach is appropriate for images
that are high-resolution, taken within a certain short distance from a specific angle,
contain the whole pattern, and use a specified orientation. The second category of models
is based on machine learning algorithms, such as the AdaBoost-algorithm [23], Cellular
Neural/Nonlinear Network Universal Machine (CNN-UM) [24], and Support Vector
Machine (SVM) [8], [14], [22]. These algorithms were trained using features extracted
from images containing a crosswalk to learn knowledge about what kind of images are

7

likely to contain a crosswalk. With this knowledge, the algorithms were able to classify a
new image as either “having a crosswalk™ or “not having a crosswalk”. Features used to
build and train the algorithms were still extracted by using image processing techniques.
Machine learning-based models using pre-designed and hand-engineered features share
one critical limitation, which is that they cannot handle crosswalks affected by factors
other than those that have already been considered in the selection of the features.

Thus, these models only perform well when detecting crosswalks sharing specific,
similar features, such as special orientations, illumination conditions, and very limited
occlusion. Dealing with diverse situations with many unknown features in real-world
images becomes one of the biggest challenges. Recently, a third category of methods has
emerged to address this challenge. These approaches are based on deep learning
technologies, such as training a Convolutional Neural Network (CNN) to detect
crosswalks automatically from images [9], [11], [13]. Compared to the other approaches,
deep learning-based approaches are able to learn the appearance of crosswalks directly
from images without requiring the manual selection and extraction of features
beforehand. Thus, they are more appropriate for handling real-world conditions under
which images of crosswalks could contain clutter, shadows, saturation effects, distortion,
occlusion, and any other unknown features. Based on these considerations, our method
will also be based on CNN models but with additional advancements, including dual-
perspective data sources. We will introduce the details about our implementation of these

techniques starting in section 3.1.

1.2.5 Comparison with previous sidewalk detection studies

While there are some studies that focus on sidewalk detection as a classification
problem, our literature review found far more studies that engaged in “sidewalk
extraction” or other methods of identifying the sidewalk network from aerial imagery.
Starting with the methods that are most similar to our approach, sidewalk classification
methods that use aerial imagery can process wide areas at once and identify the presence
or absence of sidewalks in a given image. This is typically done by dividing a larger
aerial image into smaller slices that can be processed by a neural network. In our work,
we chose to explore sidewalk detection specifically as an image-level classification
problem. We discuss this as one of the main contributions of this project in section 1.3.
Other studies focus on detecting sidewalks (mostly using segmentation methods) from
the street-view perspective. We found that, instead of supporting pedestrian facility
detection by supplementing aerial imagery, the methods in these studies were typically
focused on other tasks such as classifying sidewalk accessibility or improving driverless
vehicle operation. The next two sections will give an overview of these two categories of
sidewalk-focused studies.
1.2.5.1 Overview of previous sidewalk studies using aerial imagery

Aerial imagery is widely used for a variety of tasks, such as remote sensing,
traffic management, and urban planning [29]. Many studies that are focused on land
cover classification or road extraction have used high resolution imagery at a zoom level
that makes it difficult to detect smaller features like sidewalks or crosswalks [30]-[32].
However, in recent years, many studies have also focused on classifying sidewalks and
other road features using images with a higher zoom level. Luo et al. extracted a dataset

9

of 1,832 labeled images (paved sidewalk vs. missing sidewalk) from an area around the
University of California, Riverside and a separate blind test dataset with 1,041 images
[6]. While they did also include some crosswalk data in their dataset, they were only
involved in their data collection process for purposes such as identifying intersections.
Much like our data collection process for aerial images (which sampled images directly
from the road path provided by Bing Maps), they were able to ensure that the collected
images (taken from a large satellite image) would be sampled along the lines of a known
road network. After collecting this data, they used a neural network based on a ResNet
architecture [33] and found that 964 of 1,041 (92.6%) images were correctly classified in
their blind test and 97.2% of their 180 initial testing images were correctly classified.
While the dataset used was not comparable in terms of geographic area or qualities other
than a focus on sidewalk presence, the performance of our model in a blind test (external
test) using aerial sidewalk imagery was comparable to theirs with an accuracy of 91.26%
(see section 4.4.1). Their paper also mentions occlusion, but it is not clear if they
addressed it with any filtering other than quality control that may have occurred in their
manual labelling process. Compared to their reported results of 62.4% and 59.0%
accuracy in their previous work [34], some optimization was clearly performed.
1.2.5.2 Overview of previous sidewalk studies using street-view imagery

Our literature review found that most of the studies that identified crosswalks in
street-view imagery were focused on sidewalk segmentation. While this is important for
driverless vehicle research or other tasks that need to know the exact location of the
sidewalk in an image [35], our goal was only to confirm the presence or absence of
sidewalks in the image. Other studies focus on sidewalk accessibility [36]-[39] and even

10

handling the detection of different sidewalk surfaces in historic urban environments [40].
In older works such as those by Smith et al. [41], sidewalk segmentation is performed
even though the final results are produced using a classification algorithm. In this case, it
is done with a random forest [42] classifier applied to initial segmentation results
produced by a graph-based algorithm [43]. With this, they were able to achieve a
sidewalk detection precision of 60.63% and a recall of 77.24% (based on pixel-level
metrics). Approaches that combined classical image processing techniques to extract
features from images before using a separate classification algorithm were common
before the current era of research that is dominated by the automatic feature extraction
capabilities of deep learning algorithms.

Another study by Kang et al. [44], also used a random forest classifier to generate
an image-level classification result from a basic, graph-based segmentation algorithm.
One of the only studies in our literature review that performed street-view sidewalk
detection using image-level classification techniques was a sidewalk accessibility study
[37]. They automatically assessed the accessibility of sidewalks in Google Street View
panorama images and automatically validated crowdsourced labels from Project
Sidewalk [38]. This was done using a modified Resnet-18 [33], [45] that introduced
positional and geographic features. Their input data was 224x224 pixel input images
cropped from the street-view panorama that were then processed with 7 features encoding
the position of a point in the scene and 5 features encoding other information about the
scene in a larger geographical context within the city. However, this study was only
focused on accessibility problems with sidewalks and not as concerned with the
challenges of detecting the sidewalk itself.

11

1.3 Research goals and contributions

For this project, our goal was to incorporate a wide variety of the various
pedestrian facility detection advances in recent years (discussed in section 1.2) into a
single project that investigated this topic both from the perspective of computer science
and from that of transportation research (guided by a panel of experts in the field). In
order to do this, we applied the knowledge and experience obtained from our previously
published machine learning research [46]-[48]. In [46] and [47], we implemented a face
classifier (based on the model described in [49]) and tested it on the FERET image
dataset [50]. The Python implementation of this model was heavily based on VGG16 and
became the foundation of our image-level classification work for the pedestrian facility
detection that is presented in this dissertation. Even though the datasets were very
different, much of our work with the various machine learning techniques, such as the
pretraining process and data preprocessing, in that study was relevant to our current
research. Also, in [46], we implemented and tested the procedure for visualizing layer
activations that would become an important part of interpreting the results of our current
project and the future work presented in this dissertation (see section 3.8.2 and section
5.2.4). Then, in [48], we tested a wide variety of machine learning and deep learning
algorithms for the purpose of performing protein residue-residue contact prediction. In
particular, our tests using stacked denoising autoencoders [51], [52] (a method that makes
predictions by combining multiple autoencoder models at the feature vector level)
provided important experience that we used to guide our decision when considering
methods to make predictions by combining aerial and street-view imagery (see section
3.4).

12

Of course, applying what we had learned from these past studies to this pedestrian
facility detection project came with a multitude of challenges that we carefully addressed
in various sections of this dissertation, including data collection (section 2.2), data
filtering and cleaning (section 2.2.3), sidewalk and crosswalk detection (section 4.1),
combining aerial and street-view imagery for improving occluded crosswalk detection
(section 3.4), and crosswalk mensuration (section 3.5). In particular, one of the most
important contributions of our work was the data collection and filtering guidelines that
we developed. This included implementing our data collection pipeline (section 2.2), the
street-view image correction method (section 2.2.2), distance-based filtering (section
2.2.3.1), perceptual hash (image-based) filtering (section 2.2.3.2), and manual dataset
cleaning (section 2.2.3.3). Portions of this dissertation have also been drafted into two
manuscripts that will be submitted for publication (see section 5.2.1). Another
contribution that the future of our research will have to this field is our plan to construct a
high-quality data repository that will benefit researchers that are working in this field by
providing standardized, clean data with properly annotated information (see section
5.2.5). The previously mentioned data collection and filtering guidelines that we
introduced will play a vital role in the acquisition, annotation, and maintenance of the
data in this repository. Our literature review did not reveal any other projects that
simultaneously incorporated this many aspects of pedestrian facility detection while also
laying the groundwork for improving future data collection work and testing the
prototype of an easy-to-use software package that will enable users to generate pedestrian

facility presence data with very little training (see section 4.8).

13

Since we explored this many different topics in this project, many of the other
contributions of our research are related to proposing solutions for various smaller
challenges that we encountered during this study. For example, there are many problems
associated with real-world pedestrian facility data sources, including occlusion and
incomplete coverage. In particular, satellite imagery for an area often suffers from heavy
cloud cover or interference from other objects (trees, shadows from buildings, etc.) that
obstruct (occlude) the view of crosswalks and sidewalks. Additionally, low resolution
and processing artifacts can also make it more difficult to automatically detect pedestrian
facilities in aerial imagery. While street-view imagery also faces challenges (such as
camera orientation and occlusion from objects on the street), it is typically much higher
quality and has a better chance of accurately representing the target pedestrian facility.

In our research we have attempted to address these problems by creating several
machine learning models that will handle various automated pedestrian facility tasks. In
total, our system is comprised of 4 detection models, a segmentation model, and a final
dual-perspective model covering various perspectives (viewpoints). (aerial crosswalk,
street-view crosswalk, aerial sidewalk, street-view crosswalk), In order to address the
aforementioned challenges, we have proposed to incorporate multiple data sources
through the use of dual-perspective prediction. By using data from multiple viewpoints
(perspectives) of the same location simultaneously, we can increase the prediction
accuracy and overall generalizability of our system when applied to real-world data.
Specifically, our contribution in this area is to develop a dual-perspective crosswalk
prediction model that can improve the detection of occluded crosswalks in aerial imagery
by simultaneously incorporating street-view imagery of the same location in the

14

prediction process. We refer to this system as our dual-perspective model (DPPM) and
have tested it on our own manually annotated datasets.

This method integrates information from images of the same crosswalk candidate
from two perspectives — aerial view and street view. In this DPPM, images from the aerial
view and street view of the same crosswalk candidate are retrieved from Bing Maps and
processed by two individual crosswalk detection sub-models, an aerial view sub-model and
a street view sub-model, in parallel. By combining the crosswalk presence predictions
generated by the two sub-models, a final prediction of the DPPM is produced considering
the confidence level of the sub-model predictions. This mimics the process in manual data
collection where the data collector will check the street view of a facility if it is occluded
in the aerial view. Our detection models are based on advanced Convolutional Neural
Networks (CNN) that were pretrained on large image datasets. These networks are
designed to train themselves automatically with much less manual preparation for the
training data (in terms of feature generation) than traditional methods require. To address
the challenge of automatically obtaining the images in different views for the same target
object, a special data collection pipeline was designed to retrieve the street-view image of
an object observed in the aerial view image. Moreover, special attention is given to testing
the method using images of crosswalks that are heavily occluded. Model performance was
compared using the traditional, single-perspective method and the proposed dual-
perspective method. The proposed method has potential to remove the bottleneck that
prevents the application of similar automation methods by facilitating the collection of data

at large scale in real-world situations. It also provides the opportunity for future expansion

15

of the automation method to observe other pedestrian facilities (e.g., sidewalks, curb ramps,
etc.) that are even harder to detect solely from aerial view images.

One exiting study aimed to solve the occluded crosswalk problem as well by using
human volunteers to validate the images of zebra crosswalks that are already classified
[17]. In their procedure, images that were mistakenly classified due to occlusion will be
corrected manually using the street-veiw image at the same location. Although this method
used street view images as well, our method is different. In Ahmetovic’s method, street
view image checking was done manually and only applied to the images that were
predicted as “having crosswalks”. In other words, they used aerial view and street-view
images sequentially. By doing this, their method could omit crosswalks that are heavily
occluded and were not detected (false negative predictions) at all in the first place. What
enhances our method and makes it different is that we use aerial view and street-view
images in parallel so that heavily occluded crosswalks will not be omitted. Furthermore,
the “ground truth” checking process is fully automated.

1.3.1 Multi-perspective data processing overview

As previously mentioned in section 1.3, our proposed method to address the
detection of occluded crosswalk candidates is to conduct the detection in parallel using
both images taken from aerial and street-view perspectives simultaneously. After that, the
final prediction of the presence of the crosswalk would be based on a combination of
predictions made using information learned from the two images for the same target.
Techniques for making predictions for individual targets using multiple data sources have
been rarely used specifically for crosswalk detection, although researchers in other fields
have studied these approaches applied to different problems. Real-world datasets often

16

contain many types of data which measure the same thing but were gathered with
different measurement techniques or formats. Taking advantage of multiple data sources
can be directly beneficial to the reliability and usability of a deep learning system when
processing images with an object that is difficult to detect accurately based only on a
single data source. While classical machine learning methods typically require the
extraction of manually designed features from each data source, deep learning has a
greater potential for incorporating data from multiple sources thanks to its innate ability
to automatically extract features from various types of data.
1.3.1.1 General methods for utilizing multi-perspective data

There are two types of general prediction combination techniques that are relevant
to this study but are not specifically limited to crosswalk detection. The first type of
technique combines the advantages of multiple models by incorporating their individual
results into a final prediction using different voting strategies [53]. Some studies [54],
[55] have used this idea to combine multiple types of data by training an individual
classifier for each one before performing final prediction with an ensemble classifier.
[55] tested various model combination techniques and showed that combining multiple
classifiers into an ensemble model can improve the accuracy of land cover classification.
[54] developed a system that used a block (ensemble) of individual ResNet models
trained on different data modalities to perform segmentation of multiple sclerosis lesions
and produce a final output 3D volume using majority voting. While the first type of
technique focuses on training whole, individual models to handle various prediction tasks
related to the end goal, the second type of technique instead uses various modifications to
a neural network architecture that allow single models to directly incorporate multiple

17

sources of data. For example, [56] demonstrated a multi-input method that produced an
increase in automated flower grading accuracy using a convolutional neural network that
is capable of simultaneously processing three input images of the same target (a pot of
flowers) captured with different views (rotations). Finally, methods like [57] and [58]
combined multiple types of data for remote sensing purposes that were more similar to
our work than the previously mentioned studies in this section.
1.3.1.2 Methods for fusing aerial and street-view imagery

One recent study that was related to our dual-perspective crosswalk detection
method was conducted by Ning et al. [12]. They extracted sidewalks from aerial imagery
and used street-view images to supplement the detection of occluded sidewalks. While
we did also consider applying our dual-perspective prediction method (see section 3.4) to
sidewalk data in this manner, the scope of our research was primarily focused on
crosswalk detection. In [12], they first use a segmentation network to extract a predicted
sidewalk network from aerial images. Then, this segmented network is refined by
extending the sidewalk segments according to the presence of sidewalks in street-view
imagery. Unlike our work which focused primarily on image-level classification of
sidewalks and crosswalks, their study used the YOLACT [59] architecture to perform
segmentation in both viewpoints. While this approach was suitable for sidewalks, the
resolution of the aerial imagery used in their work would not be suitable for the type of
crosswalk detection and mensuration that we needed to perform. However, this study
supports our assertion that, when detecting pedestrian facilities across large geographic
regions, street view imagery should be used as a supplementary data source that supports
aerial imagery. Similar to our position in section 1.3, they emphasize that publicly

18

available street-view imagery may not cover the entire area of interest and is often
outdated. Furthermore, street-view vehicles are often not able to access certain areas that
have pedestrian facilities visible from the aerial view. However, they do recognize the
utility of using street-view imagery (when it is available) to correct detection problems
caused by occlusion in aerial imagery.

Other studies focused on fusing street-view and aerial imagery to detect other
types of road objects and facilities [60]-[63]. In [60], aerial and street view imagery is
combined to detect trees near roadways. In [61], a new dataset of ground-level and aerial
images from Brooklyn and Queens (New York, USA) is obtained from Bing Maps and
Google Street View. They use kernel regression to integrate these ground view (street
view) images into a spatially dense feature map. This feature map is then fused with
features extracted by the CNN from aerial images before being combined with a small
multi-layer perceptron at the output of the network. Therefore, unlike our decision-level
approach, this is another method that combines feature vectors from different models and
requires that data from both sources must always be available. They also use the VGG16
architecture as the base for both of their viewpoints. However, they utilize some ideas
from PixelNet [64] and extend their method from image-level classification to pixel-level
labelling by extracting multiscale features with a hypercolumn and including a small
multi-layer perceptron at the end of the network. Unlike our work, they are focused on
classifying building function (206 classes, including Churches, Multi-Story Department
Stores, Funeral Homes, etc.), land use (11 categories), and building age (organized into

13 bins quantized by decade). Overall, they found that, by incorporating multiple

19

viewpoints, their network is better at resolving spatial boundaries and is also better at
estimating features that are difficult to observe from the aerial viewpoint.

In [62], Cao et al. use the dataset from [61] to test a modified model based on the
SegNet architecture [65]. They extended this architecture with an additional encoder and
then fused the convolutional layers with the first encoder network. One encoder is
responsible for aerial images and the other handles street-view images. The output feature
maps of selected layers of both encoders are fused and then fed to the remainder of the
network to generate the final segmentation results (another feature-level combination
method). In [63], one of the only studies we found that focused on image-level
classification like our facility detection models (instead of producing bounding boxes or
using segmentation), Hoffmann et al. classified buildings into four classes (commercial
residential, public, and industrial) by fusing aerial and street-view imagery. As we also
saw in [12], the results produced by Hoffmann et al. support the use of a decision-level
fusion of an ensemble of models that are trained from each image type (perspective)
independently. They argue that using feature-level fusion, as is common in the multi-
stream networks commonly discussed in the literature, can lead to a destructive effect in
the network due to the spatial misalignment of features (especially if this combination is
done in an early stage of the convolutional portion of the network). By instead using a
decision-level approach with model blending, they were able to increase precision scores
from 68% to 76%. They experimented with different ensemble configurations using
models based on both the Inception-v3 [66] architecture and VGG16. These models were
pretrained with ImageNet and the Places dataset [67]. Their model blending method took
the mean of the softmax layer of the aerial and street-view models. This is similar to our

20

method presented in section 3.4 and is just a decision-level combination of the predicted
probabilities instead of a voting function.

Another type of study by Wang et al. involved using a single camera to perform
segmentation on street-view imagery and then reconstructing a top-view (aerial)
representation for the purposes of road scene understanding [68]. They used this
representation to perform occlusion reasoning and detect different types of road features
(number of lanes, sidewalk and crosswalk presence, type of intersection, etc.). While this
type of approach is good for driverless vehicle research or other applications that are
more focused on street-level information, our work is more concerned with classifying
wider geographic regions and needs a georeferenced aerial view for mensuration and
facility location purposes. Other studies like [7] used one perspective (aerial) but fused
different types of predictions. In their case, road extraction (segmentation) was used to
enhance and filter crosswalk predictions made by an object detection CNN model.

After reviewing these studies, we determined that using deep learning to explore
the integration of aerial and street side imagery data into a single, combined prediction
could improve the accuracy and ability of our final model to adapt to real-world data in
which occlusion and other factors that often compromise data quality make it impossible
to rely on single sources of data. Therefore, we chose to use the first type of combination
technique (decision-level/voting) since we needed the ability to train independent models
that could perform predictions in the absence of data from one of the viewpoints (aerial
or street-view). In general, these strategies also give researchers more control when
determining which single-perspective models should have more weight (importance) in
the final multi-perspective prediction based on the quality and relevance of images

21

available from each of the corresponding perspectives in a given application area.
However, due to the scope of this study, we only experimented with a basic version of
these concepts as described in section 3.4.
1.3.2 Application to Department of Transportation data

A large portion of our research was performed in collaboration with the
Mississippi Department of Transportation (MDOT) and the California Department of
Transportation (Caltrans) with funding from the IDEA program of the Transportation
Research Board’s National Cooperative Highway Research Program. As a result, we
were able to test the final products of our research on real-world data provided by
MDOT. A considerable amount of work in this project was dedicated to incorporating
advice from the expert panel into our work and exploring various ways to apply our
methods to the unique GIS data formats that modern DOTs work with (see section 4.4

and section 4.8).

22

CHAPTER Il - DATA COLLECTION AND PROCESSING

2.1 Overview of dataset structure and design

The two Single Perspective Prediction Models (SPPMs) need to be trained using a
large number of images annotated as “having a crosswalk™ or “no crosswalk” in both the
aerial and street view. Manually labeling such a dataset would be very time and labor
intensive. Thus, we implemented a data collection pipeline to automatically collect
labelled crosswalk images from OpenStreetMaps (OSM) and Bing Maps. This pipeline is
similar to what was proposed in [11], but we made three major adjustments. One
adjustment is that our algorithm works with Bing Maps instead of Google Maps, which
was used in [11]. We chose Bing Maps since, at the time of writing, their service offers
an education license for making requests to the API free of charge. On the other hand,
Google Maps (at the time of writing) requires payment information to be provided and
charges fees for using their API after a small amount of free credit has been used. Thus,
using Bing Maps would make this method of obtaining annotated image data more
accessible to researchers with limited budgets. Furthermore, since very few studies in this
field use Bing Maps imagery, our work is beneficial for the community by increasing
access to more diverse datasets. The second improvement we made based on the work of
Berriel et al. is that we designed a software pipeline to automatically download the
matching street side image for a given aerial image location. While [11], [13] did conduct
street side and aerial tests, we did not find any reports of utilizing both data types
simultaneously when preparing the data and prediction models. This data pipeline also
was used in preparing street side images for training and testing. Our final improvement

was adding a user interface to allow for humans to manually verify the content of the

23

images, including the annotations and occlusion levels. This helped us prepare an
external test set of manually verified occluded images for testing the performance of the
DPPM. It also was used to determine the accuracy rate of the OSM tags for a facility
(crosswalks in an area we selected) by comparing the crowdsourced tags to ones that
were manually produced by a human. By checking the accuracy of the crowdsourced tags
from OSM for the locations in 1,000 aerial crosswalk images, we found that the OSM
tags had an accuracy rate of 86.7% (the remaining 13.3% of the images were found to be
incorrectly labeled or otherwise corrupted/unusable). The operation of our data collection
pipeline is described in section 2.2. For more details about the foundation of this study,
please refer to the works of Berriel et al. [11], [13].
2.2 Data collection pipeline

The sample data acquisition model was designed to prepare tagged images of
crosswalks and sidewalks for the purpose of training the detection model. To realize this
function, this model was designed as a pipeline of scripts that combines crowdsourced
tags of pedestrian facility locations from OpenStreetMap (OSM) with their corresponding
satellite images from Bing maps. As a result, the data acquisition model produced a large
number of images (tagged as “crosswalk”, “no-crosswalk”, “sidewalk”, and “no-
sidewalk™) for use in training and testing the deep learning models used in the project. In
addition to the sidewalk and crosswalk categories, the data was also organized by two
different viewpoints (aerial and street-view). Here, aerial images are slices of satellite
imagery and street-view images are slices of a panorama image taken from a Bing
Streetside view vehicle. Images with a crosswalk or sidewalk are stored in the “positive”

category while images with no crosswalk or sidewalk are stored in the “negative”

24

category. Figure 2.1 illustrates this sample data acquisition process and the different
processes used to gather positive and negative samples. First, a bounding box (depicted in
Figure 2.1 with a red rectangle) is defined and passed into the data acquisition program in
the form of a pair of latitude and longitude coordinates for the lower-left and upper-right
corners of the region. Then, locations within this bounding box corresponding to OSM
tagged crosswalks (blue markers in Figure 3) are sent to the Bing Maps RESTImagery
APl in order to obtain aerial images of crosswalks (positive samples).

For crosswalk data, the OSM tag we used for this is “highway=crossing” as a
node query in the request Uniform Resource Locator (URL) sent to the OSM Overpass
APL. This returned a list of coordinates representing locations that have had crosswalks
identified by the OSM mapping community. At the same time, using the process
described in [11], we also gathered points along the road between pairs of known
crosswalks to use as locations labelled as “no-crosswalk”. This done by sending the
known crosswalk locations to the Bing Maps RESTRoutes API which calculates a route
between a given pair of crosswalks. The resulting list of points between the two
crosswalk points is checked to ensure that these points do not contain any OSM tagged
crosswalks. Finally, these points (yellow markers in Figure 2.1) are used as our “no-
crosswalk” points. Also, rather than randomly selecting points within the input bounding
box region (which may produce images of forests, bodies of water, and other undesired
scenes), using this route-based method ensures that the negative samples will be images
of roads. Figure 2.2 and Figure 2.3 show actual examples of positive and negative

crosswalk images in our dataset.

25

After this list of candidate locations was processed, the location information of
each resulting point was passed to Bing Maps (Rest V1 API) which returned a small slice
of the aerial imagery of 256 pixel by 256 pixel centered at the coordinates of the supplied
point. We used zoom level 20 (a configurable value in the Bing API that affects the
returned images) for aerial images and zoom level 0 for street-view images.

After crosswalk data had been obtained, the sidewalk data was collected using a
slightly modified version of the data collection procedure. The major difference between
collecting crosswalk data and sidewalk data is that locations are queried using different
tags in OpenStreetMap (OSM). For sidewalk points, this involves using “sidewalk=left”,
“sidewalk=right”, or “sidewalk=both”. Also, instead of generating negative samples by
following a routePath between crosswalks (as performed in the data acquisition for the
crosswalk data), OSM nodes with the tag “sidewalk=none” are directly requested from
the Overpass API. New areas (separate from the areas used in the crosswalk datasets)
were selected and all the previously mentioned data collection and filtering techniques

were applied.

oing- Vs

’ 1ip

Positive
Samples

Negative Samples

Figure 2.1 An overview of the data collection process

26

39.png

32.png 33.png 34.png 35.png 36.png 37.png 38.png

Figure 2.3 An example of negative (“no-crosswalk”) images

27

2.2.2 Street-view data collection and correction procedure

The data acquisition process was adjusted for obtaining and filtering street-view
images. This was done by switching to the Bing streetside imagery APl and
implementing a new method for obtaining images from each OSM location. The most
important technique for obtaining street-level images from a given OSM location is
attempting to extract the best possible view of the POI by properly calculating heading
and ensuring that the camera (street-view data collection vehicle) is at a proper distance.
This is due to the fact that the extracted OSM locations (such as a node tagged as having
a crosswalk) are represented by a single point (latitude, longitude). However, the street-
level imagery is stored as a panorama which can generate many possible images that are
the input size that the network uses. To solve this problem, it is first necessary to query
for the image metadata of the street-view panorama closest to the OSM point of interest.
This gives an image which is often too close to the facility of interest or directly on top of
it. Furthermore, since the default query simply faces the camera north, the returned
portion of the panorama will likely not contain the point of interest. Before calculating
the heading necessary to solve this problem, a query is formed to retrieve a new point 10
meters (an empirically determined distance) away from the initial location. After running
this query to retrieve the new point, the appropriate panorama slice is extracted by

“turning the camera” using the following formulas.

Heading = atan2(X,Y) 1)

X = cos @) *sin AL 2

28

Y = cos 8, *sinf, —sin @, * cos 6, * cos AL (3)

Where:
6, — The latitude (in degrees) of the original point of interest
6, — The latitude (in degrees) of the new point that is 10 meters away

AL — The difference in longitude between the two points

The atan2 function is implemented in the default math package of Python and
many other programming languages, and this heading calculation is commonly used in
many navigation applications (such as the geometric tools in the Google Maps API) and
geography libraries (such as geographiclib [69]). This procedure has a much higher
chance of producing a reliable image with the point of interest in the frame. An example
of this procedure can be seen in Figure 2.4. This figure shows that, by default, the street
side image API of Bing Maps always returns a street-view image taken with the camera
heading pointed north (a heading of zero). Simply using the coordinates of the POI
without supplying an angle to direct the camera will often result in an image that is
captured at a poor angle or only depicts unwanted background objects, as shown in
Figure 2.4 (A). In addition, without a distance offset from the POI, the returned street
side image will often have the data collection vehicle directly on top of the targeted
crosswalk, as demonstrated by the poorly captured crosswalk in Figure 2.4 (A). In order
to address these challenges, we developed an algorithm based on the basic process

described in [13] with specific modifications.

29

First, in order to avoid capturing an image with the data collection vehicle directly
on top of the crosswalk, we defined a new point for the location of the camera that was 10
meters away from each POI along the data collection vehicle’s route. This new point was
calculated by using the reverse (reciprocal) heading (with respect to the current heading of
the camera on the data collection vehicle in the metadata) to approximate moving
backwards against the current direction of travel. Then, the API simply returns the
panorama image that is closest to this new point. An offset distance of 10 meters was
empirically chosen based on a few examples in order to move the camera viewpoint far
enough away from the crossing to produce an image that captured the entire crosswalk.
Then, the heading between the newly generated camera point and the original POI is
calculated using formula 1 — formula 3.

The heading measures the angle between true north and the line connecting the new
camera point and the POI. With this heading, the camera will be facing toward the target
from 10 meters away (instead of simply facing north always), which gives us the best
chance of correctly bringing the POI (crosswalk) into view (without having the data
collection vehicle incorrectly positioned directly over the target). An example of the result
of this algorithm is shown in Figure 2.4 (B), where a cropped crosswalk was successfully
corrected and captured from an appropriate distance by using our method. With this
correction method, we were able to correct many potential errors in the data collection

process for our street-view sidewalk and crosswalk datasets.

30

AN

Figure 2.4 An example of our street-view image correction method

2.2.3 Data filtering

During the process of collecting images, certain tagged locations have the
potential of producing duplicate and partial duplicate images. For the purposes in this
study, we define a “duplicate” image as an exact copy of another image in the same
dataset and a “partial duplicate” image as an image containing part of another image (also
in the same dataset). These duplicate images might be caused by server errors or other
unpredictable problems (glitches with multi-threading, filesystem errors, etc.). They also
can be caused by retrieving images of the same location from two intersecting routes. The
obvious importance of removing these duplicate images is to prevent duplicates from
entering later stages of the data preparation process where the data are shuffled and
partitioned into training and testing subsets. If the same image existed in both the training

and testing subsets of a dataset, it would introduce bias into the test results.

31

For example, the local street-view sidewalk detection dataset (dataset 4),
originally contained 4,244 negative (no sidewalk) and 15,893 sidewalk locations.
However after applying the filtering techniques mentioned in section 2.2.3.1 and section
2.2.3.2, this was reduced to the size (11,270 positive and 3,268 negative) that is listed in
Table 2.2. Since we directly added this filtering procedure to the data collection pipeline,
each dataset was stored in this reduced form before the images were even downloaded
and before any machine learning operations were carried out.
2.2.3.1 Distance-based filtering

During the execution of the data collection processes of the data collection
pipeline, a list of coordinates for each candidate location (obtained from OSM) is
generated before images can be downloaded. For each pair of GPS (latitude/longitude)
coordinates, we use a python package [70] that converts these coordinates into the UTM
(Universal Transverse Mercator) coordinate system. This is a simple projection that
works well for the short distances that we are concerned with. For example, in Figure 2.5
(A), we have two crosswalk nodes in OSM that were close enough that downloading their
respective images with the data collection pipeline would have resulted in two images

with an overlapping region of pixels.

32

While the two crosswalks (seen together in Figure Figure 2.5 B) are not
duplicated in these images, having any opportunity for overlap can cause bias when
images are split between training and testing. Therefore, any instances like this are
filtered such that only one image in the group is stored in the final dataset. We use the
ground resolution formula [71] provided by Bing to determine an appropriate distance for
filtering cases such as this. This formula is also used for our mensuration process in

section 3.5 to determine the length of the crosswalk based on the segmented pixels.

A B

DupILcate region

=

Figure 2.5 An example of distance-based duplicate filtering

2.2.3.2 Perceptual hash-based filtering

Our second layer of filtering involved directly filtering the image results of the
data collection pipeline using a python implementation of a perceptual hashing algorithm
(pHash) to search our whole dataset for duplicate images [72] that slipped through the
distance-based filtering process. This usually only occurred in rare cases where an image

was assigned the wrong coordinates due to a bug in the data collection pipeline, and only

33

a few images were removed in this way. For example, using this process, we removed
only 102 duplicate images from the “no crosswalk” directory of the aerial crosswalk
imagery (no duplicates were found in the crosswalk directory). Figure 2.6 shows an
example of two image pairs and the decision made by the pHash algorithm. In row A, no
duplication is detected, so both images are retained. For cases such as row B, the
algorithm detects duplication and removes one of the occurrences from our dataset. This
method for detecting duplicates later proved to be very important in cases where two
images were erroneously assigned the same coordinates. In those cases, this method
prevented duplicates from making it into the final datasets even when the distance-based

filtering step described in 2.2.3.1 would fail.

y

pHash No duplicate

pHash duplicate

Figure 2.6 Searching for duplicates and removing them using a perceptual hashing script

34

2.2.3.3 Manual verification and dataset cleaning

The manual verification procedures described here were used to ensure the quality
of our external and DOT testing datasets. Table 2.1 describes the criteria for excluding an
image from a testing dataset. The results in section 4.2 — section 4.4 were processed with
these criteria to remove images that have data collections errors or are otherwise not ideal
for testing the current formulation of our models. Specifically, all crosswalk images in
the test subsets of these datasets were filtered. This set of standards defined in Table 2.1
allows for consistency in future data collection projects and will allow for more detailed
studies of the relationship between model performance and various problems that are
often present in the data (occlusion, lens flares, blurred images, etc.).

Table 2.1 Manual data filtering guidelines

Tag Category Description

y/n Target info “yes” or “no” for the presence of a target
object in an image.

q Target info Road markings that appear to be the target

object, but the reviewer is not certain due to
image context or other issues.

o/molc Target info “occluded”, “majorly occluded”, or “clear”.
This tag references the clearest target object
in an image. ‘o’ indicates that there is some
occlusion (<50% of the crosswalk area).
‘mo’ indicates >50% occlusion of the
crosswalk area. ‘¢’ is used for a crossing
that is almost entirely clear.

p/zm/z/ot/n Target info Identifies the type of target object. This
category is just for crossings in the image.
Parallel (p), at least one zebra crossing
mixed with other types (zm), other type (ot),
no crosswalk (n).

o/mo/c Target info Considers the occlusion of the image
overall (not only the target in question) This
is especially useful for tagging poor quality
negative samples. The same rules as the
o/mo/c tag for target info apply here.

35

Table 2.1 Continued

nc/b/wicole Image condition This refers to the condition of the image
info overall (more specific than occlusion vs. no
occlusion). Blurry image or otherwise low
resolution (b), worn target object or road
lanes (w), one or both ends of a target
object (specifically crosswalks) are
obscured by the image boundaries (co), any
other exception with the image itself (e)
r/rer/fl/br/de/ms/um | extra conditions Other interesting conditions that may cause
problems. Mark image for deletion (r),
rotation error in a street-view image (rer),
lens flare (fl), bridge present (br), distance
error in a street-view image, a problem with
markings that resemble the target object
(ms), an unmarked target object
(specifically crosswalks) (um).

2.3 GIS data preparation

The GIS data provided by MDOT (available at the MARIS website [73]) was a
large format satellite image. With a file size of approximately 11gb, processing the entire
image at once would be infeasible with any modern image processing models due to the
immense memory requirements. Therefore, we used a freely available GIS (Geographic
Information System) software called QGIS [74] to help us extract images of the proper
size for our system to process. To start, we used a shapefile to manually draw square
volumes over all of the intersections that we could find in a selected area of the image.
This area was focused around the main areas of Hattiesburg (approximately within the
bounding box of WGS84 -89.349655, 31.342243 (upper left), and -89.282260, 31.301782
(lower right)). More information on how this data is extracted with gdal commands is

available in section 2.4.6). Error! Reference source not found. (A) shows the entire

36

“Forrest2013” SID file, and Error! Reference source not found. (B) shows the

intersections that we marked with the shapefile squares.

Figure 2.7 Extracting processable images from the large format GIS data
Forrest 2013 SID file

2.4 Summary of all datasets

During this project, we prepared 9 final datasets (summarized here in Table 2.2)
that were used for the training and testing of all of our models. For convenience when
cross referencing which datasets were used with which models in our various
experiments, we have also listed all of our final models in Table 2.3. The datasets listed
in Table 2.2 are in their final form after the filtering procedures described in section 2.2.3
were applied. Some of these datasets were used directly in the initial model development
(local datasets) while others were used only in testing (external datasets).

Here, we use the term “local” to refer to datasets that were only used for training
and testing SPPMs. All of the images in each local dataset are collected from a specific

37

geographical area. Therefore, since the SPPMs are trained and tested with these local
datasets, we introduced “external” test datasets to allow for testing on crosswalk images
that were from a new area (unseen by any of the SPPMs). It should be noted that the
DOT datasets were also only used as external test datasets. An overview of the
procedures governing these tests and the methods for training and evaluating the models
is given in section 3.1. In the remaining sections, the datasets and models will be
referenced by their ID in Table 2.2 and Table 2.3.

Table 2.2 The size and description of our final datasets

Dataset | Data type | Purpose Location Positive | Negative | Total

ID

1 Aerial Detection Milan, Italy 1,467 1,599 3,066
crosswalk | (local)

2 Street- Detection Austin, Texas 476 1100 1,576
view (local)
crosswalk

3 Aerial Detection Tampa+Orlando, | 20,926 | 9,943 30,869
Sidewalk | (local) Florida

4 Street- Detection Reno, Nevada 11,270 | 3,268 14,538
view (local)
sidewalk

5 Aerial Detection Hartford, 344 345 689
crosswalk | (external) Connecticut

6 Street- Detection Hartford, 344 345 689
view (external) Connecticut
crosswalk

7 Aerial Detection + | Forrest county, | 20 110 130
crosswalk | Segmentation | Mississippi

(DOT)

8 Aerial Detection Forrest county, | 86 17 103
sidewalk | (DOT) Mississippi

9 Aerial Segmentation | Seattle, 91 n/a 91
crosswalk | (local) Washington

38

Table 2.3 A description of all models used in our work

Model
ID

Training
Dataset

Data type

Viewpoint

Type

Description

1

1

crosswalk

aerial

Detection

aerial-view
crosswalk
SPPM

crosswalk

street

Detection

street-view
crosswalk
SPPM

n/a

crosswalk+sidewalk

aerial+street

Detection
(ensemble)

dual-
perspective
prediction
model
(DPPM)

sidewalk

aerial

Detection

aerial-view
sidewalk
SPPM

sidewalk

street

Detection

street-view
sidewalk
SPPM

crosswalk

aerial

Segmentation

Crosswalk
segmentation

2.4.2 Aerial datasets

For the image data used to train the aerial crosswalk detection SPPM (dataset 1),

we selected an area in Milan, Italy, limited by a bounding box (45.444139, 9.151489,

45.486364, 9.217274) where the first pair of numbers denotes the latitude and longitude

of the bottom left corner, and the second pair denotes the top right corner. This area was

selected since it was also used in a previously published study [11]. By using the same

location, it is possible for us to compare the results produced by our aerial image

39

detection model to their published results. Then, within this area, we queried OSM

Overpass for a list of locations (coordinates) that have been tagged as having a crosswalk.

2.4.3 Street-view datasets

For the image data used to train the street-view crosswalk image SPPM, we chose
an area around Austin, Texas defined by the bounding box (30.098458, -97.936766,
30.516626, -97.560529). Austin was chosen because of the high number of labeled
crosswalks that we found in that area and the relatively high coverage of street-view
image data. In other words, it was easier to find more images that contained crosswalks.
However, using Bing Maps to download street-view images of these locations required a
more complex solution than what was necessary for downloading aerial images. The two
main challenges with obtaining street-view crosswalk images using only OSM
coordinates is finding the location of the crosswalk in the 3D panorama captured by the
data collection vehicle and capturing an image of that crosswalk without it being blocked
by that same vehicle.
2.4.4 Dual-perspective datasets

Here, we describe a dual-perspective dataset as one in which each sample is a
single location described with two images obtained from different perspectives (aerial
view and street view). For our purposes, we searched for an area that was highly
occluded in the aerial view but relatively clear in the street view. The area selected for
this task was (41.590134, -72.904823, 41.907394, -72.461845) in Hartford, Connecticut,
USA. Hartford was selected due to the heavy occlusion we observed in the aerial imagery

in that area. Therefore, it was convenient for finding more images with occluded

40

crosswalks. In order to better evaluate the performance of the DPPM compared to the
SPPM, we developed a Python verification interface that allows humans to manually
verify the crowdsourced labels and the level of occlusion of the external test (Hartford)
images. After checking for occlusion and confirming the class label (crosswalk or no
crosswalk) of the image, the manual verification script presents several options to the
human verification worker. This includes the ability to delete the image, move it to the
opposite class (switch the label between crosswalk and no crosswalk), open a browser tab
with Bing maps showing the location on the map (to provide more context when the
image is unclear), or quit and save their progress. At the end of each session, the results
of the evaluation are stored as a json file which records the user’s decisions for each
image and allows the session to easily be resumed.

It should be noted that this filtering procedure was slightly different from the
guidelines and filtering process discussed in section 2.2.3.3. Mainly, the process in this
section allowed for the verification worker to view both viewpoints of a location
simultaneously so that each location (represented with two images) could be given a
single tag based on the ground truth (instead of only considering what was present in
each viewpoint independently). This difference in the filtering protocol is due to this test
focusing on the dual-perspective mechanism and not on assessing the individual quality
of a trained model on pure data (such as the in the DOT tests in section 4.4). We used this
information to filter our external test dataset (dataset 5 + 6), which contains images that
were collected from a different area than the SPPM training datasets, and to calculate the

percentage of occluded images it contained. Our manual verification revealed that an

41

estimated total of 57.41% of the images in this dataset were occluded (either fully

occluded or unrecognizable to a human without knowing the context of the image).

2.4.5 Segmentation datasets

The images for our segmentation datasets were manually labelled with a program
called COCO Annotator [75]. As seen in Figure 2.8, this image annotation program
provides users with a graphical interface for producing masks that can be used to train
and test segmentation models. The pixels within the yellow region in Figure 2.8 visually
represent this mask. Here, we created these masks by using the polygon tool to surround
the entire crosswalk and exclude the rest of the road surface that was not between the
crosswalk markings. This tool creates accurate masks by allowing the user to place
markers at each desired vertex of a polygonal region around the desired location for the
mask. These marker points are then stored as the mask for each image in the COCO
dataset format [76]. We later describe the process of using these masks to perform

segmentation in section 3.6.

42

COCO Annotator

1147704157.png 1147704157 png >
—

K_segmentation_aerial (1)

+o

Figure 2.8 An example crosswalk being labelled within the COCO annotator interface.

The pixels of the image within the yellow area represent the mask that will be fed into the segmentation model in the COCO dataset

format that is written by the COCO annotator software.

2.4.6 Department of Transportation datasets

In order to test the various components of the system using real-world data owned
by an agency, a set of 400 testing images was extracted from Satellite imagery of Forrest
County, MS. This data is available on the MARIS (Mississippi Automated Resource
Information System) website [73]. The images used in this test were manually extracted
from this data using predefined shapefiles that were calculated to produce 256x256 pixel
square images (at the resolution of 0.5 feet/pixel) that were then automatically extracted
with a gdal python script (examples displayed in Figure 12). This produced
georeferenced slices that were an appropriate size for the models with 200 images
focused on testing crosswalk detection/mensuration and 200 images for testing sidewalk
detection. The locations for the crosswalk images were extracted from intersections, and

the sidewalk images were chosen from road segments between two adjacent intersections
43

included in the crosswalk locations list. In the various tests conducted here, some of these
images were removed to compensate for problems caused by images that were not
optimal for processing. Due to a lack of available street view imagery, only aerial
imagery and the corresponding models were tested here in order to show an example of

the performance of the system specifically for data owned by DOTSs.

positive negative

Figure 2.9 An example of two images from both of our MDOT testing datasets (detection)

In Figure 2.9, row A shows positive and negative crosswalk samples, and row B
shows positive and negative sidewalk samples from our MDOT testing datasets
(detection). These datasets were designed so that tests could be conducted to show our
system’s performance in three key areas: (1) aerial crosswalk detection, (2) aerial
sidewalk detection, (3) aerial crosswalk mensuration. These results are given in section
4.4,

2.4.7 Dataset partitioning
44

For all of the datasets used to train models (not the external test or DOT datasets),
the images are randomly shuffled and then split into training (70%), validation (10%),
and test (20%) subsets. The test subsets from each of these datasets are referred to as our
“local test” datasets since their images are sampled from the same bounding box (they are
in the same city) that their training subsets are in. These images are kept from
overlapping using distance restraints on the coordinates and image similarity filtering via
perceptual hashing. Meanwhile, we created an “external test” dataset (Hartford) so that
we could test these models with a dataset which was geographically separate from each
training dataset. The external test dataset contains both aerial and street side imagery
(stored and processed separately by the relevant sub-models of the DPPM) and was
assigned an occlusion percentage based on the number of images marked as occluded in
the results of the manual verification described in the next section. Table 2 shows the
results of this data splitting process and describes how the images in each data subset are
distributed between the two classes (crosswalk and no crosswalk). Due to abnormalities
in the street view image data collection process that persisted even after the application of
previously described correction methods, the local testing portion of the street view
crosswalk imagery (Dataset 2 testing) was manually filtered to remove erroneous images

before prediction was performed.

45

Table 2.4 Subset size for each final dataset

Dataset Subset Positive Negative
Training 1,467 1599
1
Validation 210 228
(aerial crosswalk local
Testing 419 456
detection)
Total 2,096 2,283
Training 374 847
2 Validation 53 121
(street-view crosswalk | Testing 49 132
local detection)
Total 476 1,100
Training 16,120 6,960
3
Validation 200 995
(aerial sidewalk local
Testing 4,606 1,988
detection)
Total 20,926 9,943
Training 7,889 2,288
4
Validation 1,127 327
(street-view sidewalk
Testing 2,254 653
local detection)
Total 11,270 3,268
5 (aerial crosswalk
Testing 344 345
external detection)

46

6 (street-view
crosswalk external Testing 344 345
detection)
Table 2.4 Continued
7 (Aerial DOT
Testing 20 110
crosswalk detection)
8 (Aerial DOT sidewalk
Testing 86 17
detection)
Training 64 n/a
9 (Aerial crosswalk Validation 9 n/a
local segmentation) Testing 18 n/a
Total 91 n/a

47

CHAPTER Il - MACHINE LEARNING THEORY AND METHODOLOGY

3.1 Machine learning theory
As described by Langley et al., “Machine learning is the study of computational

methods for improving performance by mechanizing the acquisition of knowledge from
experience” [77]. Machine learning algorithms generally do this by learning knowledge
from labelled data that form datasets of examples (in supervised learning). The larger the
dataset, the more effectively the algorithm can be “trained” on the data. The goal of a
machine learning algorithm is to use these datasets to form a trained “model” for the
purpose of correctly predicting the labels of unseen data in the future [78]. One of the
earliest machine learning methods was the perceptron [79], which was a supervised
learning algorithm for training binary classification models. This algorithm takes all input
values and multiplies them by weights to create a weighted sum. This weighted sum is
then sent to the activation function which produces the output of the perceptron (the
weight of an input shows the strength of that node). The output of a single layer
perceptron (as illustrated in Figure 3.1) can be used to perform binary classification since
the activation function results in a probability (between 0 to 1) that the given inputs
belong to one class or the other. Single layer perceptrons were effective for simple
problems with linearly separable classes, but more complex architectures with more
layers (multilayer perceptrons/neural networks) and various other improvements have

since been developed.

48

nputs weights

o Weighted Step
sum function
Wl \

N 6 o

Figure 3.1 An illustrated example of a single layer perceptron

W

n-1 /
o o

Multilayer perceptrons add one (or several) hidden layers between the input and
the output layers. Depending on the study and the computational resources that are
available, there could be hundreds of hidden layers. In this way, these networks can learn
a more complex and abstract representation. Also, by using the process of
backpropagation, the weights in each hidden layer can be iteratively corrected for the
purpose of improving the network’s prediction performance. Each iteration will update
the weights in the hidden layer and may be repeated multiple times until optimal results
are achieved. Figure 3.2 shows an example illustration of a simple multilayer perceptron

with two hidden layers.

49

Hidden layers

Input layer | | |

Output layer

Figure 3.2 An example illustration of a multilayer perceptron with two hidden layers
3.1.2 Machine learning for image classification

The basic unit of information in image classification is the pixel. In the context of
machine learning, images are represented as a 2D or 3D (RGB) array of pixel values.
Typically, each pixel is assigned a value from 0 to 255 that represents the color at that
point. For a color image in the RGB (red, green, blue) format, each pixel value is
represented by a vector of three numbers in this format that are stored as separate color
channels. Pixels from the array representation of an image can be flattened into vectors
and represented as a column of input features for use in a typical neural network (like
those described in section 3.1). In the case of images, the weights in the network
represent different patterns in the pixels of the input image that are being detected by the
network. This simple way to perform machine learning with image data has been

expanded upon in modern research.

50

3.1.2.1 Convolutional neural networks

Convolutional Neural Networks (CNNs) were first proposed by Fukushima et al.
under the name NeoCognitron [80]. Then, the concept was refined and used by LeCun et
al. as a novel machine learning method for recognizing hand-written numbers [81]. In the
early years of experimenting with CNN models, the computational complexity and
memory requirements hindered most research and only very small images were able to be
processed. However, modern GPUs (graphics processing units) have resulted in an
explosion in CNN performance by allowing for relatively powerful networks to be
trained even on common workstation computers [82]. Earlier modern CNN architectures
like AlexNet [83], which became famous for winning the 2012 ImageNet [84] challenge,
would go on to dominate the image-level classification scene for years to come.

While traditional computer vision models are greatly dependent on how ideal an
image is in both resolution and perspective, the translational invariance and automated
feature extraction capabilities of CNNs give them an advantage when dealing with real-
world images where crosswalks may not always be located in the same region of each
image. In other words, CNN models (instances of a CNN architecture trained to perform
a certain task) do not rely on human-generated descriptions of important aspects
(features) within each image and can learn robust representations of objects that do not
depend on the location of those objects in the image. These models are created by
processing input images in a way that enables them to identify objects in these input
images according to class labels. For the type of model used in this study, these labels are
object categories that are defined when the model is created and must be associated with

input images to form a labeled dataset. In our case, we used models designed for two

51

classes (“crosswalk” and “no crosswalk’) and trained them using the images and labels
that we collected. The network learns to assign objects to these labeled categories during
the training process using a procedure that automatically assigns importance (via weights
and biases learned during training) to various features (including hidden features) that it
identifies within the input images.

CNN architectures are typically composed of convolutional layers, pooling layers,
and fully-connected layers. Figure 3.3 shows an example illustration of a CNN used to
perform image classification. Convolutional layers are the core component of CNNs.
They help to reduce the excessively large number of parameters required by a normal
neural network when using an image as input. Furthermore, they are able to consider
spatial properties of an image and learn features that are independent of location in the
input. CNNs accomplish this by using a convolution process with a small 2D window
called a filter (or kernel). This small window is responsible for calculating features and
matching them to certain regions across the entire image. Images being processed by a
convolutional layer have each pixel value multiplied by the values in the filter before all
of the results are summed. This produces a filtered version of the input image which has
highlighted regions corresponding to specific features that are being learned by the

model.

52

— CAR
— TRUCK
— VAN

Iil Ij — BICYCLE

_

FULLY

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN N NEcrep SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 3.3 An example illustration of a convolutional neural network for classifying
CIFAR [85] images.

Figure available at [86]

Often placed between convolutional layers, pooling layers are used to reduce the
size of the data at various positions in the network. They work by reducing the data
dimension using various operations (max pooling, average pooling, etc.). For example,
max pooling will iterate over the previous layer in a sliding window fashion and select
only the maximum values at each point within the scope of the pooling filter size that is
being used. Figure 3.4 shows a simple example of max pooling in which a 2x2 max
pooling operation is performed on a 4x4 input layer and the maximum value is selected to
represent each 2x2 submatrix. In this example, with a stride of two (shift two pixels for
each movement), 4 maximum values will be selected as the final, pooled output layer.
Finally, fully-connected layers are typically at the end of a CNN and connect every
activation in the previous layer to the output prediction vector. The features learned in the
convolutional layers will be flattened into a 1D vector and the typical process for training
a neural network will follow. This is the portion of the network that will decide the

classification results and make the final prediction with the output activation function.

53

Previous layer

1121512 Pooled layer
719 |3 |4 | Maxpooling |9 |5

>
3111210 8 |7
4181617

Figure 3.4 An example of max pooling
Max pooling with a stride of 2 using 2x2 filters

3.2 Methodology overview

This chapter describes the technical and theoretical details behind the
development of the various components of our pedestrian facility detection system. We
focus particularly on the development of integrated CNN-based machine learning
models, and design and implementation of the software and libraries used to train and test
our object detection and segmentation models. First, we will give an overview of how the
SPPMs are integrated into the DPPM for performing dual-perspective predictions. Then,
in addition to an overview of the theoretical background of designing convolutional
neural networks, a detailed description of the SPPM architecture, hyperparameter
configuration, and training details will be given. Finally, we will provide the same
information with respect to the development of the segmentation and mensuration models
as well as a detailed description of the methods we use to evaluate the performance of
each model. Our proposed DPPM is composed of two individual single perspective
prediction models (SPPMs) built using a CNN with the VGG16 architecture [87]. One
SPPM can detect crosswalk presence from aerial view images while the other uses street

54

side images. Figure 3.5 presents the structure of the DPPM. For a given location where
the presence of a crosswalk needs to be detected, an aerial image centered at that point of
interest (POI) will be automatically acquired from Bing Maps. At the same time, a data
collection pipeline was implemented to address the challenge of retrieving the
corresponding street side image from the default panorama view obtained from Bing
Maps by automatically focusing on that same POI. After that, the two images were fed
into the aerial-view SPPM and the street-view SPPM separately. The two SPPMs process
the images and generate predictions of crosswalk presence simultaneously. The final
algorithm merges these SPPM predictions into a single crosswalk presence prediction
(the output of the DPPM) by using a soft voting method based on the confidence level
(predicted class probability) of each prediction. Therefore, each prediction made using an
aerial image of a candidate object will be balanced by the corresponding prediction of a
street side image of the same object to improve the final prediction (especially for cases
of heavy occlusion). Since the street-view image provides a closer view of the object at
the POI, this process acts as an additional check that may be able to observe the ground
truth of the POI rather than relying only on a prediction based on an aerial view image
only. Furthermore, this modular structure allows our system to be easily expanded to
accept new data types or detect new object types in the future. The process of developing
the DPPM includes training and testing image preparation, SPPM training and testing,
corresponding street side image retrieval, and final prediction generation. These tasks

will be presented in detail in the following sections.

55

Location A
(Latitude, Longitude)
|
DPPM for crosswalk
presence prediction

!

Algorithm to retrieve aerial
and street side images
from Bing Maps

Aerial image of Street side image of
location A location A

Aerial view SPPM for =trgef sldo view

crosswalk detection SERM for cr_osswalk
detection
Crosswalk presence Crosswalk presence
prediction based on prediction based on
aerial image street side image

Soft voting function to ‘\
combine the two

predictions

Final prediction of
crosswalk presence

Figure 3.5 Dual-perspective prediction workflow

3.3 The VGG16 architecture and Python implementation

Each SPPM (detection) in our study was an instance of VGG16 trained on a large
number of labeled images and tested to verify the performance of their predictions based
on a single perspective (aerial or street view). This was done on a server with four Nvidia
Titan Xp GPUs (Graphics Processing Unit) and an Intel Xeon E5-1650 CPU (Central
Processing Unit). However, all of the necessary code also ran with comparable

performance on a laptop with an Nvidia RTX 2080 Super Max-Q GPU. The models

56

(CNNp5s) are based on the VGG16 architecture and implemented in Python using Keras. The
VGG16 architecture is a powerful CNN architecture which is typically known for its simple
design using only 3x3 convolutional layers (with max pooling) stacked in increasing depth.
While it is sometimes slow to train and heavy in terms of parameters compared to smaller
networks (such as MobileNetV2 [88]) that we tested (see section 3.9), it typically can
provide consistent results with high accuracy. Also, even though CNN architectures are
continually being improved and new state-of-the-art models are being developed
constantly, we chose the VGG16 architecture because it was proven to be effective for
crosswalk detection in previous studies [11], [13]. Furthermore, using this approach, we
could quickly start this project by working with code for a model that was previously
implemented and tested by our research group in another object detection study [46]. Given
our previous experience with this model and its relative simplicity compared to more
complex architectures, VGG16 was chosen as a base model that offered both high
performance and enough interpretability to enable easier customization in our future work.

Due to our relatively small dataset size, we utilized pre-trained weights (ImageNet
[84]) to initialize the training process (pretraining). This is similar to the process used in
our previous work. Figure 3.6 shows an illustration of the architecture used for both
SPPMs. During training, the input of the network is an image labeled as “crosswalk™ or
“no-crosswalk™ with a size of 224x224 pixels (3 channel RGB). The output of the network
is a crosswalk presence prediction with two possibilities (either class 1 for “crosswalk” or
class 2 for “no-crosswalk images). The network mainly consists of thirteen convolutional
layers arranged in blocks (labelled conv in Figure 5) that are each followed with max
pooling.

57

shortened
fe3+softmax
Ix1x2

conv4

B Softmax
input conv3 28x28x512 fcl fc2 B ReLU
224x224 UL conv2 56X56x256 1x1x4096 1x1x4096 Fully connected
n:\zn’\;l‘m-‘l 12x112x128 Convolutiot
T BReLU

W)Max pooling

Figure 3.6 A visual overview of our implementation of the VGG16 architecture

A portion of this figure was generated using the network drawing code from [89]

input blockl convl blockl conv2 block2 convl block2 conv2 " glogk,?:cm:\‘l
Figure 3.7 Visualizing VGG16 layer activations

The features thus obtained are fed to two fully connected layers that use the ReLU
(Rectified Linear Unit) activation function. Then, using the Softmax activation function,
the output layer (fully connected) produces the crosswalk/sidewalk presence prediction.
To illustrate what happened at each layer, we projected the activation function values at
selected convolutional layers back onto an example input image, as shown in Figure 3.7.
The resulting activation maps revealed how our models perform predictions by showing
the regions of pixels that are the most recognized by various layers of the network. To be
specific, these images were created using the average of the activation values produced by
the convolutional filters in each selected layer, and the brighter areas of the image
essentially show features that the layer has learned to detect (not necessarily only

crosswalks). As illustrated by these activation maps, CNN models learn features from
58

training images using various filters applied at each layer. These layers are named
according to the “convolutional block™ (group of convolutional layers) that they come from
in the network as depicted in Figure 3.6. For example, “block2 convl” is the first
convolutional layer in the second block (group) of convolutional layers. The features
learned at each convolutional layer significantly vary. In general, the initial layers are more
interpretable and retain the majority of the easily discernable features in the input image.
At this stage, more general features such as edges, object orientation, and colors are
captured. As the depth of the layer increases, features become less interpretable and more
specific. CNN models also capture high-level features such as shapes and collections of
shapes. The last layer is able to combine all of the information previously learned from
both general and crosswalk-specific image features to produce the final pedestrian facility
presence prediction.

Table 3.1 lists and explains several other technical details about the architecture
and parameter settings that were important during our model training process. The SPPMs
perform these operations on each input image during the training process and slowly learn
a more useful representation of common crosswalk features after repeated training
iterations. Also, during each iteration of training (not in the testing or validation phases),
we used augmentation in the DataGenerator object. Augmentation is a process that applies
changes (transformations, noise, cropping, etc.) to input images during training for the
purpose of adding some variety to the dataset. These parameters that we used for this
augmentation procedure are listed in Table 3.1 and are randomly applied at each training
iteration. Figure 3.8 shows an example of how these random changes to an example input
image (A in Figure 3.8) produce different output images (B in Figure 3.8).

59

Figure 3.8 An example of image augmentation during training.

Input image (A) vs. several randomly augmented output images (B).

60

Table 3.1 Parameter configuration for our Keras (Python) VGG16 implementation

VGG16 model available as part of the

Model name VGGI6 Keras Applications library
Sets of values for the parameters within
Weights ImageNet the network (pretrained on the ImageNet

dataset).

Input image size

224x224 (3 channel)

Image size in pixels (height, width) of
the images passed into the model (both
input and output). This is a fixed value
required by the VGG16 network.

optimizer

stochastic gradient descent

Keras implementation using default
parameters. Controls how the weights
are updated during training.

Pretrained weights
status

All layers unfrozen

The pretrained weights in all layers will
be updated during training, and the new
output layer was created with the default
initialization in Keras.

Learning rate

le-4

Affects how quickly the model is fit to
the data (small values are typically
important in transfer learning to avoid
dramatic changes to the pretrained
weights).

16 (aerial)

How many images to pass through the
network at a time. Has a direct effect on

training only)

horizontal flip=True

vertical flip=True

Batch size 4 (street view) GPU memory usage and often on
convergence speed.
featurewise center=False Keras ImageDataGenerator class that is
Augmentation featurewise std normalization=False | used here to apply augmentation
parameters rotation_range=20 (randomized transformations and
(augmentation is width_shift range=0.2 deformations) to each batch of images
applied during height shift range=0.2 passed into the network during training.

Epochs

200 (aerial)

1000 (street view)

Number of iterations of the training
process to run.

Total of all parameters in the network

Total parameters 134,268,738 (all are trainable)
The output layer is a 2 unit dense (fully
Output lg yer Softmax connected) layer with a Softmax
activation

activation function.

61

3.4 DPPM operation

After each SPPM was built and trained, the final DPPM was configured to
generate the final prediction based on information combined from two distinct
perspectives of a candidate crosswalk location. In other words, the DPPM is a
combination (ensemble) of the previously trained SPPMs rather than a separately trained
model. We began with treating each location as a single item to be predicted using both
the aerial and street side images. Thus, each candidate crosswalk that the DPPM
processed was detected using two images of the same location (one image from the aerial
perspective and one image captured from the street-view perspective). In order to obtain a
single prediction result for each location that is less sensitive to aerial imagery occlusion,
we combined the prediction results from the aerial and street-view models in an ensemble
using soft voting. This simply performs two predictions for each location separately and
then sums the class probabilities together as the final prediction, which we call the output
of the DPPM. Compared to combination methods that fuse models at the feature vector
level (as discussed in section 1.3.1.2), this approach allows for independent models to be
trained and used separately in situations that demand it (such as in cases of missing
street-view imagery). Also, performance can be tuned after training since the results are
essentially a post-processing of the final predictions. As seen below in formula 4, each
location’s predicted class is determined by picking the maximum of the sum of the

probability values between the aerial and street side models.

y = argmax YL, w;p;; 4)
l

62

This equation represents a single prediction from our final DPPM by creating a soft
voting ensemble of the two SPPMs using the following values:
i — the ith class label predicted. “i=0 means the predicted label is “no crosswalk”
and “i=1" means “crosswalk”.
Jj —the jth SPPM model. “j=0" means aerial SPPM and “j=1" means street side
SPPM.
m — the total number of SPPMs (m=2 in this case) used to perform separate
predictions.

P — the probability of the input image belonging to class i predicted by SPPM j.

w; — a weight assigned specifically to a model j, where the sum of all weights is
equal to 1

y — the largest number obtained by combining the predicted class probabilities
from each model according to the equation. This is the output from the DPPM and

indicates whether an input image is predicted to contain a crosswalk or not.

The value of wj is critical and can be empirically determined or optimized for better
results. For example, in the case of low resolution and heavily occluded aerial imagery, it
may be better to place more weight on the predictions of the street view model. To illustrate
this idea first, in the results we report here, we used equal weight (w = 1.0) for both models
to obtain a simple combination of the prediction results that can serve as a baseline for any
future work in this area. Since this voting function is performed as the last step before

reporting the final prediction, this value is easily adjustable in the validation step. Even

63

without adjusting the model weights, this method provides the user of the final system with
a more concise prediction and increases robustness when processing real-world data by
resolving many cases of aerial view occlusion. It is also easily expandable since new
models that use any other available perspectives or data formats, such as Lidar, can be
directly added into the system with no need to retrain any of the other components. In fact,
in the final production environment for a system like this, retraining the entire system to
add new object categories or additional data types may be impossible due to data storage
and computational requirements. Therefore, our method is much more flexible as a final
system than methods that rely on a single model only.
3.5 Mensuration overview

One of the primary tasks of our project was to measure the length of crosswalks in
satellite images. This is an important task for agencies that collect pedestrian facility data
and gave us another chance to automate a process that traditionally requires time-
consuming, large-scale manual data collection projects. We chose segmentation as our
method for predicting the length of crosswalks in our aerial images. This is possible
thanks to the fact that these images have a known ground resolution. In other words, each
pixel represents a known distance in the real world. Segmentation models, a type of
machine learning model that identifies the location of a predicted class in the image, can
output a bounding box around the region that they predict. Given this information, we
performed some adjustments and were able to produce a segmentation model that can
accurately measure crosswalks in aerial imagery. Figure 3.9 shows an overview of our
segmentation process. In total, 100 images (with 65 used for training) were processed and
used in this manner to create the trained segmentation (mensuration) model. The

64

highlighted yellow pixels in the training input image represent a manually dra