
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Fall 10-10-2022

Software Protection and Secure Authentication for Autonomous Software Protection and Secure Authentication for Autonomous

Vehicular Cloud Computing Vehicular Cloud Computing

Muhammad Hataba

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Computational Engineering Commons, Computer Engineering Commons, Computer

Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Hataba, Muhammad, "Software Protection and Secure Authentication for Autonomous Vehicular Cloud
Computing" (2022). Dissertations. 2071.
https://aquila.usm.edu/dissertations/2071

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=aquila.usm.edu%2Fdissertations%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=aquila.usm.edu%2Fdissertations%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=aquila.usm.edu%2Fdissertations%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=aquila.usm.edu%2Fdissertations%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=aquila.usm.edu%2Fdissertations%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/2071?utm_source=aquila.usm.edu%2Fdissertations%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

SOFTWARE PROTECTION AND SECURE AUTHENTICATION FOR AUTONOMOUS

VEHICULAR CLOUD COMPUTING

by

Muhammad Hataba

A Dissertation
Submitted to the Graduate School,
the College of Arts and Sciences

and the School of Computing Sciences and Computer Engineering
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved by:

Dr. Ahmed Sherif , Committee Chair
Prof. Ras B. Pandey

Prof. Dia Ali
Prof. Chaoyang Zhang

Dr. Amer Dawoud

October 2022

COPYRIGHT BY

MUHAMMAD HATABA

2022

ABSTRACT

Artificial Intelligence (AI) is changing every technology we deal with. Autonomy has

been a sought-after goal in vehicles, and now more than ever we are very close to that goal.

Vehicles before were dumb mechanical devices, now they are becoming smart, computerized,

and connected coined as Autonomous Vehicles (AVs). Moreover, researchers found a way to

make more use of these enormous capabilities and introduced Autonomous Vehicles Cloud

Computing (AVCC). In these platforms, vehicles can lend their unused resources and their

sensory data to join AVCC.

In this dissertation, we investigate security and privacy issues in AVCC. As background,

we built our vision of a layer-based approach to thoroughly study state-of-the-art literature

in the realm of AVs. Particularly, we examined some cyber-attacks and compared their

promising mitigation strategies from our perspective. Then, we focused on two security

issues involving AVCC: software protection and authentication.

For the first problem, our concern is protecting client’s programs executed on remote

AVCC resources. Such a usage scenario is susceptible to information leakage and reverse-

engineering. Hence, we proposed compiler-based obfuscation techniques. What distin-

guishes our technique, is that it’s generic and software-based and utilizes the intermediate

representation, hence, it’s platform agnostic, hardware independent and supports different

high level programming languages. Our results demonstrate that the control-flow of obfus-

cated code versions are more complicated making it unintelligible for timing side-channels.

For the second problem, we focus on protecting AVCC from unauthorized access or

intrusions, which may cause misuse or service disruptions. Therefore, we propose a strong

privacy-aware authentication technique for users accessing AVCC services or vehicle sharing

their resources with the AVCC. Our technique modifies robust function encryption, which

protects stakeholder’s confidentiality and withstands linkability and “known-ciphertexts”

attacks. Thus, we utilize an authentication server to search and match encrypted data

by performing dot product operations. Additionally, we developed another lightweight

ii

technique, based on KNN algorithm, to authenticate vehicles at computationally limited

charging stations using its owner’s encrypted iris data. Our security and privacy analysis

proved that our schemes achieved privacy-preservation goals. Our experimental results

showed that our schemes have reasonable computation and communications overheads and

efficiently scalable.

iii

ACKNOWLEDGMENTS

This is to thank all of those who have assisted me in this effort. I am forever indebted to

my advisor, Dr. Ahmed Sherif, who is the source of all wisdom in this wordly life. I am

and remain in his awesome, brilliant shadow. I am grateful to Prof. Dia Ali, whom I look

up to and from whom I learned a lot. And I would like to thank the rest of my dissertation

committee; Prof. Ras Pandey, Prof. Chaoyang Zhang and Dr. Amer Dawoud for their

helpful guidance and valuable attention.

I am also thankful to the National Telecommunications Institute (N.T.I) of Egypt, for

allowing me the time to pursue my post graduate studies.

Last but not least, great appreciation to my parents for their always sincere care, utmost

devotion and endless encouragement during my life. Also, I would like to thank my brother

and sister for their advice and help during all of my studies. Finally, I wouldn’t forget all of

my friends who stood beside during hours of stress and hardship. Honestly, I wouldn’t have

been able to do anything without the love and support from everyone around me.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . ix

LIST OF ABBREVIATIONS . x

1 INTRODUCTION . 1

2 SECURITY AND PRIVACY ISSUES IN AUTONOMOUS VEHICLES: A
LAYER-BASED SURVEY . 6
2.1 Introduction 6
2.2 Application Layer Security 6
2.3 Operating System Level 27
2.4 Network Level 28
2.5 Physical Level 32
2.6 Related Work 34
2.7 Summary 35

3 A PROPOSED SOFTWARE PROTECTION MECHANISM FOR AUTONOMOUS
VEHICULAR CLOUD COMPUTING . 37
3.1 Introduction 37
3.2 Background Information and Related Work 38
3.3 System Description 44
3.4 Proposed Technique 45
3.5 Experiments and Results 46
3.6 Summary 49

4 ENHANCED OBFUSCATION FOR SOFTWARE PROTECTION IN AU-
TONOMOUS VEHICULAR CLOUD PLATFORMS 50
4.1 Introduction 50
4.2 System Description 51
4.3 Proposed Technique 51
4.4 Experiments and Results 53
4.5 Related Work 58

v

4.6 Summary 59

5 A PRIVACY-AWARE SYSTEM FOR AUTHENTICATION IN AUTONOMOUS
VEHICLES CLOUD COMPUTING . 61
5.1 Introduction 61
5.2 System Models 62
5.3 Proposed Scheme 63
5.4 Privacy and Security Analysis 67
5.5 Experiments and Discussions 67
5.6 Related Work 71
5.7 Summary 72

6 PRIVACY-PRESERVING BIOMETRIC-BASED AUTHENTICATION SCHEME
FOR ELECTRIC VEHICLES CHARGING SYSTEM 74
6.1 Introduction 74
6.2 System Models 75
6.3 Proposed Scheme 76
6.4 Privacy Analysis 79
6.5 Experiments and Performance Evaluation 80
6.6 Related Work 83
6.7 Summary 84

7 CONCLUSION AND FUTURE WORK 85

BIBLIOGRAPHY . 86

vi

LIST OF ILLUSTRATIONS

Figure

1.1 Autonomous vehicle cloud computing system. 2

2.1 The expanded layered structure of autonomous vehicles system. 7
2.2 A typical traffic management system would control intersections, traffic lights

and ramp meters among other things. 9
2.3 An autonomous vehicles platoon and the various sensors they use. 11
2.4 Architecture of an AV carpooling system. 15
2.5 An example of an automated parking system for AVs. 19
2.6 Architecture of IoV system. 23

3.1 The network model of an AVCC platform. 44
3.2 Obfuscated code versions of the Bubble Sort program and their correspond-

ing percentage of normalized runtime differences with respect to the original
unmodified version. 47

3.3 Obfuscated code versions of the Quick Sort program and their correspond-
ing percentage of normalized runtime differences with respect to the original
unmodified version. 47

3.4 Obfuscated code versions of the RealMM program and their corresponding
percentage of normalized runtime differences with respect to the original un-
modified version. 48

4.1 Flow chart explaining the steps of producing an obfuscated code version using
our proposed system. 51

4.2 LLVM cross-compilation steps. 52
4.3 Obfuscated code versions of the Float program and their corresponding percent-

age of normalized runtime differences with respect to the original unmodified
version. 54

4.4 Obfuscated code versions of the IntMM program and their corresponding per-
centage of normalized runtime differences with respect to the original unmodi-
fied version. 55

4.5 Obfuscated code versions of the Perm program and their corresponding percent-
age of normalized runtime differences with respect to the original unmodified
version. 56

4.6 Obfuscated code versions of the Queen program and their corresponding percent-
age of normalized runtime differences with respect to the original unmodified
version. 57

vii

4.7 Obfuscated code versions of the Quick Sort program and their correspond-
ing percentage of normalized runtime differences with respect to the original
unmodified version. 58

4.8 Obfuscated code versions of the Puzz program and their corresponding percent-
age of normalized runtime differences with respect to the original unmodified
version. 59

4.9 Obfuscated code versions of the Oscar program and their corresponding percent-
age of normalized runtime differences with respect to the original unmodified
version. 60

5.1 Our proposed secure AVCC network model. 62
5.2 Encryption time results across different ID sizes for index and trapdoor. 68
5.3 Matching time results across different ID sizes. 68
5.4 Indices encryption time results with different numbers of users for n = 64 &

n = 32. 70
5.5 Search time results with different numbers of users for n = 64 & n = 32. . . . 70

6.1 The considered network model. 76
6.2 Encryption times across different iris sample sizes. 82
6.3 Comparing our average search times across different iris sample sizes with the

work of Rajasekar et al. 82

viii

LIST OF TABLES

Table

2.1 Security & Privacy Attacks On Traffic Flow Optimization Applications. 10
2.2 Security & Privacy Attacks On Platoon Applications. 13
2.3 Security & Privacy Attacks On Carpooling Applications. 17
2.4 Security & Privacy Attacks On Parking Applications. 22
2.5 Security & Privacy Attacks On IoV Applications. 26
2.6 Security & Privacy Attacks On The Operating System Level. 29
2.7 Security Attacks On Vehicular Networks and Their Countermeasures. 31
2.8 Security & Privacy Attacks On The Physical Layer. 35

4.1 Comparison of Range of Normalized Runtime Differences in Both Versions of
Our System. 54

5.1 Security & Privacy Attacks On AVCC Applications. 71

6.1 Main Notations We Used in Our Technique. 78
6.2 Communication Overhead. 81
6.3 Computation Overhead. 81

ix

LIST OF ABBREVIATIONS

ACC - Adaptive Cruise Control
AI - Artificial Intelligence
AV - Autonomous Vehicles

AVCC - Autonomous Vehicles Cloud Computing
AVI - Automated Vehicle Identification
CA - Certificate Authority

CAN - Controller Area Network
CACC - Cooperative Adaptive Cruise Control

CC - Charging Company
CCU - Connectivity Control Unit
CFG - Control-flow Guard

CP-ABE - Ciphertext-Policy Attribute-Based Encryption
CPS - Cyber-physical Systems

CS - Charging Station
CSP - Cloud Service Provider

DMV - Department of Motor Vehicles
DL - Deep Learning

DoS - Denial of Service
DDoS - Distributed Denial of Service

DRTM - Dynamic Root Trust Management
DSRC - Dedicated Short Range Communications

ECC - Elliptic Curve Cryptography
ECU - Electronic Control Unit

EV - Electrical Vehciles
FHE - Fully-homomorphic Encryption
HOV - High Occupancy Vehicle

ICMetrics - Integrated Circuit Metric technology
IEE - Isolated Execution Environment
IoV - Internet of Vehicles
IPE - Inner Product Encryption
ISA - Instruction Set Architecture

KNN - k-Nearest Neighbors Algorithm
LIN - Local Interconnect Network

LLVM - Low-Level Virtual Machine
MOST - Media Oriented Systems Transport
MSCC - Multiple Sensor Consistency Check

NRS - Non-transferable Ridesharing Service

x

OBD - On-board Device
OBU - On-board Unit
OTA - Over-The-Air
OTP - One-time Password

P3 - Privacy-Preserved Pseudonym
PSA - Physical Shift Authenticates
PUF - Physically Unclonable Function
ROR - Real-Or-Random
RSU - Roadside Units
SCA - Side-channel Attack

SRTM - Static Root Trust Management
SWD - Serial Wire Debug

TA - Trusted Authority
TCP - Trusted Computing Base
TLS - Transport Layer Security

TMC - Traffic Management Center
TOS - Trip Organizing Server
TRS - Transferable Ridesharing Service

UART - Universal Asynchronous Receiver-Transmitter
UAV - Unmanned Aerial Vehicles
V2V - Vehicle to Vehicle

VANET - Vehicluar Ad-hoc Network
VCC - Vehicular Cloud Computing

VENTOS - Vehicular Network Open Simulator
VIN - Vehicle Identification Number

VLC - Visible Light Communication
VN - Vehicular Network

xi

Chapter 1

INTRODUCTION

T he industrial revolution is still evolving, and now we are in the most significant shift
of all, eliminating the need for the human factor. Artificial intelligence, machine

learning, and intelligent robotics can already replace humans in various fields, such as
manufacturing, medicine, economics, education, and public safety. One key field, which
long suffered from human mistakes, is transportation. Hundreds of thousands of people die
in car accidents every year [1]. The total adoption of autonomous driving systems would
significantly decrease human errors and allow for more efficiency in various aspects, such as
better fuel utilization, lower accident rates, and of course, passenger welfare while offering
a pleasant entertainment-rich experience.

Moreover, the computing power of Autonomous Vehicles (AVs) is quickly increasing.
AVs are outfitted with different processing, memory and storage facilities, as well as
computer vision technologies [2]. In addition, there is a myriad of sensors and actuators
that are connected to each other and to their surroundings via various communications
interfaces, allowing them to drive themselves autonomously without the need for human
control. Nevertheless, relying solely on the vehicle’s sensors, such as proximity sensors,
cameras, and light detectors, is not enough for AVs’ safe operation. An autonomous driving
system would not have thrived without the need for networking. That is because these
sensors may have physical limitations, which may result in making erroneous decisions [3].
That is why vehicles need to communicate with each other to make up for these deficiencies
by exchanging information on road and traffic conditions, thereby improving the navigation
of vehicles. Hence, serious accidents can be mitigated if vehicles communicate continuously,
thereby avoiding collisions and improving road safety [4]. Also, the autonomous driving
system needs a continuous connection to the car manufacturer’s cloud, which monitors the
vehicle’s condition and provides aid if needed and also send necessary firmware updates [5].

Furthermore, AVs frequently collaborate to collect data from their surroundings and
transmit it to distant servers, where it may be processed and analyzed to deliver various ser-
vices. Such that, in addition to navigation, some collaborative applications were introduced

1

Smartphones

Remote Servers

RSU

PC AV

Figure 1.1: Autonomous vehicle cloud computing system.

to monitor the environment and pollution levels or aid in wide-scale traffic management
systems. Hence, a paradigm called the Internet of Vehicles (IoV) [6] was born, which is the
next level of Wireless Sensor Network, where the cars themselves act as the information
hub.

Unfortunately, regardless of the expected benefits of AVs, these systems are still facing
plenty of security issues and privacy concerns [7]. Vehicles, which used to be all-in-all
mechanical systems, are now inheriting computer systems problems that are susceptible
to a wide range of unexpected attacks. This happens more often when these systems are
connected via communication networks, thereby opening the system to the outside world
or even malicious insiders in the network. Additionally, modern vehicles allow users to
connect their smartphone, other portable, or more recently wearable devices via various
wired (AUX, USB, etc.) and wireless interfaces (WIFI, Bluetooth, etc.) in a seamless
integration [8]. This sort of connection allows for sharing data between the vehicle and the
mobile device for playing music, answering phone calls, checking social media notifications,
and surfing the web [9]. These devices may make the car system susceptible to new attacks
and vulnerabilities since they are inherently prone to hacking and malware programs [10].

Security attacks are an enormous threat to autonomous driving systems. Successful

2

cyberattacks may cause system failure, which may lead to accidents and thus losing human
lives. Moreover, malicious hackers can deliberately target a particular vehicle and disrupt its
normal operation to steal it or even harm others or cause any damage. In addition, privacy
is a major concern in AVs. The continuous communication between the vehicle and its
surroundings puts the user’s private data at risk. Imagine an intelligent car equipped with
cameras and a microphone, and a variety of sensors that can be used to harness troves of
data on the car’s passengers [11]. Potential threats include information leakage, identity
theft, tracking, and stalking. Users may not trust technology providers because they may
collect sensitive information and sell it to interested parties.

That said, researchers took the computing potential found in AVs to the next level. They
aim to utilize these smart cars’ occasionally inactive computing capabilities to provide
computing services as a utility. This model is called autonomous vehicles cloud computing
(AVCC) [12]. Cloud computing is a relatively new technology that is currently game-
changing in the industry. Users don’t need to own powerful computing capabilities at
their hands. Instead, they can rent as much power as they need in a pay-as-you-go model.
The advancement in communication technologies such as LTE and 5G allows a gradually
ubiquitous spreading of this new paradigm. Cloud computing is being offered in different
delivery models suiting different user needs. There is Software as a service, Platform as a
service, and Infrastructure as a service. In other situations, some companies opted to use
cloud computing platforms to allow their employees a more flexible working style. In times
of hardship like nowadays, the pandemic forced many people to work from their homes,
and they needed to access the company’s computing resources seamlessly with the same
functionalities. These models have something in common; some computation task is done
remotely in a physically out of reach platform that the user cannot control or govern.

Remote code execution is a trending requirement in numerous usage scenarios, such as
a case when a user is using a smartphone or a small computer. In other situations, some
companies opted to use cloud computing platforms to allow their employees a more flexible
working style. In times of hardship like nowadays, the pandemic forced many people to
work from their homes, and they needed to access the company’s computing resources
seamlessly with the same functionalities. On the other hand, all of these usage scenarios
suffer from common security threats and privacy concerns. More importantly, remote code
execution on shared platforms that are physically inaccessible is inherently risky in terms of
trustworthiness. That is to be confidential, integral, and available at time of need.

These requirements become more challenging in the field of AVCC. Although AVCC is

3

essentially a cloud computing platform, using cars instead of stationary computers residing
in some company’s building introduced more challenging problems. The first obvious
problem is that these cars are moving, which means that the communication interfaces will
continually change the cloud formation. Although the organizational problems are addressed
from an architectural perspective, they open the system to unknown threats every time a car
enters or leaves the cloud [13]. Secondly, AVs are powered by embedded systems, which
means they have power limitations and are also limited in processing capabilities, storage,
and memory.

AVCCs are indeed a bonanza of a variety of security attacks such as unauthorized
access, intrusion, Denial of Service (DoS), jamming, hijacking authentication, racketeering,
copyright infringements, stealing data, sabotage, and information leakage via side-channels
and reverse engineering. This new breed of attacks is resilient to traditional open security
methods, relying on conventional cryptographic approaches. Digital signatures, certificates,
and trusted platforms are examples of traditional cryptographic approaches that may not
be sufficient. Since the code is running remotely, attackers may be able to view the actual
decryption process and get the information [14]. Homomorphic encryption [15] is a fairly
new technique to support encrypted execution of instructions. Even so, it is not quite
applicable yet, since it requires complicated setup hardware and tremendous practical cost,
which may not be suitable in the embedded systems environment. Therefore, we need new
practical security approaches to remotely protect code execution from potential attackers
who share the same physical hardware in the AVCC especially against side-channel attacks.

On the other hand, implementing a secure and trustworthy authentication system is
an eventuality for AVCC to reduce the misuse of the system and increase their spread. A
lightweight and efficient encryption mechanism is needed to provide a privacy-preserving
robust encrypted access scheme. A limitation of existing searchable encryption techniques
[16–18] is that anyone who receives the encrypted ids, for example, by overhearing AVCC
communications, can compute the similarity score and deduce side information. Hence,
it’s required that the cloud server would be able search over encrypted data using its secret
key. Additionally, the system should have a low overhead in terms of communications and
computations. This will allow for a fast response such that user identification and verification
are made quickly and efficiently with minimum wait time for the user. Also, we need a
more lightweight, yet secure, authentication mechanism for services related to the AVCC
operation such as the electrical charging systems.

In this dissertation, we aim to tackle some of the aforementioned problems, in particular

4

software protection and secure authentication for the AVCC platform. The remainder of this
dissertation is organized as follows. Chapter 2 shows an overview of the literature related to
the major security and privacy challenges in the realm of AVs, and some of their mitigation
strategies, presented in model that examines each layer of the AV system architecture.
In Chapter 3, we focus on AVCC application security and we present an obfuscation-
based software protection mechanism. In Chapter 4, we propose an enhancement to the
former technique, that address some of its shortcomings and more applicable to some
usage scenarios. In Chapter 5, we developed a secure authentication mechanism for AVCC
platforms the protects both the cloud users and vehicle participants. In Chapter 6, we
developed another, more simple, authentication mechanism for charging systems that power
electrical vehicles. Finally, in Chapter 7, we conclude the dissertation and suggest directions
for future work.

5

Chapter 2

SECURITY AND PRIVACY ISSUES IN AUTONOMOUS VEHICLES:
A LAYER-BASED SURVEY

2.1 Introduction

Autonomy has long been a sought-after goal in vehicles, and now more than ever we are
very close to that goal. But this new paradigm shift comes with newly introduced privacy
issues and security concerns.

In this chapter, we present a survey on security and privacy issues in autonomous
driving systems. We classify these issues from a layer-based perspective inspired by the
TCP/IP network model [19], which was based on the OSI reference model of computer
networks [20]. Figure 2.1 shows the layered structure of the AVs system that we are focusing
on; application layer, operating system layer, network layer, and physical layer. We are not
concerned with software or hardware faults arising within the system itself. Instead, we
focus on the dangers of opening the system to its surroundings and the outside world via
various wired or wireless communication channels.

The remainder of this chapter is organized as follows. Section 2.2 shows an overview
of the literature related to a variety of application layer programs that are quite popular in
the realm of AVs, their major security and privacy challenges. The vulnerabilities of the AV
operating system layer are investigated in Section 2.3. Section 2.4 focuses on the security
issues regarding the network layer. In Section 2.5, we discuss the hardware attacks on AVs.
Additionally, in Section 2.6, we show some related works that surveyed AV security and
privacy issues. Finally, in Section 2.7, we summarize the chapter and suggest directions for
future work.

2.2 Application Layer Security

Autonomous driving systems allowed for a new generation of applications, some of which
may have existed before, but with the vehicles being able to drive themselves, researchers
had to revolutionize these applications to make use of the new possibilities. And with the
new possibilities comes new security risks that must be addressed before the total adoption

6

Figure 2.1: The expanded layered structure of autonomous vehicles system.

of these applications and creating room for much more. Some example application includes;
but not limited to, carpooling, automated valet parking, automated electrical charging (since
most modern AVs will be electrical), sensor data gathering, forensics, platoon stability,
safe navigation and crash prevention applications; video upload (e.g., an accident scene,
Pic-on-wheels, remote drive, ...etc.), news, entertainment, location-relevant info download,
driver behavior study, traffic crowdsource, mitigating congestions/pollution by efficient
routing and intelligent transport [21]. Here we shed some light on primary application areas
and an overview of the work being done to secure them.

7

Traffic Flow Optimization

In traffic flow optimization, traffic is directed through a road network in order to minimize
travel times, eliminate traffic congestion, and maximize overall road infrastructure utilization.
Currently, new approaches seek to influence vehicles through the adaptation of traffic signal
schedules [22] [23] and digital signage, as illustrated in Figure 2.2. When AVs are present,
the method can take an entirely new form.

Many researchers tried to simulate and study the traffic management systems, such
as [24,25]. Some researchers focused on ramp metering as in [26], while others concentrated
on intersection management on a larger scale such as [27] and [28]. That said, besides the
AV traffic management algorithm itself, which is sometimes quite complicated, there are
side problems that need to be handled [29] such as the coexistence of AV with human-driven
cars, pedestrians, motorcyclists, etc.; dealing with complicated situations such as severe
weather conditions or natural accidents. There are also data handling and communication
problems.

Here we focus on traffic messages being communicated by the vehicles. These are
vulnerable to a variety of network-level security attacks that we will further investigate in
Section 2.4. Moreover, stakeholders’ privacy is of primary concern, and there has been a
considerable effort to protect it.

In [30], the authors proposed a model based on data quality evaluation metrics to
augment trust and reputation. Their proposed model can detect agents that supply incorrect
or fraudulent data; thereby, they can be removed, and hence the overall system accuracy can
be enhanced.

Another piece of work that we studied is [31], where the authors proposed a scheme
to protect the privacy of vehicles sharing their routes for the purposes of traffic-flow opti-
mization. Knowing that these systems need only to learn the number of vehicles traveling in
the same road segment, anticipating possible congestion situations, the authors developed
a segment-based route reporting system that sends data encrypted using homomorphic
encryption to roadside units (RSUs). All segment data from different vehicles are then
collected at RSUs. It computes the encryption of the number of anticipated cars occupying
every road segment without knowing the actual routes of vehicles. Then, this information is
shared with a traffic management center (TMC), that computes the decryption and extracts
the same number while individual vehicles’ routes are hidden for privacy preservation. After
analyzing this information, the TMC can send directions to traveling cars about traffic
conditions and congestion.

8

Figure 2.2: A typical traffic management system would control intersections, traffic lights and ramp
meters among other things.

Another significant issue affecting traffic systems is Sybil attacks. In such a type of
attack, individual attackers can imitate multiple vehicles that submit a bogus incident down
the road. Generally, a traffic system requires information regarding events in order to notify
vehicles of unanticipated road hazards and ensure safe driving. The authors of [32] presented
a secure event-reporting mechanism to thwart Sybil attacks while maintaining users’ privacy.
The proposed scheme distributes a set of pseudonyms/keys to enable reporting of incidents
without disclosing private vehicle information. Additionally, the authors proposed a method
for identifying the vehicles that conduct Sybil attacks using their pool of pseudonyms. The
proposed scheme classifies vehicles into groups, and the RSUs only know the group numbers
of the vehicles, not their identities. If the pseudonyms keys were used to report an incident
related to the same group, the RSUs would suspect a singular Sybil attack. In this situation,

9

Table 2.1: Security & Privacy Attacks On Traffic Flow Optimization Applications.

Ref.
No.

Threat Proposed Method Critique

[30] Data integrity Data quality evaluation
metrics

Susceptible to Sybil, man-in-
the-middle, and repudiation at-
tacks.

[31] Privacy of vehicle
routes

Segment-based route re-
porting and homomor-
phic encryption

Incurs performance cost in
terms of computation over-
head, communication cost and
power consumption.

[32] Sybil attacks Pseudonyms/keys and
vehicle grouping with
RSUs

Management of groups may
become an overhead. Also,
there is considerable commu-
nication overhead.

[33] Data Integrity Road Monitoring using
UAVs

Requires huge set up cost,
and maintenance of the UAVs.
Also, they become honeypot
for attacks.

the RSUs transmit the messages to the department of motor vehicle (DMV). Sybil attacks
are recognized when the DMV determines that the suspicious pseudonyms are associated
with a particular vehicle. Even if numerous attackers collaborate, the RSU will detect it
when it compares the beacon packet signals from the vehicles to the reported events.

More interestingly, the authors in [33] went as far as using unmanned aerial vehicles
(UAV) to assist with road monitoring. They proposed a so-called security situational aware
intelligent traffic monitoring, which can re-route the traffic, offer guidance instructions for
shortest routes with the help of a traffic management security control center. They combine
information from graph theory representation of the road map with sensory networks. UAVs’
usage enables real time and rapid response to different security cases, since it shouldn’t
encounter any hindrances to wireless communications in comparison with traditional traffic
monitoring systems.

Although the discussed techniques may be promising, we think that in the future, some of
these techniques can be integrated together into a more comprehensive intelligent vehicular
transportation system, which is trained against different security attack scenarios and protect
the stakeholders’ data. Table 2.1 summarizes these findings and our critique of them.

10

Figure 2.3: An autonomous vehicles platoon and the various sensors they use.

Platooning

AVs platoon, as depicted in Figure 2.3, is an advancement of autonomous conduct in which
AVs are assembled into clusters of cars in close range and communicate wirelessly [34].
Cooperative adaptive cruise control (CACC) can be thought of as an improved version
of adaptive cruise control (ACC) that is used in this group of vehicles [35]. This system
enables vehicles to keep a proper distance from one another and make cooperative navigation
decisions. Since the vehicles in a platoon work together to plan ahead and drive closer
together, the platoon improves traffic flow. In addition, the ability to respond to events more
quickly than drivers improves transportation safety. Moreover, lessening the amount of time
spent accelerating and decelerating on the road helps save fuel and reduce emissions.

Most platoon members communicate via IEEE 802.11p, the most common vehicular RF
technology. However, this technology has vulnerabilities that various malicious attackers
can exploit. In applications that involve collaborative driving, an unexpected surfacing of
a security threat may endanger the following: (i) the integrity of traffic flow messages on
the AV network by submitting fake data that change the platoon organization and coordi-
nated movements; and (ii) the stability of platoon applications by affecting communication
capabilities in the AV network .

AVs in a platoon are more tightly coupled than ordinary cars, making them more
vulnerable to attacks targeting their platoon system. In [36] the authors showed that a
single malicious AV could destabilize an entire platoon and cause catastrophic events.
This malicious car combines some changes to the gains of the control law with vehicle
movements, thereby forcing the platoon to oscillate at a resonant frequency and violating
the platoon string stability features, resulting in fatal accidents. In [37], the authors managed

11

to mimic a high-speed collision induction attack by overtaking the platoon controller. They
manipulated the Dedicated Short Range Communications (DSRC) to cause an unexpected
behavior from a platoon member, thereby causing collisions. In [38] the authors showed
that a malicious AV could introduce a precise effect on the mobility of vehicles in its vicinity,
thereby raising the energy expenditure of neighbouring vehicles by 20% to 300%.

In [39,40] the authors provided an in-depth study into the control laws of AV in a platoon.
They showed that one malicious AV could introduce erroneous traffic messages that other
vehicles can then amplify, causing traffic jams or accidents. They studied the conditions
under which the attacker can disrupt the AV stream and the string stability and proved that
such disruption will self-perpetuate as one of the vulnerabilities of relying on AV compared
to human-driven cars unless additional inputs are provided.

By utilizing light’s directivity and impermeability, visible light communication (VLC)
can mitigate these vulnerabilities. On the other hand, using just VLC in a platoon might
affect its safety due to VLC’s sensitivity to environmental effects. SP-VLC [34] is a VLC
and IEEE 802.11p based protocol for securing communications in platoons. This protocol
ensures stability of platoons and security of their motions under different types of attacks
such as jamming, channel overhearing and injection of data packets. They describe these
maneuver attacks by defining various circumstances in which a malicious party sends a
forged maneuver packet. SP-VLC contains techniques for establishing an encryption key,
authentication of messages, communications over both VLC and IEEE 802.11p, detection of
jamming attacks and response to switching to VLC-only transmission, and movement safety
depending on both VLC and IEEE 802.11p. Additionally, they develop a simulation platform
that incorporates a realistic vehicle mobility model, realistic VLC and IEEE 802.11p channel
models, and platoon management for vehicles.

In [41], the authors investigate how to secure AV platooning when an unknown vehicle
is attacked and bounded system uncertainties occur. A malicious attacker can arbitrarily
modify the attacked vehicle’s GPS position and speed measurements. In the beginning,
two detectors were proposed to determine which car is being attacked based on relative
measurements (camera or radar) and local information gathered from measurements of
surrounding vehicles. They next create a local state observer for each vehicle based on the
detectors’ data by using a saturation method to the measurement innovation. Additionally,
based on the observer’s neighbor state estimates, a distributed controller is presented to

12

Table 2.2: Security & Privacy Attacks On Platoon Applications.

Ref.
No.

Threat Proposed Method Critique

[34] Jamming, channel
overhearing and
injection of data
packets

SP-VLC Attacker with enough knowl-
edge about the switching
scheme can exploit VLC vul-
nerabilities, if coupled with
other attack vectors.

[41] Unknown vehicle
is attacked and
bounded system
uncertainties oc-
cur

Relative measurement
and local state observer

Susceptible to collusion, the
observer can be a honeypot for
attacks.

[42] Message falsifica-
tion and spoofing
attacks

Cooperative control
technique

Voting algorithm can be ex-
ploited by colluding vehicles.

[43] Attacks on
Message au-
thentication and
security

VPKIbrID Public key infrastructure and
Attribute Based Encryption re-
quire large computation cost,
communication overhead and
power consumption.

establish vehicle speed consensus and maintain a stable desired distance between two
neighboring vehicles. Under certain conditions, it was demonstrated that the observer’s
estimate error and the controller’s platooning error are asymptotically upper-bounded.

In [42], the authors focus on several important forms of attacks which impact security
of platoons. They examined Burst Transmission and DoS attacks, which affect the net-
work layer. They also studied message falsification and spoofing attacks, that target the
application layer. The paper proposed a new closed-loop collaborative control technique
for strengthening autonomous platoon security. They also implemented their system in
PLEXE [44] and analytically proved its claimed stability.

In [43] the authors studied the security of underlying vehicular network which supports
platoon management protocol. The proposed model uses Public Key Infrastructure and At-
tribute Based Encryption with Identity Manager Hybrid (VPKIbrID). This robust encryption
scheme would ensure message communication authentication and security. They simulated
their system using various sizes of platoons and different modes of VPKIbrID propagating
different numbers of multicast/broadcast messages.

13

As we can see from this investigation, platooning is a complex application that requires
security precautions at several layers. The interactions between the AV, the Connectivity
Control Unit (CCU) should be strongly authenticated and defined in a lightweight key man-
agement scheme. A secure design for a DSRC communication protocol robust to different
attack types, including packet falsification, replay, jamming, membership falsification, and
hijacking, is still needed. In Table 2.2 we summarize this discussion and our comments.

Carpooling

Carpooling or ride-sharing has emerged in the last decade. Carpooling is a system which
requires different individuals having interchangeable journeys to ride together in one car at
the same time, instead of having different cars [45]. By decreasing the quantity of cars on
the roads, carpooling will lessen air pollution and traffic congestion. It can also share the
cost of the trip between several people.

Companies like Uber and Lyft certainly revalorized the transportation industry and
made a seismic shift in the employment market. In many countries now, and as a part-time
job, many users utilize their vehicles as ride-hailing vessels through these apps, thereby
significantly enhancing their income. On the other hand, from the passenger side, these
apps allow for a much more convenient customer experience when dealing with an easy-
to-use app, precisely calculated fare in advance, and an easy-to-use customer complaint
and dispute facility through the same apps. Eliminating the driver from the whole equation
is a perfect opportunity for every car owner who had been toying with the idea to use
his car in carpooling. He no longer has to sacrifice time and effort to make some extra
money. Service-providing companies may not worry anymore about customers having
uncomfortable situations with drivers. We have to mention that some companies may opt to
abandon this decentralized business model altogether and build their fleet of autonomous
vehicles, but this may not be economically attractive as the first model.

The use of ride-sharing has risen considerably [46]. As of 2010, North America had at
least 613 platforms for ride-sharing organizations primarily based on the internet [47–49].
Additionally, many government programs have already been made to allow people to share
trips. One such strategy is to make high occupancy vehicle (HOV) lanes. This requires a
reserved lane to be used for cars with more than two passengers on board [50, 51]. Another
tactic for promoting ride sharing is to include toll reductions, and refunds [52].

Figure 2.4 shows a typical architecture of an AV carpooling system. The organization

14

Figure 2.4: Architecture of an AV carpooling system.

of shared rides can be significantly improved by the use of Internet access, GPS systems
and smartphones. Customer registration is expected to be done through a web portal

15

which manages shared trips, and afterwords submit a ridesharing offer to a Trip Organizing
Server (TOS) via a car owner (operator) and wanting to share a trip with other customers
(riders). This offer would provide details on the travel, such as the location, destination,
time of the trip, and direction. Moreover, passengers requesting mutual transportation can
first send requests for ridesharing with specific details to the TOS. Then, TOS compares
offers from drivers with requests from riders, thus allocating each driver to one or more
passengers. Nevertheless, the TOS is owned and managed by a private corporation that may
gather information about the locations and behaviors of the customers and may launch user
impersonation, forgery, and replay attacks.

But the catch is how to make the customer trust these indigent cars with his/her private
data such as the locations they visit, their trips, their usage patterns, and use the service with
a level of anonymity. On the other hand, car owners should trust that their cars will not be
stolen, vandalized, or used in some malicious endeavors. The service provider should worry
about both the car owner and the customer, and at the same time, protect itself from untrusted
users who try to hack the system for their gain. Some users may report false locations to
match certain passengers/cars or attract traffic to some area for malicious purposes.

Although most of the work on carpooling applications focused on human-driven cars,
similar ideas can be applied to AVs. Here we investigate some of these ideas and discuss
how they relate to AVs.

In particular, secure and privacy-preserving schemes for ride-sharing is now an essential
need to flourish the usage of AVs [53, 54] In [45], the authors proposed effective privacy-
preserving ride-sharing management techniques for transferable and non-transferable ride-
sharing systems. In a non-transferable ridesharing service (NRS), a TOS would execute
matching over encrypted data to associate a single driver to each rider. Nevertheless, TOS
utilizes trip data from the drivers in the transferable ridesharing service (TRS) to construct
an encrypted directed graph for the management of carpooling. Preferences of the riders are
used to determine the weights of the graph’s edges. Nevertheless, TRS provides an attractive
service that can expand ridesharing. At the same time, NRS offers a valuable and convenient
service for the aged and disabled, who do not want to switch between multiple drivers.

One promising piece of work [55], entirely suited to this seemingly decentralized model,
is the use of blockchain technology. The authors proposed to build a private blockchain
ledger to store all carpooling records. They also proposed storing locations grid into a tree
and achieving drop-off locations matching by a range query scheme. They also adopted
a privatized proximity check to attain one-to-many proximity matching and expand it to

16

Table 2.3: Security & Privacy Attacks On Carpooling Applications.

Ref.
No.

Threat Proposed Method Critique

[45] Privacy of user
and AV data

TOS executes matching
over encrypted data

TOS is the central point of
failure in the system, also, it
doesn’t account for collusion
and double booking attacks.

[55] Compromising
privacy of user
and AV data

Blockchain Susceptible to fraudulent sub-
missions. Also, the heave
computation overhead.

[56] Compromising
Location privacy

Central cloud server,
anonymous authentica-
tion

The central cloud is a honey-
pot for attacks. Also, there
is more communication over-
head and setup costs.

[57] Compromising
privacy of user
and AV data

Blockchain and Time-
locked deposit

The system is too complicated
and difficult to be scalable.

effectively set up a secret communication key between a rider and a driver. In [56] the authors
went into more details about users’ privacy location tags, range queries, and anonymous
authentication. But the difference here is that instead of using fog computing, they relied on
a central cloud server. They were working under the assumption that this server might be
honest-but-curios. That is why they suggested using blockchain technology to record all the
hashes and trip records.

Additionally, the authors of [57] proposed B-Ride, a decentralized ride-sharing service
built on public Blockchain. They examined a scenario in which fraudulent users could
take advantage of the anonymity given by the public Blockchain to submit many bogus
ride requests or offers while remaining uncommitted to any of them to secure a better
deal or render the system unstable. As a result, the paper developed a time-locked deposit
mechanism based on smart contracts and zero-knowledge set membership proof. The driver
and the rider must demonstrate exemplary conduct by making deposits to the Blockchain.
This will be considered when determining the fair in a pay-as-you-drive system based on
the driver and rider’s elapsed distance. Additionally, they implement a reputation model to
assess drivers based on their prior behavior without involving third parties, allowing riders
to choose drivers based on their history on the system.

17

In summary, the introduction of new prospects from AVs will bring forth a massive
transition into carpooling applications. In this context, ongoing research efforts should
address a situation where adversaries compromise the RSUs. Tamper-proof Blockchains
are not enough since we need a mechanism to authenticate data feed from users in case of
disputes [58]. Crowdsourcing mechanisms [59] can be integrated to be a witness in claims
and proofs. Anonymous, yet secure payment mechanism for carpooling services is also an
open area of research. Table 2.3 gives a summary of the literature discussed above and our
thoughts of them.

Parking

Parking is one of the most significant issues in many major cities worldwide. Due to the
increase in population density and the number of cars in the streets, it is not always easy
to find a spot to park your vehicle near your home, the place you work at, or even in front
of the shop or the venue you are visiting. During special events and holidays, this could
be a nightmare. That’s why many cities built big parking lots in every neighborhood, but
sometimes they may not be close to your desired destination. Moreover, in many cases, you
may have to visit multiple places to find an empty spot, thereby losing more time, effort,
fuel, and at the same time, causing unnecessary traffic load to the already crowded cities.

It is worth mentioning that big tech giants, which may not seem directly involved with
car manufacturing, have numerous patents dealing with various aspects of parking in AVs.
Such as [60] which is owned by IBM and provides an algorithm to optimize the delay in the
parking process, which detects the last embarking passenger of the car and then initiates the
parking process automatically. It deals with the steering system, transmission controls, and
brakes to cause the vehicle to park in and out of parking spots from/into the roadway. On
the other hand, car manufacturers are still developing ways to deal with physical control
issues of parking systems. For example, in [61], Ford developed an electric braking system
tailored for parking AVs. Also, in [62] Volkswagen developed a system for data processing
for obtaining the operational state of AVs.

Having an AV park itself is an excellent idea, and it will save much-needed time and
effort. But there must be coordination between the parking lots and the AV to guide through
the process. Figure 2.5 depicts an example of an automated parking system for AVs. An
efficient system would have an app that tells you where to find empty parking spots nearby
the destination you want. Then your car would drop you off and go there to park itself.

18

Figure 2.5: An example of an automated parking system for AVs.

When you finish your business there, you will order the car to come to pick you up. All
payment and handling fees would be automatically charged to your account in a seamless
manner. Sounds perfect, but here is the catch. How do you trust that your car will not be
stolen or vandalized. An inside attacker may thieve other parked AVs by launching attacks
such as man-in-the-middle, forging, replay, and impersonation attacks. Theses attacks also
can be launched remotely by an outside attacker. Their objective is to compromise the
authentication between AVs and smartphones that control them, hence, he could start the
motor and run away with the AV.

Another major problem is how you would trust that your location privacy will not be
compromised. Here, the attacker may try to identify a specific user’s location. Moreover,
a nefarious attacker could cooperate with other adversaries and penetrate the system and

19

automated parking computers to predict a victim user’s location based on the position of
AVs.

Additionally, an adversary may actually follow some particular AV and intercept every
messages it receives and obtain access to the local server’s and automated parking system
server’s secret keys. If the attacker is not capable of knowing the AV owner in advance, the
attacker cannot compromise the user’s location privacy. Another concern is slandering, in
which an attacker may pretend that an honest user scratched his vehicle. The attacker could
be a registered but malicious user who provides the judge with enough location information
to classify an honest user as a scratching perpetrator. Another instance of defamation is
when a legitimate but wicked user slanders the parking lots, claiming that his/her AV was
lost, when he/she already picked it up before. Additionally, certain involved parties, such as
clients, parking lots, or thieves, might possess distinct motives to conceal their misbehavior.
First, the adversary, a legitimate client, attempts to send an untraceable message to pickup
the AV. As a result, he could use defame the parking lot by saying his AV was lost. A
legitimate user could potentially remain anonymous in order to avoid being compensated
if a traffic accident happens, during which his AV was implicated. Second, the parking
lot is more inclined to remain inconspicuous throughout any accident inquiry to minimize
complications. Finally, an attacker who steals an AV may prohibit the authorities and the
client from locating the vehicle.

That is why the researchers proposed authentication schemes to address these concerns
and facilitate the implementation of automated valet parking protocols. [63] proposes a
parking protocol that is supposedly automated and secure to protect against vehicle hacking
or theft. They proposed two-factor authentication using a one-time password (OTP) and a
smartphone was introduced to protect remote control of AVs and defend against malicious
access. Hence, an adversary using a smartphone alone or one-time password will not be
able to control the AV or steal it. Using the BBS+ signature [64] and the Cuckoo filter [65],
they were able to ensure anonymous authentication between clients and automated parking
systems, as well as user location privacy preservation. The proposed scheme enhances
automated parking services by assisting users in securely connecting to their AVs and
securing all transcripts without compromising clients’ privacy. Additionally, a judge is
responsible for tracing anonymous clients to prevent misdeeds during vehicle pickup or
relocating AVs to assist authorities in locating missing AVs with the permission of their
owners. Moreover, that judge has authority to retrieve the parking lot, in which some AV is
parked for its owner if his/her smartphone was stolen or lost. However, the paper needs to

20

develop strong intrusion detection techniques and strengthen the AV’s control systems to
secure the vehicle against security threats and attacks.

On the other hand, the researchers in [66] decided to tackle the "Double-Reservation
Attack" while maintaining the user’s privacy. Their proposed system allows the client to
reserve only a single parking space at a time and prohibits one user from making more than
one booking and hold multiple parking spots simultaneously. Moreover, they aimed to ensure
pseudonymity and unlinkability, that is a painless but effective technique to protect privacy
of users. Pseudonymity means that the automated parking system will not have knowledge
of the user’s unique id that creates a certain booking/parking request. That is except for the
registration phase, during which a client have to divulge his/her real id to the automated
parking system to validate himself/herself as a legitimate user. Unlinkability means that the
automated parking system would not be able to match up a client’s two parking bookings,
even when knowing the credentials of these tow sessions. Besides, they aimed to ensure
geo-indistinguishability by using a mechanism to obfuscate the tracing data of the users to
protect him/her from attacks that analyze location statistics in the automated parking system.
And finally, they sought to study the system’s efficiency, as well as communication cost and
computational performance.

The problem of parking lot payment is also being examined. The users must pay to park
their cars using the smart payment system [67]. In the beginning, the currency is collected
using cash counters, but they are difficult to maintain. After that, a variety of methods are
employed to collect the money. Payment is made using the Automated Vehicle Identification
(AVI) tag, based on RFID technology. RFID and mobile devices are contactless technologies,
whereas smart cards, debit cards, and credit cards are contact methods.

Additionally, there is the problem of fleet management in AVs. Often, a company would
have more than one vehicle running around the city for various errands. They all have to
park somewhere, not necessarily all in the company’s same parking lot. In that case, a
plurality of parking spaces is needed to be assigned, keeping in mind the current location
of the vehicles and their tasks for the next day. Therefore, a fleet parking system is being
investigated by researchers, such as in [68], where they developed an algorithm to produce a
total cost function and cost value to the decision-maker to help choose the best fleet parking
scenarios.

On the other hand, the security of ultrasonic sensors heavily involved in the parking
process was investigated in [69]. These sensors detect hurdles by releasing ultrasounds
and examining their reflections. Some attackers may exploit their operation to introduce

21

Table 2.4: Security & Privacy Attacks On Parking Applications.

Ref.
No.

Threat Proposed Method Critique

[63] Vehicle hacking
or theft

Two-factor authentica-
tion, OTP and a smart-
phone

Lacks strong intrusion preven-
tion techniques and needs to
strengthen the AV’s control
systems.

[66] Double Reserva-
tion Attack

One parking spot Per
user, pseudonymity
and unlinkability and
geo-indistinguishabili
by data obfuscation

Doesn’t account for theft, sab-
otage or slandering.

[67] Fraudulent pay-
ment

Smart payment system
using AVI and RFID

Contactless payments can be
hackable without any physical
trace.

[69] Spoofing and jam-
ming the ultra-
sonic sensors

PSA and MSCC Susceptible to wide-band jam-
ming attacks and attackers col-
lusion.

spoofing or jamming attacks, thereby causing the AV to stop when it should be moving or
the other way around, which may lead to collisions. Therefore, they proposed two protection
methods. The first one is a single-sensor-based, which provides physical shift authenticates
(PSA). The second method uses multiple sensor consistency check (MSCC), which verifies
various signals on the system level. They tested their work on the autopilot system of a Tesla
Model S car.

The following sections will investigate further security attacks on the system and physical
levels. But in short, the previous ideas are just a sample of how one application may have
numerous ideas being developed, and hence, multiple privacy and security issues will
arise accordingly, which will need to be handled in more innovative ways. Systematic
design strategies on different levels are needed to enhance the overall systems’ security and
reliability against future threats. Striking a balance between location privacy and the optimal
utilization of parking lots is a crucial problem. In Table 2.4 we show a brief digest of the
aforementioned ideas and our corresponding comments.

22

Figure 2.6: Architecture of IoV system.

Internet of Vehicles

Another application worth investigating is using the vehicle itself equipped with all sorts
of sensors as a sensor platform, which collects information from the environments and
neighboring vehicles and feeds this information to some system to assist in various smart
city data repositories such as traffic management and pollution control. This so-called
Vehicle Grid fundamentally evolved into an Internet of Things (IoT), which is conveniently
called the Internet of Vehicles (IoV).

As shown in Figure in 2.6, IoV incorporates many so-called "things", for example:

• Vehicle’s beacons. Alarming devices which monitor the AV state; such as location,

23

internal parameters, potential hazards, etc.

• Driver’s messages. Such as social media posts and other crowdsourced info.

• Internal cockpit sensors. Such as the driver’s state of tone of voice, alertness, seat
position, health, and other propriety sensors such as Ford heart Monitor, etc.

• Internal automotive sensors and actuators. Such as accelerator, steering wheel, brakes,
etc.

• External sensors. Such as LiDARs, cameras and GPS, etc.

The differences between IoV and other IoTs are the following characteristics: I. Sensors
are mobile, which may cause a wireless communication bottleneck while guaranteeing
motion privacy. II. Some information will be used in safety-critical applications, which
requires small latency. Moreover, IoV doesn’t transfer data to the Internet using the internet
connection only. Additionally, It utilizes vehicle-to-vehicle communications to complement
onboard sensor data and bring forth safe and orderly navigation. However, such contin-
ued information collection may create privacy and security violations, which need to be
addressed. More specifically, researchers should focus on guaranteeing location privacy and
offer privacy-keeping methods to anonymously upload sensor data from AVs.

In [70], the authors studied the IoV system. An attacker may use the size of the database
to determine whether a certain targeted user is included. As a result, the size of the database
or the total number of users shouldn’t be publicized. To ensure the confidentiality of the
shares, data owners would establish an individual Transport Layer Security (TLS) connection
to each aggregator. The TLS connection is designed to be long-lived in order to compensate
for connection initialization costs. While aggregation delegates may attempt to conspire, it
was considered in this scheme that at the minimum one truthful aggregate delegate wouldn’t
conspire. Additionally, data contributors can attempt to conspire with aggregators; thus, they
presume that at minimum two trustful data contributors do not conspire with aggregators.
The more trustworthy data contributors there are, the greater privacy protections for data
contributors. Aggregation servers are anticipated to be online and continually available,
and they did not account for DoS attacks, in which data owners’ responses are unable to be
transmitted. Additionally, the paper assumes aggregators do not corrupt data.

In [71] the researchers provided an authentication technique to secure AV users’ privacy.
Their proposed system addressed previous work [72] shortcomings in terms of location

24

spoofing, offline identity guessing attacks, and reply attacks. Their work presented a
defense against impersonation and DoS attacks using a lightweight encryption and hashing
scheme. In [73], the authors design a secure authenticated key management protocol
for IoV (AKMIoV) based on fog computing. They use road units equipped with fog
computing platforms and cloud servers to provide secure communications for the vehicles
using secure session keys among all these parties. They performed a security analysis of their
system using the “Real-Or-Random (ROR)” model, as well as the Automated Validation of
Internet Security Protocols and Applications (AVISPA) model. They showed that this new
method supersedes comparable techniques in terms of enhanced computation cost, network
throughput, packet loss rate and end-to-end delay.

Fog computing was also used in the work of [74]. The paper presents a model called
F-IoV, which stands for fog computing supported IoV. This model aims to effectively
manage networked resources in the IoV, utilizing the roadside infrastructure. In addition,
they proposed a hierarchical privacy-preserved pseudonym (P3) scheme, which provides a
context-aware pseudonym changing game. Also, their analysis showed effectively enhanced
location privacy with reduced pseudonym management and communication overhead.

The use of blockchain technology was also investigated in the field of IoV. In [75], the
authors introduced a blockchain-enabled IoV (BIoV) to ensure the security and traceability
of the shared data. Their focus was to defend against voting collusion between candidate
data miners by securing the selection process by a reputation-based voting scheme that
examines historical interactions and recommendations from other vehicles. In addition, the
paper introduced a block verification scheme to defend against internal collusion among
active miners. This verification is audited by standby miners, who will be incentivized to
participate using a contract theory model.

In [76], the authors took a new direction and investigated the problem of digital forensics
investigations in IoV. In AV, this problem becomes more difficult due to AVs’ distributed and
dynamic nature in an IoV; hence collecting and analyzing evidence may be more difficult.
The authors presented the TrustIoV framework to collect and store trustworthy evidence
from the decentralized infrastructure of IoV while maintaining the integrity of data and its
provenance with minimal overhead.

In summary, unlike some of the previous applications, in the context of AVs, the field of
IoV is relatively new. Hence it is ripe with an open area for research and development [77].
Security requirements should be balanced with energy efficiency, communication overhead,
and safety requirements [78]. In addition, ongoing research should focus on migrating from

25

Table 2.5: Security & Privacy Attacks On IoV Applications.

Ref.
No.

Threat Proposed Method Critique

[70] Compromising
user privacy

TLS Doesn’t count for DoS attacks
and data corruption.

[71] Location spoof-
ing, identity
guessing attacks
and reply attacks

lightweight encryption
and hashing

They didn’t account for intru-
sion. Storage cost is quite
considerable. They didn’t
consider communication over-
head.

[73] Attacks on user
authentication

AKMIoV and fog com-
puting

Entails more setup cost to
equip RSUs with powerful
computing devices and as-
sumes there would be continu-
ous communication channles
between all parties. Also, scal-
ability and management be-
comes an issue.

[74] Compromising lo-
cation privacy

Fog computing sup-
ported IoV, P3

Entails more setup cost to
equip RSUs with powerful
computing devices. They
didn’t consider intrusion at-
tacks on the RSUs. Scalabity
is also an issue with sparse
number of AVs.

[75] Voting collusion Blockchain- enabled
IoV

Susceptible to fraudulent sub-
missions which may compro-
mise voting process. Also, the
heave computation overhead.

traditional operating systems models to new middleware platforms, which could enable
proper and secure handling, processing, and analytics of data generated in IoV, which may
grow to the level of so-called big data [79]. A synopsis of the work discussed here and our
related critique is shown in Table 2.5.

26

2.3 Operating System Level

Due to the continual progress and enhancement in deep learning (DL) technology, AVs
have achieved remarkable advances in recent years. On several standard autonomous
driving systems, X86-based software performs sophisticated functions and contributes
significantly to driving safety. However, software vulnerabilities in autonomous driving
might compromise vehicle components and systems, which impair the AVs’ performance.

In [80], the authors studied malware attacks on AV systems. They investigated an attack
that exploits the onboard device (OBD) and thereafter targets electronic control units (ECUs)
and its connected Controller Area Network (CAN) bus. They also exploit mobile apps to
access the DSRC. The target of these attacks can be any of the AV system’s various software
components, such as OBD ports, software Over-The-Air (OTA) updates, ECU firmware,
etc. The paper also discussed different approaches to defend against these attacks, such
as offering OTA updates, but these techniques may also open the system to a new attack
surface; therefore, these updates need a great deal of work to protect it against tampering
and/or cloning. In [81], the authors focused on remote OTA updates and their security issues.
They also studied various scenarios and regulations of road safety in different nations. Some
of these security techniques relied on cryptographic authentication and encryption keys such
as [82–85] others use blockchain such as [86].

Other techniques to defend against malware attacks incorporate a much more capable
cloud-based protection. In [87], the authors present a cloud-assisted vehicle malware defense
framework. The paper proposed a lightweight malware defense mechanism that resides
on the vehicle. At the same time, the heavy and much-advanced processing is done over
a cloud with an up-to-date malware information database. However, adding a continuous
communication link between the vehicle and the cloud might be a bottleneck that could
open the system to a whole new network-level breed of attacks, which we will delve into
with more details in the following section.

Additionally, numerous researchers have developed static and dynamic analysis tech-
niques to uncover malware on embedded system components based on the X86 architecture.
Static methods examine an input program from a semantics and syntax perspective without
executing the software. These techniques offer the advantages of rapid detection and a small
percentage of false positives. Nonetheless, a typical limitation of static analysis techniques is
their impotence to detect malware that employ sophisticated mechanisms like cryptography,
compression, packing and obfuscation.

27

Dynamic analysis-based techniques can resolve the issue by executing the subject pro-
gram and observing process creation, memory access, file writing/reading, network utiliza-
tion and system calls during the runtime of the program. Nevertheless, the dynamic analysis
method is resource-intensive, and parallel processing is inefficient in actual applications.

In [88], the authors presented a hybrid malware detection technique that combines
machine learning with fusion features from three distinct levels of static analysis. The
purpose is augment static analysis’s low accuracy and to address dynamic analysis’s high
resource cost. They developed a model for feature extraction depending on the level of
operation. Additionally, to improve the accuracy of static analysis, the authors built a set
of tools to unpack codes with various packing methods. Also, they present a novel model
using the control flow graph and information entropy for extracting OpCode features. Their
technique was established on Extreme Gradient Boosting (XGBoost). Which in comparison
with other popular classification algorithms, achieves a greater accuracy in recognition.

On the other hand, despite their enormous potential, AVs supported by DL technology
continue to confront several system-level security concerns. The authors of [89] focused on
traffic sign recognition system and they leveraged particle swarm optimization to undertake
attacks that target their deep learning algorithms. The paper first exploits the "poisoning
attack with particle swarm optimization" (PAPSO) attack, that targets the deep learning
algorithms during the training phase. During which malicius samples are implanted in
the input data by the attacker, reducing the traffic sign recognition system’s classification
accuracy. Additionally, the authors investigate the "evasion attack with particle swarm
optimization" (EAPSO), that target the deep learning algorithms’ interference process.
Attackers introduce certain barely noticeable changes to the selected test sample, resulting in
misclassification. Table 2.6 depicts an abridgment of the literature shown in this subsection
as well as our critique to them.

2.4 Network Level

Vehicular networks (VNs) are gaining huge attention as a research area due to the importance
of aiding traffic management and providing road safety. Nowadays, many communication
interfaces are integrated in Vehicles, this demands installing processing hardware, storage
elements and larger power sources. In addition, to aid with traffic management system, road
side unites are deployed, to communicate with vehicles wirelessly.

These systems can support taking preventative safety actions for the sake of vehicle

28

Table 2.6: Security & Privacy Attacks On The Operating System Level.

Ref.
No.

Threat Proposed Method Critique

[80] Malware OTA updates Susceptible to tampering and
cloning.

[81] Attacks on remote
OTA updates

Encryption keys [82–
85] or blockchain [86]

Each technique has it’s own
performance cost in terms of
computation overhead, com-
munication cost and power
consumption.

[87] Malware Cloud-based protection Requires a continuous com-
munication link between the
vehicle and the cloud (a bottle-
neck for Network attacks).

[88] Malware Machine learning with
fusion features

Requires huge computations,
and doesn’t support dynamic
analysis of threats.

commuters and drivers, as well as aid traffic authorities. Several methods have been proposed
for discussing the security and privacy issues for VNs and vehicular cloud computing (VCC).

It is essential to fulfill the security requirements in a vehicular network, which we explain
in more detail as follows:

• Availability. Means that the system can withstand malicious or erroneous circum-
stances and still ensures it’s functionality [90]. That’s why this requirement is suscep-
tible to wider attack types in comparison to other security requirements. [91] describes
some countermeasures such as encryption techniques and trust mechanisms to defend
against some of these attacks.

• Confidentiality. Means that only a specified/delegated user can access his/her data
that he has legal authority/rights to do so. Others who don’t, cannot access said data.

• Authentication. Means that only pre-identified and authorized users can access the
network and pass messages. Other malevolent parities or intruders are denied from
access [92].

• Data Integrity. Means that we ensure the correctness of the messages being passed
from unintended alterations or modifications while being passes throughout the net-

29

work. There are some techniques to ensure data integrity such cryptography revocation
and public key encryption [91].

• Nonrepudiation. Means that in case of a dispute, both communicating parties: the
sender and the recepient cannot repudiate their action [93, 94].

A survey of AV communication layers and its security challenges is presented in [95].
The paper shows how conventional vehicular ad hoc network (VANETS) has metamor-
phosed to a contemporary paradigm coined the Internet of Vehicles (IoV) - aligned with the
advancement in Internet of Things (IoT) systems and will soon evolve into the Internet of
Autonomous Vehicles (IoAV).

Table 2.7 shows an illustration of different attacks on these communication aspects of
the VN and exemplary countermeasures to tackle some of these attacks [96–99].

In [100], the authors studied the effects of security vulnerabilities and risks associated
with deploying VANET communication and tampering of automated sensing and control of
CACC, which describes a stream of vehicle connected together and cooperating together.
The authors showed how an attacker can compromise CACC systems. They used an open-
source software “Vehicular Network Open Simulator" (VENTOS), to implement a CACC
car-following model. The model was utilizing IEEE 802.11p to simulate one vehicle look-
ahead communication in VENTOS. Hence, they were able to provide a quantitative analysis
of a variety of what-if cases that describe security onslaughts on the CACC system. The
paper also discussed some important security consideration that needs to be contemplated in
design to warrant the system’s safety by performing a detailed packet-level analysis.

Another major issue that targets traffic systems is Sybil attacks, during which an attacker
could impersonate a number of cars that pass on an untruthful incident down the road.
Typically a traffic system needs information about any events to alert vehicle operators of
unforeseen dangers on the roads to provide safe driving.

The authors in [101] proposed a security model to protect VNs based on Integrated
Circuit Metric technology (ICMetrics). This ICMetrics is utilized to provide a robust
authentication scheme based on distinctive features extracted from vehicle sensors and its
behaviour. In particular, they studied a simulated VANET and examined the resulting trace
file, looking for infrared sensors’ bias values. Thereby their system can identify abnormal
behavior that could mount to be a malicious attack.

30

Table 2.7: Security Attacks On Vehicular Networks and Their Countermeasures.

Service Attacks Countermeasures
Malware Digital Signature of Software, Reliable

Hardware
Spamming Digital Signature of Software, Reliable

Hardware
Greedy Behavior Intrusion Detection Systems
Blackhole and Grayhole Digital Signature of Software, Reliable

Hardware
Broadcast tampering Cryptographic Primitives
Jamming Frequency Hopping, Direct Sequence

Spread Spectrum

Availability

Denial of service Signature Based Authentication
Man In the Middle Digital Certificates
Traffic Analysis Encryption Techniques
Social Digital Signature

Confidentiality

Eavesdropping Physical Layer security Protocols
Sybil Central Validation Authority, location and

Position Verification
Tunneling Digital Signature of Software, Reliable

Hardware
GPS Spoofing Signature authentication, trusted position-

ing systems, bit commitment
Free-riding Strong Authentication

Authenticity

Key and/or Certificate
Replication

Certified Keys, Validate Certificates in
Real Time

Masquerading Digital Signature of Software, Reliable
Hardware

Reply Digital Signature
Illusion Digital Signature of Software, Plausible

Validation Network
Integrity

Message Tampering Zero-Knowledge Schemes
Non-
Repudiation

Repudiation Identity Based Signature, Digital Certifi-
cates

On the other hand, the researchers in [102] studied intrusion attacks and their coun-
termeasures in AVs. They classified VN into two categories: Intra-vehicle networks and
Inter-vehicle networks. The first category, networks that operate on the "intra-vehicle" level,
connect cars to the outside world, including all external devices, usually through wireless
interfaces such as Wi-Fi, GSM, LTE, etc. ECU fabricated in the car supports these com-

31

munication interfaces using technologies that support different types of sub-networks. The
most used sub-networks are FlexRay, CAN, Local Interconnect Networks (LIN) and Media
Oriented Systems Transport (MOST) [103]. In the intra-vehicle networks, some of the most
common intrusion attacks targeted web browsers on the cars system, the telematics units, or
the broadcast messages [104, 105]. In order to tackle these attacks, the authors suggested
the use of cryptographic techniques as in [106, 107], secure hardware implementations for
the ECU such as [108], the infrastructure of the AV as in [109], and finally employing
mechanisms for anomaly detection as in [110–112].

On the other hand, Inter-vehicle networks are famously known as VANET, where
communication happens between the vehicles (V2V). Here the attacks can be launched from
inside or outside of the network, and they could be active or passive attacks. They may cause
a denial of service, inject bogus information, steal the identity of some user or part of his
information like his speed or position, and last but not least, racketeering and digital piracy.
More details about these attacks and their countermeasures can be found in [113–115].

2.5 Physical Level

AVs are equipped with various sensors that enable them to monitor the surrounding environ-
ments and navigate safely. One of the most direct and upfront physical level security threats
are attacks against these sensors. Attackers may produce incorrect information messages or
ultimately hinder sensor operation to disrupt autonomous driving without accessing the AV’s
driving system. There are many attack surface vectors according to the sensor type [116].
For instance, AVs are commonly fitted out with numerous cameras with a variety of lenses
for object detection and tracking. Here, attackers plant fake traffic signs or lights, or even
some kind of objects, to spoof AVs and drive them into wrong decisions [117]. The attacker
may also use a very bright laser beam to blind the camera, thus preventing it from taking
any images [116, 117]. In addition to that, AVs use global navigation satellite systems and
inertial navigation system sensors to learn their location in real-time. The attacker may use
noise signals to interfere with the sensor’s receivers to jam it. Furthermore, they may spoof
location messages and tamper with them [116, 117].

On a related issue, the continued expansion of electronic device cloning poses a severe
threat to any essential infrastructure that relies on the Internet, such as AVs, because cloned
devices might send secret data and create security issues. Also, cloned devices could be
untrustworthy since they might be built using substandard materials and may have numerous

32

flaws due to insufficient testing. Thus, it is critical to secure these electronic devices
against cloning. Preventing a device from being cloned is as simple as avoiding copying
the firmware. In the absence of the correct firmware, the machine would not operate in the
same manner as the original. As conventional cloning protection solutions, such as: integrity
checking and firmware encryption, are prohibitively expensive in development costs. Also,
during execution, they consume a lot of resources on oftenly resource-constrained devices.
That is why, more than ever, we urgently need low-cost solutions.

The authors of [118] examined two types of security attacks. In the first level (Level-I), a
microcontroller serves as an interface device programmed using a serial wire debug (SWD)
interface’s driver and the Universal Asynchronous Receiver-Transmitter (UART) module.
The interface communicates with the subject device through the SWD and controls its reset
and power connections. While the subject device completes cyclic redundancy check, the
interface device reads the SRAM, controls the subject’s d power, and resets if needed. A
script (implemented in Python) runs on the computer communicates with the interface via
UART, and snapshots from the SRAM of the interface device can be transmitted to the laptop
for firmware extraction. While this Level-I protection can be disabled, the flash memory is
erased, thus hindering the extraction of the firmware by an attacker. The second level of
protection (Level-II) considers attacks that target the microcontroller invasively. Following
decapsulation, memory protection bits are reprogrammed by using some specific ultraviolet
light [93]. After reprogramming, the Level-I attack mentioned above can be launched and
the firmware can be extracted from the victim. Level-II locks the debug interface completely
and irreversibly, allowing just processor’s cores access to the flash memory.

Additionally, the authors introduced a new firmware obfuscation technique that has a low
cost for detecting cloned systems successfully. Obfuscation of the firmware is accomplished
by reordering a number of chosen instructions. The native instruction flow is disrupted by an
efficient technique to obfuscate the firmware’s original execution sequence. Their approach
begins with a single instruction and searches for a collection of swappable instructions to
ensure that no faults are encountered. Their approach will not stop an attacker from stealing
the firmware, in lieu making it operational ultimately as well as providing reasonable cloning
protection. Additionally, they built a mechanism for tamper resistance. Specifically, they
explain how it is impractical to rebuild the original firmware by an attacker, taken into
account the available computing resources, making their mechanism a good candidate in
securing "cyber-physical systems (CPS)" and IoT applications such as AVs.

Another interesting piece of work is [119], where the authors presented a six-step model

33

that utilizes System-Theoretic Process Analysis to ensure both the safety of the vehicle and
its passengers as well as the security requirements. They claimed that their approach is
compliant SAE J3016, SAE J3061, and ISO 26262 all of which are international standards.

In [108] the authors focused on securing vehcile ECUs and their communications. They
proposed a holistic hardware security model (HSM) and offered details on a prototype
implementation. Their model aim is to act as a trusted security anchor which can generate,
store, and process information protected from malicious software. It should also resist
hardware tampering attacks and support cryptographic hardware operations all of which
presented in a highly optimized special hardware prototype.

The authors in [120] presented a survey and classification of intrusion attacks on vehicles
and their detection methods. They studied intrusion detection systems (IDS) in different
types of cyber-physical systems such as AVs, UAV and autonomous ships. They also
investigated on-board physical attacks and their countermeasures as well as remote and
network-based intrusion attacks and also their mitigation strategies along with their advan-
tages and disadvantages. Their eventual goal was to shed some light on the shortcoming of
some of the current literature and show directions for future research.

In Table 2.8 we summarize the literature presented in this section and mention some brief
comments about them.

2.6 Related Work

There has been a great deal of literature surveying many security aspects of AVs. Some
earlier work only focused on the network part, such as [121–123]. Others focused on
one of the security issues related to one of the applications discussed in Section 2.2. For
example, the authors in [70] investigated numerous of applications that utilize V2I and
V2V platforms and connections. They also describe location privacy issues related to users’
mobility. They showed the necessity of building openly and publicly accessible, “smart city”
data repositories available for all researchers as well as offer privacy-keeping schemes to
enable vehicles to upload urban sensor data anonymously. In addition, the authors in [124]
studied the viability of guaranteeing preserving privacy along with safety and integrity in
the new hyper-connected vehicular platforms. To prove that point, they studied a scenario
where vehicles upload their map updates while keeping their privacy as well as the integrity
of their messages.

34

Table 2.8: Security & Privacy Attacks On The Physical Layer.

Ref.
No.

Threat Proposed Method Critique

[118] Level-I and Level-
II attacks on the
microcontroller to
extract firmware

Firmware obfuscation Will not prevent stealing hard-
ware, it’s hard but not impos-
sible for an attacker with suf-
ficient dynamic analysis re-
sources to reverse engineer the
code.

[119] System Failures
and compro-
mising AV
cyber-security
lifecycle.

STPA method and the
Six-Step Model

System is too complicated and
Needs more refinement to be
applicable. Also, need to con-
sider scalabity and collabora-
tive scenarios.

[108] Attacks on the
ECU

Holistic HSM Although the model might
be tailored to guarantee in-
vehicle specific requirements,
this might hinder its scalabil-
ity and wide, general purpose
industrial applicability.

[120] Intrusion attacks Various IDS according
to vehicle type and ac-
cess methods

Each technique has its pros
and cons. As such, some
might need physical audit fea-
tures, others may require more
generalized hardware design
considerations.

That said, the contribution of this chapter is to survey AV privacy issues and security
challenges from a multi-layer perspective. We tackled these problems within each layer and
showed some state-of-the-art work to solve them. We hope that this big picture view would
help develop solutions that would address several issues simultaneously and support the
spread of AV technologies.

2.7 Summary

In this chapter, we surveyed AV’s security and privacy issues in a layer-based model. We
vision the AVs system as consisting of four layers, and we investigated some of the attacks
on each layer and some of the most promising corresponding countermeasures. Our goal is
to help researchers from a different backgrounds identify where they can contribute in this

35

vivid field.

36

Chapter 3

A PROPOSED SOFTWARE PROTECTION MECHANISM FOR
AUTONOMOUS VEHICULAR CLOUD COMPUTING

3.1 Introduction

AVs are rapidly becoming more computationally powerful. AVs are equipped with advanced
processing and storage units, computer vision technologies, aided with a variety of sensing
and communication capabilities to enable the vehicles to autonomously drive themselves
without any human intervention [2]. Such huge computing power allowed for a myriad of
applications and services to run along with the vehicle’s autonomous navigation system.
Their huge sensing and data collection capabilities can be used to support traffic management
systems or environmental monitoring and pollution control systems using a model called
IoV [6]. Nevertheless, sometimes this power is under-utilized, hence comes the need for
autonomous vehicles’ cloud computing [12]. Consequently, remote code execution on
a physically unreachable shared platforms is inherently challenging in terms of security
predicaments. When it comes to embedded systems, such as the ones supporting AVs, theses
issues become more challenging due to the limited capabilities of these new systems, in
terms of processing power, memory and storage.

In addition to that, in the case of AVs, the moving and continued change of location of
the car, along with the different communication interfaces they may use, and the different
perpetrators they may encounter, may open AVs to an unknown pool of attack scenarios [13],
such as intrusion, Denial of Service (DoS), information leakage via side-channels and
reverse engineering, which we will focus on.

Traditional cryptographic techniques such as digital signatures, certificates or trusted
platforms, may not be adequate. Because, the decryption is done remotely, therefore,
attackers may observe the actual running process and expose the code [14]. That’s why we
propose closed security, by increasing the logical complexity of programs to make it more
unintelligible for attackers, this process is called obfuscation.

This chapter presents a study of improvement and extension to the dynamic obfuscation
via compilation system to make it suitable for work on AVCCs. In particular, this work has
the following contributions:

37

• We present an enhanced software-based security technique to protect remote code
execution on AVCC platforms against timing side-channel attacks;

• We show the utility of these various new improvements within a simulated embedded
system environment running a set of standard benchmarks and study the performance
cost of our method.

The remainder of this chapter is organized as follows. Section 3.2, lays down some basic
concepts behind the ideas we utilized in our proposed technique and provides a summary
of the literature relevant to our study, as well as their efficacy in contrast to our suggested
approach. Furthermore, we describe our network and threat models in Section 3.3. In
Section 3.4, we discuss the implementation of our system. The experiments and the analysis
of their results are depicted in Section 3.5. Finally, in Section 3.6, we summarize the chapter
and suggest directions for future work.

3.2 Background Information and Related Work

Before moving forward with laying out our proposed system, we have to build a firm
background about the information that we used as well as a knowledge base of the related
literature and how it connects to our work.

3.2.1 Preliminaries

In this section we delve into more details about the most important constructs that we used
in our system.

The LLVM Compiler

A compiler is a tool that converts high-level language programs into machine-level instruc-
tions. Compilers learn a lot of program’s semantic information, which allows them to
optimize output programs’ performance.

LLVM [125] is a robust, open-source compilation infrastructure for building compilers.
Historically, LLVM began as a research project known as (Low-Level Virtual Machine)
developed by Vikram Adve and Chris Lattner at the University of Illinois [125, 126] to
provide a static/dynamic compiler applicable for an arbitrary wide range of programming
languages. Now LLVM is the official compiler for Apple products, including MAC OS X

38

and iOS. The compiler is based on the famous Static Single Assignment (SSA) form [126]
significantly simplifies developing compiler optimizations.

Moreover, LLVM is an extensible compiler suite that supports customization through
modules and plugins. It allows developers to create plugins to customize the functionality
of the compiler. For instance, a custom LLVM pass exists to implement the Control Flow
Guard (CFG) exploit mitigation and things like binary instrumentation for fuzzing/code
coverage purposes. The LLVM compiler suite, functions as a backend portion of a compiler
that handles machine code generation from the LLVM IR (Intermediate Representation).

Compiler suites such as the Clang C/C++ compiler and other programming languages
like the Swift and Rust compilers use the LLVM project as a backend. These compilers
output LLVM IR code, which is then passed to LLVM to generate compiled binaries from
the LLVM IR. Any compiler targeting LLVM as a backend automatically supports code
generation for any architecture supported by LLVM, such as Intel X86 or ARM. The LLVM
project also includes a linker (LLD) and other valuable utilities when developing compilers.

Due to its wide adoption and modular extensible architecture, LLVM is an excellent
choice when writing plugins for code obfuscation purposes. By performing obfuscation at
the LLVM IR level, it is possible to develop compiler passes for code obfuscation purposes
that support multiple programming languages and instruction set architectures.

Conditional Branches

Control-flow optimizations, such as branch optimizations, relax the control dependences in
the program in order to facilitate parallelization and pipelining. Conditional branches are
the main instructions that affect control-flow, as their outcome is generally not known until
the runtime. Typically, these branches add a significant cost to the runtime of a program. As
a result, conditional branches impede parallelism or pipelining attempts [127].

Historically, numerous scholars experimented with various ways to convert or resolve
branches to increase program speed [128]. As a result, speculation was developed to
reduce the impact of such control dependency while maintaining data correctness. Branch
prediction is used in speculative execution to figure out the location of the next instruction
beforehand. Then we can fetch, decode, and execute the next instruction as though the
branch forecasts were consistently right [129]. The entire pipeline is flushed if a mistake is
found during execution, the proper instruction is retrieved, and all operations completed are
thrown away. By using predicates, which are a form of guarded instructions, the authors
in [130] attempted to relieve such control dependences by using guard instructions called

39

predicates. An instruction’s execution is determined by the evaluation result of some guard
expression.

Conditional branches can be classified into the following branch types [131]:

Forward Branch Changes the control-flow to a target after the branch but, generally,
in the same loop nesting level.

Backward Branch Changes the control-flow to a target before the branch but, gener-
ally, in the same loop nesting level. A backward branch can be thought of as a loop;
thus, the loop optimizations can be applied to it.

Exit Branch Transfers the control out of the loop nest, which terminates one or more
loops.

Consequently, there are various techniques involved in optimizing branches within a
piece of code [132]. They are listed below:

1. Straightening: put the target code instead of the branch, replaces some branches with
the target code to get larger basic blocks.

2. Tail merging: unify tail branches of basic blocks to a single branch, which replaces
identical tails with one tail and branch from the others.

3. Branch-to-Branch optimization: replaces a branch by a simpler one, which usually
occurs when a branch target is another branch.

4. If simplification: eliminating the empty or constant-valued condition arms of an if-
construct; it also deletes the empty if-constructs that may be found in the automatically
generated or optimized code.

5. If-conversion: converts conditional branches into predicated instructions, supported
by the underlying processor architecture.

Later on, we discuss in details if-conversion optimizations. We utilized these branch
optimization techniques for security through obscurity by varying their time cost to thwart
probabilistic analysis of code execution.

40

3.2.2 Related Work

Almost all of the concepts we used in our system have been studied before in some form or
another; the originality is in combining the appropriate components in the proper order to
better fulfill our security needs without making the system too complicated. Some of the
relevant work is discussed in this section.

Code Obfuscation

First of all, we have to state that obfuscation has been around for some time [133]. It was
introduced to manage the privacy of sensitive data in cloud computing platforms [134]
and for program protection as in [135]. In [136], the authors present a study of Obfus-
cation, and deobfuscation tools in Android platforms. They investigated automated tools
such as R8, ReDex, Obfuscapk, and DeGuard. Additionally, [137, 138] also investigated
some other techniques to obfuscate android apps. Some of the most famous techniques
are: Debug Information Removal, Function Call Indirection, Goto Instruction Insertion,
Reordering, Arithmetic Branch Insertion, Nop Insertion, and Medhods Overload. Also,
there several commercial Java obfuscators such as Zelix Klassmaster, Stringer, Allatori,
DashO, DexGuard, ClassGuard, and Smoke.

However, the more prevalent use of obfuscation is in hiding malware and other foist
software to evade scanning or analysis. An example work of such context is of [139]. They
proposed a technique for obfuscating trigger-based malware code based on some conditions
at the static compiler level. This scheme allows for evading malware analysis tools. They
used the LLVM compiler to transform the input program into an obfuscated binary. The
system captures a conditional input trigger that starts the malware; it derives an encryption
key from the input, encrypts the code, and removes the key from the generated code. Thus
analyzer programs cannot easily detect the start or execution of malware code. This system
generates static obfuscated code essentially for malware triggering.

On the other hand, there has been extensive research as well on deobfuscation and
automated analysis tools [140–142]. For example, in [143], the authors present a technique
for extracting an executable program from the packed and obfuscated binary code. They
developed a hardware-assisted software for import tables reconstruction and rebuilding
obfuscated API names.

That said, our proposed obfuscation system generates dynamically, and every changing
obfuscated binaries, which make our is generic in that sense ad suitable for application in
the realm of AVCC platforms.

Cloud Security

There have been many attempts in the literature to solve the security problem in the remote
execution platforms in general such as the cloud computing. Many recent papers surveyed
the latest state of art work in that endeavor, such as [144–147]. However, to the best of our
knowledge, none of them has considered using dynamic compilation technology to secure
remote code execution. Here, we shed some light on some of these attempts.

41

Twin Clouds: [148] propose securing the cloud by utilizing two clouds: a trusted
private cloud (where the cloud is under the user’s control) and a commodity public cloud.
The private cloud is used for encrypting critical data and algorithms (setup phase). The
commodity cloud is used for computing time-critical computations (trusted cloud queries)
in parallel under encryption (the query phase). A user first sends his/her request to the
trusted private cloud, which authenticates and encrypts the algorithm/data using a trust
mechanism that is based on Yao’s garbled circuits [149]. This process is based on two-party
encryption to realize what is called verifiable computing [150]. That is computing the value
of a function with minimal knowledge from participating parties. The system exposes the
twin cloud architecture to programmers, increasing the cost of the software. Moreover, it
incurs the extra cost of garbled circuit execution and communication between the clouds.
Though, this work presented a practically efficient approach for secure computations as
opposed to Fully Homomorphic Encryption (FHE), which aims to allow calculations on
encrypted data without using additional helper information [151, 152].

Hypervisor Security: [153] discussed the issue of how to trust a hypervisor. They
present root trust static and dynamic management concepts. They suggest having a third-
party certificate authority that provides certificates that can be used for remote attestation
of a given platform; by extending the Trusted Computing Base (TCB) as per the Orange
Book [154]. The difference between Static Root Trust Management (SRTM) and Dynamic
Root Trust Management (DRTM) is that the latter can start a program in an Isolated
Execution Environment (IEE) at any time, not just at boot time, which is a new root for
trust chained from the initial state of the machine (a clean CPU state). Hence, a client can
be assured that its virtual machine is integral since it has started from a trustworthy state
and has not been modified or replaced by a malicious one. The system incurs a costly start
overhead due to the chained trust mechanism. Moreover, the system is still susceptible to
side-channels attacks from other virtual machines. Also, a downside of the system is that
the technique relies only on verifying that the hash belongs to a list of trusted hashes, but
that does not necessarily guarantee that it represents a trustworthy module. The certificate
authority can be deceived by a fraudulent certificate issued by a malicious insider since the
system relies only on a key for security in the launch process. Moreover, after the launch
process, there is no way to guarantee the integrity or privacy of our computations on the
cloud during runtime. There is also the risk of sabotage attacks via buffer and memory
overflow exploits.

Secure Virtual Architecture (SVA): [155] present a new compiler-based virtual instruc-
tion set for executing code on a given system, including kernel and application code. The
architecture provides instructions for object-level memory safety, control-flow integrity, and
type safety, allowing it to monitor all privileged operations and control physical resources.
They also provide custom instructions to control memory layouts, such as allocation and
explicit de-allocation instructions. Thus, this work only protects the system from sabotage
attacks such as memory or buffer overflow attacks on a physical resource. However, the
system is still susceptible to eavesdropping attacks, especially at the OS level. Moreover,
the SVA sandboxing mechanism focuses only on the instruction set beyond the Intermediate
Representation (IR) level and a code-generation phase.

That said, there are hardware-based commercial solution offered by major vendors in

42

the cloud market. For example there is Intel TXT [156], ARM TrustZone [157], AMD
SEV [158], and Intel SGX [159] technologies. The researchers in [160] studied these
technologies and compared them with each other. However, the found that each technology
can offer certain security guarantees that the other technologies do not provide under some
particular settings. Therefore, it is up to IT security managers to choose which hardware to
adopt according to their needs.

On the other hand, our work is a protection mechanism that is totally software based,
which is easier and less expensive to set-up and more applicable to a wide range of usage
scenarios. Moreover, it’s independent of input programming language and architecture
agnostic. That’s because we focus on the intermediate representation level. This makes our
proposed mechanism suitable for a heterogeneous platform such as the AVCC.

Side Channels

Side Channel Attacks (SCA) have been posing a great threat against different platforms and
architectures. That’s why there has been a great deal of research on how to launch them and
how to thwart them equally such as [161–163].

For example, the authors in [164] present a software-based side channel attack that
monitors power consumption statistics. They exploited the Intel Running Average Power
Limit (RAPL) interface to gain unprivileged access, which allowed them to correlate and
infer which instructions being executed and distinguish hamming weights of operands
and memory access operation. This breach allowed them to leak information about the
control flow of running program and to leak data and cryptographic keys as well. They also
presented some non-trivial mitigation techniques to this attack.

In addition, the authors in [165], examined the vulnerabilities of ARM processor’s
instruction set architecture (ISA) and their susceptibility to SCAs. They also, surveyed
different countermeasures to thwart these attacks. However, most of these attacks targeted
cryptographic algorithms in order to leak information about encryption keys, but here, we
aim to protect the execution trace of the running program using obfuscation. Thereby,
we mangle with the correlation between a program’s runtime behavior and the input data.
Hence, we make it difficult for attackers to leak information about the program and/or
reverse engineer it.

On the other hand, the researchers in [166] introduced a software tool that can generate a
polymorphic version of a function of a program. They used different techniques like instruc-
tion reordering, changing addresses of registers, and dummy code insertion. Nonetheless,
our techniques provides more diversification to the resulting technique since we employ a
technique that randomly and dynamically changes the control-flow of the program and hence
its execution time. Moreover, our scheme is simple to apply and already integrated within the
compiler infrastructure which makes it a relatively light-weight technique. However, some
of the aforementioned ideas, can be incorporated in our system to offer more protection.
These, along with other similarly integrable methods will be investigated in future work.

43

Smartphones

Cloud Service
Provider

RSU

PC

Moving
AVs

Parked
AVs

Figure 3.1: The network model of an AVCC platform.

3.3 System Description

3.3.1 Network Model

Cloud computing has existed for a while now, hence the idea of utilizing AVs computing
capabilities to create a similar on-demand computing platform coined Autonomous Vehicular
cloud computing (AVCC). As illustrated in Figure 3.1, AVs communicate together and to the
outside world using Road Side Units (RSUs) and many communication interfaces. Thereby,
they can share their resources such as processing, storage, sensing and collaborate together
to perform computation tasks which may need powerful processing. These AVs can be
traveling along the road or parked in some place. Often, they may connect with remote
servers to provide some service. The management and synchronization of such collaborative
efforts and sharing of physical resources will be done by a designated AVCC controller,
often one of the parked AVs, in order to balance the demand with the availability. The service
provider will sell and manage the computing offerings through some kind of an interface
with perspective clients who might be using their personal computer or even smartphones
in any place around the world. A client should be able to execute a code or/and store data
on some physically hardware selected by the AVCC controller securely and without any

44

governance from the client side.

3.3.2 Threat Model

Platforms that are utilize shared resources such as AVCC, often suffer from security attacks.
That’s because, attackers try to advantage of some loopholes to breach the system and obtain
access to user data.

Here, we focus on non-invasive attacks that aim to leak information about running
programs. These attacks are often easy to implement and quite scalabele and if executed on
a large scale can threaten the entire platform. They are called side-channel attacks (SCA),
which are based on monitoring of some physical phenomenon associated with the execution
of a target program, such as it’s power consumption, acoustic emission, resource access
patters or running time. Then, the attacker might try to analyze this data in order to deduce
some correlations about the behavior of the program being executed. Based on that, he
might be able to learn which instructions were issued and back trace the execution of the
program in order to reverse engineer it. His target might be stealing a copyrighted program
or later tamper with it.

We assume that the attackers can be unauthorized intruders or other users of the cloud
platform. We also assume that the service provider is honest but curious, meaning that they
would not affect the integrity of our system and the correctness of the running program, but
may try to leak information about the code in the same manner mentioned above. Either
way, our proposed closed security-by-design technique should try to thwart side-channels
from any adversary by obscurity and increasing logical complexity.

3.4 Proposed Technique

In this chapter, we built on an earlier implementation of obfuscated compilation [167]. Here,
we used the same basic concepts and developed a system tailored to suit the embedded
system’s architecture supporting the AVCC platform. In this section, we will detail the
components and operations of our system.

Compilers have access to a vast amount of program semantic information, which can
be leveraged for security purposes. A quite powerful infrastructure for building compilers
is LLVM the open source framework [125]. Using compilers allowed us to dynamically
generate apparently different executable versions of any source program that are architecture
dependent, yet functionally equivalent. This process is called obfuscation. This process
aims to change and complicate the execution sequence of the program and perhaps its
running time. Such changes if properly applied, would hinder timing side-channel attacks.
There are many techniques to apply obfuscation [168, 169], but here we focus on control
flow-obfuscation. In particular, these transformations target the code behavior itself, by
changing control sequences in a program. There are many techniques to achieve that, such
as function in-lining and outlining loop switching and unrolling or even deletion, dummy
tasks, opaque predicates and branch conversion.

Here, we focus on the last technique, that is we override the normal behavior of LLVM
compiler transformation passes, to implement a dynamically randomized conversion of con-

45

ditional branches targeting. When our system is applied to a source program, it discovers the
branch conversion opportunities within each function. Then, a random guard is dynamically
generated at compile-time as a bitmask to decide whether or not convert a branch, within
each compilation phase. These phases correspond to each compilation unit in the input
program and can be manipulated independently to allow for focusing on hot-spot functions
in the programs, where any branch change would have greater effect on the overall execution
time. Moreover, this code diversification process happens dynamically such that we can
generates dissimilar versions of the same code pieces having different control-flow paths,
which would eventually make it harder for attackers to leakage information about the actual
code behavior.

The next step was to cross compiled the obfuscated LLVM compiler to suit the AVCC.
Our target platform is based on ARM architecture, which are quite popular in embedded
systems and more specifically AVs.

In the ARM architecture, the original 32-bit instruction set provides a conditional
execution that allows most instructions to be predicated by one of 13 predicates based on
some combination of the four condition codes set by the previous instruction. ARM’s Thumb
instruction set (1994) dropped conditional execution to reduce the size of instructions so
they could fit in 16 bits, but its successor, Thumb-2 (2003), overcame this problem by using
a special instruction which has no effect other than to supply predicates for the following
four instructions. Thumb-2 introduces a logical if-then-else function that you can apply to
the following instructions to make them conditional.

In our work, our randomly generated guards control which instruction to be predicated
or not, depending on the bit’s value (either 0 or 1). We made sure to introduce this prediction
such that it does not interfere with the correctness of the compiler’s optimizations or the
correctness of the running program itself. That’s why the best way to insert the obfuscation
step was to use the compiler itself to do it.

Keeping these conditions in mind, some programs offered a wider range of predication
opportunities compared to other programs. Meaning that the number of conditional branches
that would be converted without threatening these conditions expectedly varies from one
program to another. The reflection of such variation would be apparent in the timing results.

3.5 Experiments and Results

Software running on ARM-based platforms exist in two delivery models, the first one the
more powerful general purpose platforms, running a Linux distribution (albeit specifically
tailored distro for embedded platforms, such as Linaro OS). This one is more easier to deal
with from a software prospective, but it obviously has more hardware requirements to run
the OS and the code on top of it. The other model is a bare-metal platform, which you
need to have all the program libraries and associated frameworks compiled and linked when
generating the machine code. These differences needed to be taken care of when compiling
our code, since it greatly affects the resulting executable file and hence its execution time.
But in both cases, our obfuscation mechanism will be working essentially in the same way.

For this experiment, the host machine ran Ubuntu 20.04.1 LTS x86_64 version, and the
target was a Linux-based 32bit ARM platform. As a preliminary showcase of our ideas’ va-

46

Figure 3.2: Obfuscated code versions of the Bubble Sort program and their corresponding percentage
of normalized runtime differences with respect to the original unmodified version.

Figure 3.3: Obfuscated code versions of the Quick Sort program and their corresponding percentage
of normalized runtime differences with respect to the original unmodified version.

lidity, we used an ARM Emulator (QEMU) [170]. It encompasses system-level architecture
as well as processor micro-architecture simulation. We plan to test our implementation on
actual hardware instead of the simulator in our future work.

47

-4

-3

-2

-1

0

1

2

3

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

N
o
rm

a
liz

e
d

 R
u
n
ti

m
e
 D

i
e
re

n
ce

s
%

Code Version

RealMM Statistics

Figure 3.4: Obfuscated code versions of the RealMM program and their corresponding percentage
of normalized runtime differences with respect to the original unmodified version.

As a simple showcase of our work, we experimented on some simple standard bench-
mark programs with predefined workloads. These are some very well-known algorithms
implemented in the package provided by the Gem5 simulator [171].

Figure 3.2 shows the bubble sort program, where we show the normalized execution
time difference percentage across the various program versions that we produced. Each
of these different program versions corresponds to a different bitmask, hence a different
predicated instruction series. But all the programs have the same functionality, albeit with
different running times. The running times were normalized in comparison to the original
unmodified code version, and the results were plotted in Figure 3.2. We can see that these
normalized differences varied between -29% and -36%, which means they ran faster than
the original code, with different speedups for each code version.

On the other hand, Figure 3.3 presents the normalized runtime differences for the
quicksort program and shows different behavior. Here, the differences varied between -2%
to 12%. The cases where it’s nearly 0% would mean that no instructions were predicated,
according to the bitmask. This case would happen if the branch conversion opportunities
were minimal. Removing exit-branches from loops may cause large execution time overhead
while removing backward and fall through branches impact on the program control-flow is
difficult to predict at compile time [172]. Since the quicksort program algorithm has many
recursive calls, it would be expected that it’s more challenging to perform the if-conversion
transformation. Hence, the opportunities for predication are limited, and therefore the time
changes are also limited.

Figure 3.4 tells a different story. The normalized runtime differences for the REALMM
benchmark varied between +2% and -4%, which may be limited, but interesting to see that

48

some modification may slow down the overall runtime. In contrast, others may speed it up
with respect to the same program.

In summary, we can see from these different results that we need to produce more runtime
changes adapting to various subject programs, which may lack predication opportunities.
We intend to address that in our future work.

3.6 Summary

AVCC platforms are still in their very early stages of development and adoption. There
are many issues to be handled with most cloud computing delivery models, but security
and privacy issues take more precedence. In this chapter, we present an investigation on
a proposed technique to protect software running on AVCC. Our approach extends on
early work to cover code running on embedded system platforms, which is the case in
hand in AVCC. Obfuscation is quite popular in implanting surreptitious software on remote
embedded platforms, here we utilize the same idea for software protection. Our LLVM-
based obfuscation system proved to be architecture agnostic, and we saw the promising
result for simple benchmark programs. Future investigation will examine performance,
latency and other aspects to assess the applicability of our work.

49

Chapter 4

ENHANCED OBFUSCATION FOR SOFTWARE PROTECTION IN
AUTONOMOUS VEHICULAR CLOUD PLATFORMS

4.1 Introduction

In this chapter, we propose an enhancement to the technique discussed in Chapter 3, which
aims to hide the actual behavior of a running program by increasing its logical complex-
ity [173].In particular, obfuscation makes the code difficult to understand by attackers;
hence they cannot leak information about it. That’s why this closed technique is called
security by obscurity or security by design. In particular, we disrupt the normal control-flow
of a running program, by introducing a compiler-based branch instruction transformation
algorithm, which is applied dynamically and randomly to the the input program. Therefore,
we complicate the behaviour of the control flow of the program, which will be reflected in its
running time and other physical manifestations such as power consumption, electromagnetic
and sound emissions. A side-channel attacker would need consistency in these manifestation
to infer correlations about a running program and hence leak information about the running
program’s behaviour. By using our technique we would disrupt these correlations and hence
thwart side-channel attacks.

In particular, the contributions of this chapter are:

• first, we enhance our obfuscation mechanism to protect programs running on AVCC
platforms against information leakage via side-channel attacks which use timing
analysis;

• second, we address the limitations of our initial implementation in some AVCC
applications, specifically in the cases where there was a small number of opportunities
for branch conversions, hence it limited control-flow obfuscation transformations.;

• third, we kept the advantages of our compiler-based software system, that’s being
input language agnostic and platform independent, which makes our system generic
and easily applicable in AVCC platforms;

• finally, present an analytical study for our system and their effectiveness with regard
to different input programs.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss our
network and threat models as they apply to our system. In Section 4.3, we talk about how
we’re going to put our system in place. Section 4.4 depicts the experiments and the analysis
of the data. Section 4.5 shows an overview of the literature related to our work. Finally, in
Section 4.6, we wrap up the chapter and make some recommendations for further research.

50

Random Dummy Code
Insertion

Front End Compiler

Randomized Control-Flow
Obfuscations

Cross Compilation

Source
Program

Source Program
obfuscated
with dummy
code

LLVM IR
Code Version

LLVM IR
Code VersionMachine

Code

Figure 4.1: Flow chart explaining the steps of producing an obfuscated code version using our
proposed system.

4.2 System Description

Since this technique is basically an improvement to the one introduced in Chapter 3, we
used the same network model as described in Section 3.3, and that same threat model.

4.3 Proposed Technique

In this chapter, we extend our earlier system that use obfuscated compilation, to work in the
realm of AVCC [173]. In particular, We used the same idea and developed an enhancement
to that system designed to better serve the ARM based architecture supporting the AVCC
platform. In this section, we explain how our system was designed and how it works. We
also addressed some architectural issues with the obfuscation transformations to suit the
new platform.

ARM processors have a technology called predication. A predicate is a logical concept
that adds a control flow decision point or an if-then-else functionality to the next group of
instructions, thereby they are said to be conditional. In the original 32-bit architecture, there
was a combination of four conditional codes that controlled 13 predicated instruction. Later
in 1994 the Thumb instruction set was introduced and the inventors sought to eliminate this
sort of conditional execution in order to reduce the size of instruction for a size of 16 bits.
Then again in the modified version coined Thumb-2, they overcome the size problem by
introducing special instruction which only provides predicates to the following instructions.

In our system, we used a similar concept but with a dynamically changing guard bit
that controls the branch conversion process based on the bit’s random value (either True or
False), which is the basis of our control-flow obfuscation technique. We aimed to integrate

51

Target Header
Files

Application
Shared

Libraries

Cross
Compiler

 Target Source Generic Source

 Target Objects

Cross Linker

 Target Static
Libraries

 Target Shared
Libraries

Application

Host

Application
Shared

Libraries
Application

Target

 Target Shared
Libraries

Figure 4.2: LLVM cross-compilation steps.

this process within the LLVM infrastructure, without affecting its integrity or the correctness
of the compiled program. Therefore, we modified LLVM compiler framework to implement
a dynamic obfuscation scheme using randomized transformation of conditional branches.
When a source program is fed into the compilation framework, our system first examines each
code block (typically a function) looking for these branch conversion opportunities. Then,
these convertible branches are flagged by a bit as a sort of a predicate to decide whether to
transform that branch or not. This flag bit can be dynamically changed with each compilation
phase in order to change the overall control flow of the program. Moreover, each flag can
be modified independently which allows us to add more disruption to the input program at
certain areas of the code (say hotspot function) which in turn will manifest in significantly
added unpredictability of the timing behaviour of that program. This would allow us to
create sort of diversified code versions for the same input program, having different control
flow behaviour, while maintaining its correctness and functionality. Thereby, making it quite
complicated for attackers launching timing SCA to build correlations about the behaviour of
the running program, hence he will not be able to leak information about it.

Figure 4.1 shows the steps of creating diversified machine code versions from an input
source program. These code version are tailored to the ARM platform target using LLVM’s
cross-compiler. Figure 4.2 shows how we ported our LLVM based system to suit the the
embedded system architecture supporting the AVCC platform. The figure detail how the
cross-compilation process works by utilizing different static and shared libraries according
to the target object. Programs running on ARM-based systems can be one of two things,

52

bare-metal infrastructures and OS controlled platforms. In the bare-metal model, you would
need to compile all program libraries and every associated framework or toolchain and link
them together in the resulting executable machine code. While in the latter model, often
a Linux based OS (such as Linaor OS) is the one governing the system. Therefore, you
wouldn’t need to compile and link every little piece of code needed in your program. But on
the downside, the ARM processor itself need to be powerful enough to support the OS and
other programs to be executed on it. All of these conditions should be kept in mind, since
they would greatly affect the resulting code size and hence its execution time. Nevertheless,
in both scenarios, our obfuscation scheme will work essentially in the same manner.

That said, during the experiments performed in [173], we noticed that some a limited
number of branch conversion opportunities due to its underlying control-flow structure.
It means that the number of conditional branches converted without threatening these
conditions expectedly varies from one program to another. That’s why, in the current
implementation, we introduced an LLVM plugin (Transformation) to randomly insert junk
code into the input program. This inserted code could be just random instructions or an
entire dummy program running within the actual input program without compromising
its functionality. The purpose of this junk code is to maximize the branch conversion
opportunities in the input program by introducing new lines of code, which will further
hinder reverse engineering and analysis of the compiled code.

In particular, the junk code insertion is a ModulePass, meaning that the pass gets invoked
on every module (source code file) during compilation. However, LLVM supports other
modules such as FunctionPass that runs on every function, and BasicBlockPass that runs on
every basic block within the program, which can be further leveraged in future work.

Note that this pass begins by creating a global variable that is referenced by the inserted
junk code. This is because some LLVM optimizations attempt to remove dead code from the
compiled program for optimization purposes. This optimization also has the unfortunate side
effect of removing the junk code that we have inserted to evade signature-based detection.
If the junk code references a global variable, it is not marked as dead code and deleted.

After creating the global variable, the pass uses a loop to iterate through each function,
its corresponding basic blocks, and each of the instructions within those basic blocks. It then
chooses and inserts random lines of code within the input program. These instructions should
be simple enough to make sure not to overly complicate the input program or significantly
affect its overall performance. Nevertheless, the manifestation of these modification would
be noticed in the runtime results, which serves our goal in mitigating side-channel attacks.

4.4 Experiments and Results

We set up our environment as follows. An HP Notebook model 15-DY1023DX acting
as the host machine running WSL2 Ubuntu 20.04.1 LTS x86_64 version, and the target
machine was a Linux-based 32bit ARM platform. For the sake of proving our system’s
validity, we simulated the target platform using an ARM Emulator (QEMU) [170]. This
software simulates an Thumb-2 Arm microprocessor along with its system-level architecture.
Nevertheless, we plan to test the system with real hardware kits in our future work.

We added our obfuscation extension to LLVM framework version 12, and used it to

53

Table 4.1: Comparison of Range of Normalized Runtime Differences in Both Versions of Our System.

Benchmark Name Old System New System

Float -0.3 : 2 % 2.4 : 4.9 %
IntMM -16 : 5 % 24 : 49 %
Perm 0.95 : 3.9 % 2 : 10 %
Queen -5.8: 3.8 % 3.6 : 10.8 %

Quick Sort -4 : 3.2 % 3.8 : 9.9 %
Puzz 0.7 : 3.9 % 9.4 : 12.6 %
Oscar -1.8 : 4.7 % 1.5 : 6.6 %

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

0

1

2

3

4

5

No
rm

al
ize

d
Ru

nt
im

e
Di

ffe
re

nc
es

 %

Figure 4.3: Obfuscated code versions of the Float program and their corresponding percentage of
normalized runtime differences with respect to the original unmodified version.

cross-compile the source of the input programs and produce machine code targeting the
ARM platform. Our technique is easily integratable with any other version of the LLVM
compile that supports the "If Conversion" transformation.

As a proof of concept, we choose some simple yet standard benchmark programs as the
subject for our experiments. These benchmarks are well-known algorithms borrowed from
the test set of the Gem5 software [171]. We fed these programs to our system, which first
added some dummy code that contains branch instructions. This dummy code is randomly
selected from a pool of code base programs. We did that to avoid using the same code

54

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

0

10

20

30

40

50

No
rm

al
ize

d
Ru

nt
im

e
Di

ffe
re

nc
es

 %

Figure 4.4: Obfuscated code versions of the IntMM program and their corresponding percentage of
normalized runtime differences with respect to the original unmodified version.

multiple time, hence this could present a vulnerability in our system. Then the modified
code would be inserted into the control-flow obfuscation pass. Which in turn does random
If conversion transformation to the program. Finally, a machine code tailored for the ARM
platform is produced using the LLVM cross compiler, as explained before in Figure 4.2.
The previous steps were summarized in Figure 4.1.

We did the same process multiple times for each input program, in order to produce
different code version for the same program. Then, we compared the running time of each
code version. This study of time measurement is the basis for thwarting timing side-channel
attack because the greater and the more unpredictable the runtime, the more it will be
difficult for an attacker to make statistical correlations about the behavior of the program,
hence he can’t leak information about it or reverse engineer it.

Figures 4.3 through 4.9 show the normalized runtime difference percentages across the
various versions that we produced for each individual benchmark. Each of these different
program versions corresponds to a different bitmask, hence another predicated instruction
series and consequently different running times, although the programs have exactly the
same functionality. The running times were normalized in comparison to the runtime of the
original unmodified code version, and the results were plotted in these figures respectively.
The equation for the normalized runtime difference can be expressed as follows:

∆T %= ((TVi−TO)/TO)×100 (1)

55

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

0

2

4

6

8

10

No
rm

al
ize

d
Ru

nt
im

e
Di

ffe
re

nc
es

 %

Figure 4.5: Obfuscated code versions of the Perm program and their corresponding percentage of
normalized runtime differences with respect to the original unmodified version.

where TVi is the runtime for that specific obfuscated code version (which in turn
corresponds to s specific bitmask), TO is the runtime for the original unmodified version.
This measure service as both a performance metric and indicator of the robustness of our
security proposal.

As we can see that these different code version all have one thing in common, they were
expectedly slower than the original code version, due to our current system enhancement
that is the insertion of the randomly selected dummy code with more branch opportunities.
It also went under the same control-flow obfuscation transformation and produced varying
code versions with different runtimes.

To prove on how this enhancement affected the overall system, we experimented on the
same benchmarks using the old and the new techniques on the same platform and collected
the overall range of normalized runtime differences. We summarized the comparison of
both techniques in Table 4.1.

For example in Figure 4.3 we can see that these normalized differences varied between
2.4% and 4.9%, which means they ran a little slower than the original code, with different
percentages for each code version. On the other hand from Table 4.1, we know that
this range was -0.3% to 2%, which was quite small, proving that we needed this sort of
enhancement.

The same goes for the IntMM benchmark plotted in Figure 4.4, showing a range of 24%
to 49% as compare to the -16% to 5% with the old technique as per Table 4.1. Also the
Perm program in Figure 4.5 had a range of 2% to 10% as opposed to 0.95% to 3.9%. In

56

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

0

2

4

6

8

10
No

rm
al

ize
d

Ru
nt

im
e

Di
ffe

re
nc

es
 %

Figure 4.6: Obfuscated code versions of the Queen program and their corresponding percentage of
normalized runtime differences with respect to the original unmodified version.

addition, the Queen program shown in Figure 4.6 showed similar results, ranging between
3.6% to 10.8% as opposed to -4% to 3.2%. As for the Quick Sort program, which we know
from our previous work [173], has many recursive calls, thus it was more challenging
to perform the if-conversion transformation. Having the opportunities for predication are
limited [172], the time changes were also minor -4% to 3.2% as per Table 4.1. But with
our new technique we achieved a range of 3.8% to 9.9%, and the statistics from its code
versions were plotted in Figure 4.7.

On the other hand for the Puzz program shown in Figure 4.8, although the range is
between 9.4% to 12% which is comparably larger than 0.7% to 3.9%, we have to note the
width of the newly introduced range (the difference between the maximum and minimum
values) is somewhat smaller than some of previous cases, hence the difference between
the code versions themselves was not as big as it was in other programs. This could have
happened because the inserted random dummy code didn’t have many branch conversion
opportunities, hence we need a more concise way to choose dummy code instead of just
randomly inserting it. This needs to be addressed in future work, because as more as we
have significant time changes, we can disrupt timing side-channel attacks.

Also, for the Oscar program, shown in Figure 4.9, the old technique achieved a range
of -1.8% to 4.7%, and now with the new technique we have a range between 1.5% to 6.6%
which some would say a smaller performance gain. Also, they could have happened because
of a poor choice for the random dummy code. Though, unlike the Puzz program, here the
difference between the code versions is quite noticeable, meaning that the results could be

57

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

0

2

4

6

8

10

No
rm

al
ize

d
Ru

nt
im

e
Di

ffe
re

nc
es

 %

Figure 4.7: Obfuscated code versions of the Quick Sort program and their corresponding percentage
of normalized runtime differences with respect to the original unmodified version.

acceptable in mitigating the attacks.
In summary, we can see from these different results that in most programs, we achieved

considerable enhancement over the old technique as per the resulting normalized time
differences. That said, in some cases we need some way to efficiently insert random dummy
code that would produce more runtime changes. We intend to further investigate that in our
future work.

4.5 Related Work

Mitigating side-channel attacks on different architectures and platforms, have been studied
extensively over the past years [161] [162]. For example, in [165], the authors focused
on the ISA of an ARM processor and compared different SCA and their countermeasures.
But most of these techniques tried to protect cryptographic algorithms from encryption key
leakage via SCA, but here, we try to obfuscate programs control-flow. Thereby, we disrupt
the sole dependence between a program’s execution behavior and the input data. Hence, we
can defend against SCA aiming to analyze the code and perhaps reverse engineer it.

The authors in [166] proposed an automatic software tool to generate polymorphic
version of a functions of a program. They used register shuffling, instruction reordering
and dummy code insertion among other techniques. But here, we use a rather lightweight
technique, which provides the adequate functionality with minor modifications to the
resulting code size, making our technique simple to apply. However, it can be combined

58

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

0

2

4

6

8

10

12
No

rm
al

ize
d

Ru
nt

im
e

Di
ffe

re
nc

es
 %

Figure 4.8: Obfuscated code versions of the Puzz program and their corresponding percentage of
normalized runtime differences with respect to the original unmodified version.

with other techniques to provide more protection.
Moreover, the use of the LLVM open source framework, which has many implemented

front-end and back-end interfaces, makes our system usable in many platforms independent
of the input programs high level language and the target architecture. Which in turn makes
our proposed technique an ideal candidate for application on remote platforms such as the
AVCC, especially in the absence of strong user side governance of the execution environment
or knowledge of potential adversaries to protect against.

4.6 Summary

AVCC platforms are fairly new and they are still under investigation. Security and privacy
problems are among the most important issues facing there wide-scale adoption. One of the
most serious security threats are side channel attacks (SCA). In our work, we proposed an
obfuscation mechanism to protect software running on AVCC against timing SCA. Virus and
malware developers use obfuscation to hide their code from scanners and detectors. We used
similar concepts to implement a dynamic yet randomized control-flow obfuscation technique
using conversion of conditional branches. This would result in seemingly unpredictable
disruptions to normal code behaviour, making it difficult for attackers to leak information
about the running program. In this current approach we provide enhancements to our early
work. In particular, we compensate for the cases where there were limited opportunities for
conditional branch conversions, which previously introduced hindrance to our obfuscation

59

V1 V2 V3 V4 V5 V6 V7 V8 V9
Code Version

0

1

2

3

4

5

6
No

rm
al

ize
d

Ru
nt

im
e

Di
ffe

re
nc

es
 %

Figure 4.9: Obfuscated code versions of the Oscar program and their corresponding percentage of
normalized runtime differences with respect to the original unmodified version.

mechanisms. Therefore, we were able to extend more protection for a wider range of generic
programs running on embedded system based platforms, which is typically the case in hand
in AVCC.

The results show that our LLVM-based obfuscation system is platform agnostic, inde-
pendent of the input language and quite lightweight, which makes it a good candidate for
application the AVCC platform.

60

Chapter 5

A PRIVACY-AWARE SYSTEM FOR AUTHENTICATION IN
AUTONOMOUS VEHICLES CLOUD COMPUTING

5.1 Introduction

AVCC platforms are a honeypot for intrusions attacks. Attackers aim to gain access to cloud
resources by impersonating as a legitimate user. Moreover, they can implant themselves as
participants of the cloud system itself and gain access to sensitive data. Therefore, a robust
authentication mechanism is needed to mitigate misusing attacks on the AVCC and protect
all stakeholders. Moreover, the authentication technique should protect user’s privacy,
therefore it’s required that system would be able search over encrypted data and authenticate
participants. Additionally, the proposed system should have a low overhead in terms of
communications and computations. Our goal is to countermeasure different kinds of attacks,
for example, unauthorized access, man-in-the-middle attacks or fraudulent identities for
AVCC platforms.

In order to achieve that, we used a secure function encryption algorithm, based on Kim
et al. work [174]. Their technique utilizes function-hiding technique that requires nothing
but knowledge of ciphertexts and doesn’t compromise anymore data about actual identity
information beyond the secure inner product of the encrypted authentication request and ID
data also stored in an encrypted format. We extended their scheme to fit our scheme and
support searching multiple encrypted ID data stored at some independent referee server, and
match an authentication requested with it.

In particular, this chapter has the following contributions:

• First, we implement an authentication mechanism based on a low-cost and efficient
authentication using function encryption, which is an efficient encryption algorithm;

• Second, we prove that our system is a privacy-preserving encrypted identity searching
technique that mitigates linkability and information leakage attacks;

• Finally, we tested our system on different usage scenarios to search a pre-stored
encrypted set of ID data and authenticate a recognized client. Our findings proved
that the suggested technique entails reasonable overheads in terms of communication
and computation, which is acceptable and applicable for AVCCs.

The rest of this chapter is laid out as follows. In Section 5.2, we describe the system’s
network and threat models, also we mention our design goals. In Section 5.3, we demon-
strate the scheme behind our system. In Section 5.4, we show a privacy and security analysis
of our proposed algorithm. Section 5.5 illustrates experimentation and result. Section 5.6
provides a summary of the relevant literature. Finally, in Section 5.7, we summarize the
chapter and suggest future work.

61

Smartphones
PC

Authentication Server

Cloud
Service
ProviderAV

Certificate Authority

Users

(1)

(1)

(1)

(4)

(2)

(2)

(5)

Cloud
Controller

(1) Key Distribution
(2) Registeration
(3) ID Data Encryption
(4) Authentication Request
(5) Matching

(4)

(3)

(4)

Figure 5.1: Our proposed secure AVCC network model.

5.2 System Models

5.2.1 Network Model

In Figure 5.1, we show the components of our proposed network model. We have a Cer-
tificate Authority (CA), A Cloud Service Provider, A Cloud Controller, An Authentication
Server, Users on their computers or smartphones and AVs. We assume that all stakeholders
have a secure means of communications to connect with each other, and we focus here
on authentication of users and vehicles trying to access or join the AVCC, respectively.
The encryption scheme is divided into five phases. First, the Certificate Authority (CA)
distributes the keys to all entities, including the cloud service provider, vehicles and users.
Then in the second phase, users and vehicles register at the cloud service provider with their
original ID data.

For the sake of simplicity and since all following steps will be essentially the same for
users and vehicles, from here on, we will refer to the first party the authenticator (that is
the cloud controller) and the second party being authenticated as the participant (which is
the user or the vehicle), and the party who does the actual matching on encrypted data is
the Authentication Server. The main difference between the users and vehicles is in the
corresponding ID size n, which is chosen to be double the size of their original unique
identification data size (N), which is, in the case of a user could be a unique randomly

62

generated ID number or any sort of biometric data such as his/her fingerprint, voice print
or iris image ...etc. For vehicles, the unique ID could be its license plate number, Vehicle
identification Number (VIN), or even a PUF (Physically Unclonable Function) unit installed
in the vehicle.

Consequently, in the third phase the cloud service provider encrypts participant registered
IDs using its secret key to generate encrypted indices and store them at an independent
authentication server. Then, whenever a participant is trying to access the cloud (either
a user trying to utilize the cloud or a vehicle would like to offer its services and join the
cloud), they encrypt their ID using the key that was given to them from CA and generate an
authentication request, which is called a trapdoor and sends it to the authenticator. Finally,
the authenticator delegates the process to the authentication server, which perform a search
and match operation, during which the server executes a series of operations that constitute a
functionally encrypted secure dot product using the indices and trapdoors and then figure out
if the participant is legitimate to access the cloud, then they can be authenticated, otherwise
he will be denied access. We delve into more detail about these steps in the following
Section.

5.2.2 Threat Model

External perpetrators and malicious insiders, such as AVCC service providers, cloud con-
trollers, authentication servers and other cloud users, are all viable attackers. We consider
them as being "honest-but-curious," meaning that they don’t wish to tamper with the system
functionality, but instead they may be tempted to eavesdrop on private information such as
indices or authentication requests. This attack model is called "Known-Ciphertext".

5.2.3 Design Goals

The proposed privacy-preserving authentication scheme should attain the following design
goals:

1) Authentication Query Search Over Encrypted ID Data from Several Participants. The
scheme should be able to use encrypted authentication queries to search over encrypted ID
data stored by different cloud participants.

2) Scalability and Efficiency. The scheme should be capable of quickly searching through
a large number of indices in order to reply to authentication requests. Additionally, the
authentication query’s size should be reasonable to minimize communication overhead.

3) Indices and Authentication Requests Confidentiality. The cloud server should not
acquire any useful information about the stored index data or authentication trapdoors.

5.3 Proposed Scheme

In this section, we describe the operational steps of our proposed scheme. The algorithm is
based on [174], bilinear pairing method. For that we recall G1 and G2 are two asymmetric
groups of prime order q. Then, we select g1 ∈ G1 and g2 ∈ G2 as generators. Then, we
generate the mapping e : G1×G1 → GT , where GT is also of prime order q, such that

63

e(g1,g2) ̸= 1 and e(gx
1,g

y
2) = e(g1,g2)

xy, ∀x,y ∈ Zq. Also, all operations in the groups has
to be computable [175].

Initialization

The CA initiates the system’s structure by generating and distributing cryptographic keys to
the cloud service provider, vehicles and users. The CA should execute the following oracles
to do this:

• SystemSetup
(

1λ ,S
)
→ CAMK. The initialization algorithm, needs two inputs:

a security parameter λ , and the set S where S ⊆ Zq, such that |S| = poly(λ), of
prime order q. Then, it generates an asymmetric bilinear group (G1,G2,GT ,q,e),
having g1 ∈ G1 and g2 ∈ G2 as generators. Then, based on the ID size n, CA
samples A←GLn

(
Zq

)
, such that A is an n×n dimensional matrix.Then, the scheme

computes the public security parameters:

pp = (G1,G2,GT ,q,e,g1,g2),

and the CA secret master key:

CAMK= (A).

Then, for each cloud service provider’s cryptographic operations, the CA samples two
random matrices M1← GLn

(
Zq

)
and M2← GLn

(
Zq

)
, Such that M1 and M2 are

matrices of size n×n.

That said, we have to notice that this steps will be done twice to create two set of
security parameters and secret keys one for dealing with the users and the other for
vehicles’ dealings. The difference will be in the input the ID size n, which is probably
going to be different form users (lets say nu) to vehicles (say nv). But as we said
before, for simplification we will use the former generalized notation, referring to
users and vehicles as cloud participants.

• CloudServiceProviderKey(CAMK,CSP)→ CSPK. The CA computes a crypto-
graphic key for the Cloud Service Provider CSP, using its randomly generated matri-
ces M1 and M2 as follows:

CSPK= (AM1,AM2)

CSP uses this key in participant authentication operations, to store participant IDs as
encrypted indices and matching afterwards.

• ParticipantKey(CAMK,Pi) → PKi. The CA computes the secret key for each
registered participant in the system with the identity IDi as follows. It samples A′i and
A′′i from Zn×n

q where A′i +A′′i = A−1 and outputs the secret key as:

PKi =
(
M−1

1 A′i,M
−1
2 A′′i

)

64

Registering and Encrypting Participant ID Data

First, each participant (a user or a vehicle) has to register their ID data with the cloud service
provider. Then, the CSP creates a collection of encrypted indices as the encryption of their
ID data using their corresponding key CSPK that we created in the previous step.

That is, for participant Pi, CSP creates Ii for the embedding of their ID data of size n,
(PIDi) by executing the following oracle:

CreateIndex(CSPK,g1,g2,PIDi)→ Ii. Such that, we first compute the ones comple-
ment of the PIDi lets call it PID′i then we compute the new participant ID as PID′′i , which
is the concatenation of the original ID and its one complement.

I.e: PID′′i = PID⌢
i PID′i

Notice that this new ID has a size that is double the original, corresponding to n that we
used as input ID size.

Then CSP samples α ← Zq and then generates the index as:

Ii =
(

gα
1 ,g

α·PID′′i ·AM1
1 ,gα·PID′′i ·AM2

1

)
.

Thus, Ii is stored at the authentication server for later authentication at some cloud
controllers to allow a participant to access cloud facilities if he/she was a user or lend its
resources if it was a vehicle.

Encrypting Participant Authentication Requests

If a user wants to utilize the cloud system, he/she would have to first log into their registered
account at the could service provider. Then, based on availability and resource needs,
the cloud service provider would direct them to a certain cloud controller for further
authentication and access will be granted there.

Same goes when a vehicle wants offer their computing capabilities and join a cloud,
they should log into their registered account at the could service provider. Then, CSP,
based on various metrics such as the vehicle available capabilities, its geographic location
and after examining which nearby cloud needs more resources, the cloud service provider
would direct the vehicle to a certain cloud controller for further authentication and the join
operation will be completed there.

Therefore, the next step for any user or a vehicle is to encrypt their authentication request
(out of their ID data) and generate a trapdoor using their own key, that was distributed to
them by the CA in the initialization phase.

That is for the authentication of any participant, who want to access/join the cloud,
they should encrypt their ID data (lets call it vector X j, since it is still unauthenticated) by
invoking the following oracle:

CreateTrapdoor
(
PK j,g1,g2,X j

)
→ T j.

First, again as we did before, we compute the ones complement of X j lets call it X′j then
we compute the new participant ID as X′′j , which is the concatenation of the original ID and
its one complement, i.e: X′′j = X⌢

j X′j. Then, we calculate its transpose X′′Tj .
Then, we sample β ← Zq and finally we generate the trapdoor as:

T j =

(
gβ

2 ,g
β ·M−1

1 A′·X′′Tj
2 ,g

β ·M−1
2 A′′·X′′Tj

2

)
.

65

Thus, T j is sent to the cloud controller, which in turn forwards it to the authentication
server for matching and authentication.

Matching and Authentication

For authentication of a participant, the authentication server should run Inner Product
Encryption (IPE) algorithm to match the incoming authentication request (trapdoor) with
the stored participants’ IDs (indices).

In particular, the authenticator performs a secure dot product operation between the
trapdoor T j and each stored index Ii, by invoking the following oracle.

Match
(
Ii,T j

)
→< PID′′i ·X′′j >. The authenticator computes the following:

1. E1 = e
(

gα
1 ,g

β

2

)
= e(g1,g2)

αβ

2. E2 = e
(

gα·PID′′i ·AM1
1 ,g

β ·M1
−1A′·X′′j T

2

)
= e(g1,g2)

αβ ·PID′′i ·AM1M1
−1A′·X′′j T

= e(g1,g2)
αβ ·PID′′i ·AA′·X′′j T

3. E3 = e
(

gα·PID′′i ·AM2
1 ,g

α·M2
−1A′′·X′′j T

2

)
= e(g1,g2)

αβ ·PID′′i ·AM2M2
−1A′′·X′′j T

= e(g1,g2)
αβ ·PID′′i ·AA′′·X′′j T

4. E4 = E2 ∗E3

= e(g1,g2)
αβ ·PID′′i ·AA′·X′′j T+αβ ·PID′′i ·AA′′·X′′j T

= e(g1,g2)
αβ ·⟨PID′′i ·(AA′+AA′′)·X′′Tj ⟩

= e(g1,g2)
αβ ·⟨PID′′i ·A(A′+A′′)·X′′Tj ⟩

= e(g1,g2)
αβ ·⟨PID′′i ·AA−1·X′′Tj ⟩

= e(g1,g2)
αβ ·⟨PID′′i ·X′′Tj ⟩

= e(g1,g2)
αβ ·<PID′′i ⊙X′′j>

= E
<PID′′i ⊙X′′j>
1

5. Knowing E1 and E4, we calculate:
Discrete log(E4,E1)−→< PID′′i ⊙X′′j >

A correct match happens if the product result equals exactly half the ID size or n/2.
In which case the hamming distance between the trapdoor and the matched index is zero,
which means they are the same. Hence, the participant is securely authenticated, without
revealing their privacy (their actual ID) to the cloud controller. Otherwise, if no match for
the trapdoor is found, they will be denied access.

66

5.4 Privacy and Security Analysis

In this section, we analyze the privacy preservation features of our system.

Preposition 1. Search and Match Over Encrypted ID Data from Several Participants.

Proof. It’s mathematically proven in the previous section that our authentication server
can compute the inner product between a trapdoor and a collection of encrypted indices
stored by cloud service provider and use it as basis for authenticating a legitimate partici-
pants.

Preposition 2. Efficiency and Scalability.

Proof. It is proven by experiments that our scheme was able to quickly searching
through a large set of indices in order to reply to authentication requests, that’s because
our mathematical operations are fairly straightforward and parallelizable. Additionally, the
authentication request size is reasonable, thereby we minimized communication overhead.

Preposition 3. Indices and Authentication Requests Confidentiality.

Proof. In the proposed scheme, our searchable encryption scheme encrypts identification
data of cloud participants. This technique considers known ciphertext attack model. That
is, without knowledge of their cryptographic keys, decrypting the indices and trapdoors is
impossible, even if they can obtain the encrypted data.

5.5 Experiments and Discussions

We implemented our proposed algorithm using Python and executed it on a computer
running Ubuntu 18.04.6 LTS on an Intel® Xeon™ E5-1650v4 @ 4 GHz processor and 40
GB of RAM. In our experiments, we used randomly generated ID vectors of different sizes.
The purpose of the experiments was to determine the communication and the computation
costs of our technique. In addition, we experimented with increased number of users to
examine our system’s scalability . We used different randomly generated sample data in
each experimental step and calculated the average results from these various runs.

5.5.1 Communication Overhead

Our technique is fairly straightforward, that is, depending on the chosen ID size (n), the
encryption key at either side (CSPK for the cloud service provider or PKi for the participant)
is represented by two matrices of size n∗n. Considering that integer data types are stored in
4 Bytes in Python, consequently the size would eventually be 8∗n∗n bytes. Additionally,
given that we used asymmetric pairing curve (BN256) cryptographic library where the size
of a group element is 32 Bytes, consequently, the size of each encrypted vector (index or
trapdoor) is (1+2*n)× 32 Bytes. Therefore, since we experimented with different ID sizes,
the communication overhead will vary accordingly, (e.g: the key would reach up to 131 KB,
when the n was 128). We have to mention that increasing the ID size (and hence the key
size) would make our system more secure, because it would be more difficult to brute-force

67

Figure 5.2: Encryption time results across different ID sizes for index and trapdoor.

Figure 5.3: Matching time results across different ID sizes.

or guess the keys. Though this would be a trade-off in terms of communication overhead

68

and also computation overhead as we will see next.

5.5.2 Computation Overhead

Key Size Effect

In this experiment our goal was to determine the effect of changing the key on the encryption
and matching operations. Therefore, we chose an arbitrary small number of users (2) and an
ID size range between 8 to 128. Figure 5.2 shows the average time reacquired to encrypt
either the index (The CreateIndex Oracle) or the trapdoor (CreateTrapdoor) as well, since
they essentially include the same matrix calculations. As we can see the curve is proportional
to the ID size and might increase even more if we choose a very large ID size. That’s why
we need to choose a reasonable ID size according to our needs. Nevertheless, for an ID size
of 128 , the timing results are within the order of msec. Likewise, the same can be noticed
for the average matching time, which includes the Match Oracle and all of its operations.
As we can see from Figure 5.3, the results were also within acceptable margins.

Consequently, the results point out that all encryption processes were executed in the
matter of msecs and our matching process takes under under 1.2 sec even with ID size
of 128. Nevertheless, these numbers can be expected to be further improved if parallel
computing platforms were utilized to aid with the matrix operations. That said, our findings
show that our scheme is performing well, whilst using a moderately equipped machine,
which suggest that the efficiency will increase when applied in an actual AVCC with more
advanced computational power.

Encryption Scalability

We studied the performance of our system in gradually increasing usage scenarios, increasing
the number of participants every time with a fixed ID size of 64, then with a size of 32.
These two scenarios exemplify two modes of operation, with the first being stronger and
more secure per se, and the latter being more lightweight in terms of overheads as mentioned
before.

That said, We measured the total time required to encrypt the entire database of par-
ticipants indices and plotted the results in Figure 5.4. The Figure shows that our system’s
performance consistently, even with the increasing number of system users. The encryption
times were within reasonable margins, taking around 9.5 seconds to encrypt a database of
1000 indices with the larger encryption key size (where n was 64). Albeit in the other case
(where n=32), the total time was around 4 seconds, while maintaining a reasonable level of
security.

Search Time Efficiency

The same usage scenarios were examined here as well. For testing purposes, we used a
number of authentication request equal to 20% of the entire database of stored indices at that
iteration and reported the average from the results. We studied the average time required for
the authentication server to perform Match Oracle between the authentication request and

69

Figure 5.4: Indices encryption time results with different numbers of users for n = 64 & n = 32.

Figure 5.5: Search time results with different numbers of users for n = 64 & n = 32.

all the stored indices. If a match was found (juding by the inner product results as mentioned

70

Table 5.1: Security & Privacy Attacks On AVCC Applications.

Ref.
No.

Threat Proposed Method Critique

[176] Compromising
user privacy

CP-ABE Entails heavy computations
and communication overhead,
especially during the start up
and key distribution phase.

[177] Compromising
user privacy and
authentication

Hierarchical ABE System is exposed to too many
parties, and there are many pri-
vacy concerns. Additionally,
having to deal with the compli-
cated system of attribute dis-
tributions.

[178] Attacks on user
authentication

Biometric and ECC-
assisted authentication

ECC involves heavy computa-
tions and therefore consumes
a lot of power.

[179] Attacks on user
authentication

Single-server 3-factor
AKA protocol and the
non-interactive identity-
based key establishment
protocol

The centralized server be-
comes a single point of failure,
also there is more communica-
tion overhead.

before,then the participant is validated and the search stops, otherwise they will be denied
access. As shown before in Figure 5.3, these operations were completed in the matter of
a second give or take some msec; therefore, the average time of search is in the order of
seconds as shown in Figure 5.5, albeit with our moderate server. As expected, we notice
that the results grow proportionally with database size of stored indices. The figure shows
that the case when (n=32) is more suitable for application in real-time scenarios because the
time required to search through a thousand user was around one minute.

In summary, our finding demonstrated that the proposed scheme is efficiently scal-
able and befitting for application in AVCC systems. Moreover, adopting parallel search
techniques using multiple servers could further enhance the system’s time performance.

5.6 Related Work

Although AVCC is a fairly new paradigm, it’s based on the VCC and VANET technologies.
Therefore, it inherited their problems and security concerns. Such as DoS, jamming,
hijacking authentication, racketeering, copyright infringements, stealing data, sabotage, and
information leakage via side-channels and reverse engineering [14]. Fortunately, some of the
approaches to mitigate these issue seem relevant here as well, thus they can be applicable.

In [176] the authors propose an algorithm to ensure VCC security and privacy. They
use Pseudo-ID instead of vehicles’ real ID to provide conductors’ privacy, Identifier-Based

71

Signature mechanism is used to guarantee vehicles’ authentication, and Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) algorithm is used for key distribution. They claim that
their liGhtweight secURe AutheNticaTion and keY distribution scheme for vehicular cloud
computing (GUARANTY) ensures a secure keys distribution to minimize the encryption and
decryption computation cost. In their scheme, vehicles use a symmetrical cryptography in
their communication. But in our opinion their system does entail some heavy computations
and communication overheads, specially during the start up and key distribution phase.

In [177] the authors propose SmartVeh, as a secure and efficient message access
control and authentication scheme in VCC. It uses a hierarchical, attribute-based encryption
technique to achieve fine-grained and flexible message sharing, which ensures that vehicles
whose persistent or dynamic attributes satisfy the access policies can access the broadcast
message with equipped on-board units (OBUs). Additionally, Message authentication is
enforced by integrating an attribute-based signature, which achieves message authentication
and maintains the anonymity of the vehicles. In order to reduce the computations of the
OBUs in the vehicles, they outsource the heavy computations of encryption, decryption
and signing to a cloud server and road-side units. Nevertheless, we fear that their system
is exposed to too many parties, and there are many privacy concerns. Additionally, having
to deal with the complicated system of attribute distributions comes with computational
overhead and communication cost. Relying on a cloud server for doing these computations
is not always practical, and may present a new attack surface.

The authors in [178] propose a biometric and elliptic curve cryptography (ECC)-assisted
authentication framework for VCC. They claim that their presented framework obtains most
of security features and attributes for secure communication in the presence of active and
passive attackers. Further, They provide formal security model and its proof, which is
based on random oracle model. Also, they compare the performance of their protocol with
similar frameworks in the same environment in terms of communication and computation
overheads.

In [179] the researchers present an integrated Authentication and Key Agreement (AKA)
framework for vehicular clouds. They integrated the single-server 3-factor AKA protocol and
the non-interactive identity-based key establishment protocol, and evaluated its performance
based on a simulated experimental platform. The authors in [180] discussed the construction
of the authenticated session key agreement protocol for vehicular cloud. They claimed
that their proposed framework also maintains the anonymity of participating vehicles. In
Table 5.1 we briefly discuss and comment on the ideas mentioned in this section, and our
critique of these techniques in comparison to our proposed scheme.

5.7 Summary

AVCC is a new technology and still under investigation. There are some security issues
and privacy concerns to be addressed specially when dealing with AVs. More impor-
tantly, there is a need to securely authenticate parties trying to access these platforms in
a privacy-preserving manner. In this chapter, we proposed a security scheme to protect
AVCC participants and users against a multitude of cyber-attacks. We considered situations
where attackers are honest-but-curious, whether they are attacking from the inside or eaves-

72

dropping from the outside. Our authentication scheme utilizes the efficiency of function
encryption technique which provides protection against known-cihpertext attack models.
The experiments demonstrate that our technique has low overhead in terms of communi-
cation and computations and efficiently scalable, which makes suitable and applicable for
AVCC platforms.

73

Chapter 6

PRIVACY-PRESERVING BIOMETRIC-BASED AUTHENTICATION
SCHEME FOR ELECTRIC VEHICLES CHARGING SYSTEM

6.1 Introduction

Cyber-attacks, privacy leaks, and other security threats are increasingly making national
headlines each passing day. These threats are ever-evolving, posing real concerns regarding
most emerging smart systems’ safety, reliability, and operability. As the popularity of
electric vehicles (EVs) increases, the demand for EV charging stations increases. Thus,
implementing a secure and trustworthy authentication system is an eventuality for these
stations to reduce the misuse of the charging stations and increase their spread. This
work leverages human biometrics in terms of iris recognition along with a lightweight yet
efficient encryption mechanism to provide a privacy-preserving robust authentication scheme.
Biometric qualities are used to properly verify a person’s identity based on physiological
(finger, iris, hand, face) and behavioral (gait, signature, voice) characteristics. The iris
recognition system is the most reliable and popular biometric technology.

In particular, iris recognition requires less computational intensive power than face
recognition software. As well as has a better false accept rate than fingerprint recognition
systems, and the left and right eye textures are unique from each other and will not match
[181]. Many iris databases exist in the literature, which we have plenty of them to choose
from, which were studied in [182].

That said, recent research shows that the integrity of iris data can be negatively impacted
by new cyber-attacks like spoofing and manipulation attacks that aim to compromise and/or
alter iris information. For example, an anti-spoofing security mechanism is used to detect
these attacks by measuring the frequency of the valley and different ridge parameters.
However, such a technique is not practical for real-time applications like iris recognition
authentication due to its design complexity and computational overhead. In addition, storing
sensitive biometric data becomes a significant issue, and great care is needed when keeping
this type of information because it uniquely identifies a person. Companies have to be wary
of attackers constantly trying to break into their systems and be diligent in keeping their
systems secure. A simple trick to secure the Iris biometric data is to scramble or reorganize
blocks of pixels in a captured iris image in a way only the company knows [183].

Our scheme’s main objective is to defend against multiple types of new cyber-attacks
such as spoofing, the man in the middle, and fraudulent and non-authorized access attempts.
These types of attacks can be solved using numerous techniques that enhance and secure
biometric data used in the EV charging station authentication system. A lightweight
encryption algorithm, k-Nearest Neighbor (KNN) encryption, is implemented to secure the
iris data at the charging station and provide a searchable encryption technique to use at the

74

server to verify the authenticity of the users. This design was created to be non-intrusive,
have a low cost, produce high-performance results, and maintain low latency.

In this chapter, we develop a symmetric-key searchable encryption scheme for multi-data-
owner and multi-user settings suitable for the EVs charging system authentication, where
data (or iris images) are uploaded from multiple owners (charging companies), and multiple
users (charging stations) search the data. The user who registers with any charging company
can charge his/her EV from any charging station. We cover the cases where the user cannot
find the charging stations under the control of his/her charging company. Using existing
searchable encryption schemes (designed for single-data-owner and multi-user settings)
for the charging system will require that each charging station has its own set of keys and
encrypts each iris data vector using the keys from each of the charging companies. As a
result, there are many calculation and communication overheads involved, and managing
the keys becomes challenging.

Our authentication scheme enables each charging company and station to use a single
key and encrypt the iris data vectors just once while allowing the server to match the en-
crypted vectors. Additionally, a limitation of existing symmetric-key searchable encryption
techniques [16–18] is that anyone who receives the encrypted vectors, for example, by over-
hearing charging company and charging station communications, can compute the similarity
score and deduce side information. Our scheme efficiently solves this challenge, which
requires the cloud server to search over encrypted data using its secret key. Additionally,
our system has a low overhead. Therefore, it will allow for a fast response such that user
identification and verification are made quickly and efficiently with minimum wait time for
the user.

The remaining sections of this chapter are organized as follows. In Section 6.2, we
illustrate the system models and our intended design goals. Also, Section 6.3 demonstrates
the proposed scheme. Then, in Section 6.4, we analyze the privacy aspects of our scheme.
Additionally, we present the experimental results and performance evaluation in Section 6.5.
We discuss some of the related literature in Section 6.6. Finally, we summarize the chapter
in Section 6.7.

6.2 System Models

6.2.1 Network Model

As shown in Fig. 6.1, the considered network model consists of four main entities: charging
companies (CCs), charging stations (CSs), cloud server, and an offline trusted authority
(TA). The TA should disseminate a unique secret key to the cloud server, each CC, and each
CS. Charging companies encrypt their users’ iris data and upload the encrypted data (called
indices) to the cloud server to use it in the authentication process. The CS should create
an encrypted authentication query (called trapdoor) with the user’s iris data, who wants
to charge his/her EV and send the encrypted query to the server to authenticate the user.
The cloud server should use the encrypted authentication query to look up the indices by
computing a similarity score between them and then return an authentication result for usage
at the CS. The server doesn’t have to know any sensitive information about the queried

75

Figure 6.1: The considered network model.

users.

6.2.2 Threat Model

External eavesdroppers and internal attackers, such as charging companies, charging stations,
and the cloud server, are all possible. In our scheme, attackers are considered "honest-but-
curious," which means they carry out the proposed scheme honestly and do not intend
to disrupt the scheme’s correct operation. They are, nevertheless, interested in sensitive
information such as encrypted indices or authentication queries. We consider the Known-
Ciphertext attack model in particular. The attacker in this model has access to only searchable
encrypted iris indices and authentication queries supplied by charging companies and
charging stations, respectively.

6.3 Proposed Scheme

In this section, we explain in details the proposed scheme. Table 6.1 gives the main notations
used in the chapter.

6.3.1 System Initialization

First, the trusted authority runs the following set of oracles sequentially to initialize the
system:

76

1) SystemSetup
(
1k)→ TAK. The system setup algorithm takes the security parameter

1k as an input and outputs the TA secret key (TAK), where, TAK= {F,L1,L2,H1, ...,H8},
F is a random binary vector of length k, and a set of random invertible matrices ∈Rk×k. k is
the size of the iris data vector.

2) KeyGenCloud (TAK)→ CK. The TA creates the cloud server secret key (CK),
where CK= B, B is an invertible random matrix ∈ Rk×k.

3) KeyGenChargingCompany(CCi,TAK)→ CCKi. For each charging company in the
system with identity CCi, the TA creates a charging company secret key (CCKi) as

CCKi = {F, BH−1
1 Wi, BH−1

2 Xi, BH−1
3 Wi, BH−1

4 Xi,

BH−1
5 Yi, BH−1

6 Zi, BH−1
7 Yi, BH−1

8 Zi}
(6.1)

where {Wi,Xi,Yi,Zi} are random matrices ∈Rk×k such that Wi+Xi = L−1
1 , and Yi+Zi =

L−1
2 .

4) KeyGenChargingStation(CSx,TAK)→ CSKx. For charging station with ID (CSx),
the TA creates a charging station secret key (CSK) as follows.

CSKx = {F, MxH1, MxH2, NxH3, NxH4,

OxH5, OxH6, PxH7, PxH8}
(6.2)

where {Mx,Nx,Ox,Px} are random matrices ∈ Rk×k such that Mx +Nx = L1, and Ox +
Px = L2

6.3.2 User Registration

When a new user wants to use this system, the user will first register an account with one of
the CCs. The CC will take an iris image of its customers. For each customer, the CC will
use the KNN encryption technique to encrypt the customer’s iris data by using its secret key
and uploading the encrypted data to the cloud server. The encrypted data includes n indices
of encrypted data where n is the total number of customers. Every CC will do the same with
its customers and upload the encrypted iris data of its customers to the cloud server to be
used in the authentication process.

6.3.3 Encrypting Iris Data

Each charging company (CCi) builds a set of indices Ii =
{

Ii,1, Ii,2, . . . , Ii,n
}

extracted from
the company customers’ iris images. The index is created by invoking oracle CreateIndex()
.

CreateIndex
(
Ii, j,CCKi

)
→ EIi, j . For a customer iris data vector Ii, j, CCi uses the secret

F to split Ii, j into two column vectors I′i j and I′′i j of the same size, as follows. If the bth bit of
F is zero, I′i j(b) and I′′i j(b) are set similar to Ii j(b), while if it is one, I′i j(b) and I′′i j(b) are set
to two random numbers such that their summation is equal to Ii j(b). Finally, CCi uses its
secret key CCKi to compute the iris data index EIi, j as

EIi, j =
[
BH−1

1 WiI′i j;BH−1
2 XiI′i j;BH−1

3 WiI′i j;BH−1
4 XiI′i j;

BH−1
5 YiI′′i j;BH−1

6 ZiI′′i j;BH−1
7 YiI′′i j;BH−1

8 ZiI′′i j

] (6.3)

77

Table 6.1: Main Notations We Used in Our Technique.

Notation Description

TAK Trusted authority secret key

F Secret binary vector

{L1,L2,H1, ...,H8} ∈ Rk×k Server secret matrices

CK Cloud server secret key

CCi Charging Company i

CCKi CCi’s secret key

{Wi,Xi,Yi,Zi} ∈ Rk×k Random matrices for CCi

CSx Charging Station x

CSKx CSx’s secret key

{Mx,Nx,Ox,Px} ∈ Rk×k Random matrices for CSx

where EIi, j is a column vector of size 8k. Then submit it to the cloud server.

6.3.4 Submit Authentication Query

Each charging station (CSx) will use its corresponding secret key CSKx delivered from the
TA to encrypt an authentication query for each user wants to charge, in order to ensure if
this user is authenticated or if the request is from a malicious entity without disclosure of
user’s information to the CC or giving the server a chance to know any sensitive information
about the user. First, the CS will take a picture of the user’s face by using an attached iris
camera and generate an image matrix (Q). Then the CS will perform the required processing
to extract the iris data features after removing the eyelashes and other such noise and finally
generating the user’s iris data vector (T).

Each CSx generates encrypted authentication query by invoking oracle CreateTrapdoor().
CreateTrapdoor (T,CSKx)→CT . Given the user’s iris data vector T , CSx uses F to

split T to two random row vectors t ′ and t ′′ of the same size. The splitting method is
described as follows. If the bth bit of F is one, t ′(b) and t ′′(b) are set similar to t(b), while if
it is zero, t ′(b) and t ′′(b) are set to two random numbers such that their summation is equal
to t(b). Then, CSx uses his secret key CSKx to create the trapdoor CT

CT =
[
t ′MxH1, t ′MxH2, t ′NxH3, t ′NxH4,

t ′′OxH5, t ′′OxH6, t ′′PxH7, t ′′PxH8

] (6.4)

where CT is a row vector of size 8k. Then submit it to the cloud server.

6.3.5 Matching Iris Encrypted Data

Finally, the cloud server will begin searching over encrypted iris data by calculating the dot
product operation between the trapdoor came from the CS with all the indices inside its

78

database in oracle Match. The cloud server will be using KNN encryption scheme in order
to search the data without ever decrypting the data which adds an extra layer of security.
The cloud server will then use the outcome of the search to validate the charging station’s
authentication query.

Match
(
CK,EIi, j ,CT

)
→ AuthenticationResult. In this oracle, the cloud server should

first use its secret B−1 to remove B from EIi, j to obtain ĒIi, j , where

ĒIi, j =
[
H−1

1 WiI′i j; H−1
2 XiI′i j; H−1

3 WiI′i j; H−1
4 XiI′i j;

H−1
5 YiI′′i j; H−1

6 ZiI′′i j; H−1
7 YiI′′i j; H−1

8 ZiI′′i j

] (6.5)

Then, it can simply compute the similarity score between the trapdoor CT and the index
ĒIi, j by dot product operation (CT ⊙ ĒIi, j), where ⊙ denotes dot product. If the query coming
from the CS matches with one of the stored indices inside the cloud server, the server will
send a positive confirmation to the CS in order to indicate that the user is a legitimate user,
otherwise, the server will send a negative confirmation to deny the access for this malicious
user.

Theorem 6.3.1. Using our scheme, the cloud server can measure the similarity score of the
indices and the trapdoors. This can be done by computing CT ⊙EIi, j , as follows.

CT ⊙ ĒIi, j = t ′MxWiI′i j + t ′MxXiI′i j + t ′NxWiI′i j+

t ′NxXiI′i j + t ′′OxYiI′′i j + t ′′OxZiI′′i j+

t ′′PxYiI′′i j + t ′′PxZiI′′i j

= t ′(Mx +Nx).(Wi +Xi)I′i j+

t ′′(Ox +Px).(Yi +Zi)I′′i j

= t ′L1L−1
1 I′i j + t ′′L2L−1

2 I′′i j

= T ⊙ Ii, j

6.4 Privacy Analysis

In this section, we explain how the proposed scheme addresses each item in our design
goals.

1. Authentication Queries Unlinkability. In the multi-data-owner approach presented
in [184], named SRMSM, transmitting the same trapdoor several times results in
the identical ciphertext that breaches the trapdoor unlinkability requirement. On the
contrary, our scheme ensures that transmitting the same trapdoor many times results
in different ciphertexts. Another advantage of the proposed scheme over SRMSM
is that even if an eavesdropper intercepts the server’s messages, he will be unable to
determine the similarity scores, as the server’s secret key CK is required.

79

2. Index and Authentication Query Confidentiality. The server should be able to search
for users’ authentication without learning any sensitive information. Index and authen-
tication queries confidentiality is achieved by encrypting the data from the CSs and
CCs. Which means that the data is never uploaded to the server in plaintext format.
The cloud server also searches exclusively over encrypted data which means that the
data is never decrypted on the server which preserves privacy by virtue that the raw
data never appear on the server.

3. Authentication Query search over Encrypted Iris data from Several Charging Compa-
nies. The proposed scheme can use the encrypted authentication query from a CS to
search over encrypted iris data stored by different CCs. In our scheme, the CSs belong
to different charging companies, do not need to share keys with other companies to
search over their encrypted iris data. The CS can use the same key from the TA to
search all the iris data from different CCs.

4. Scalability and Efficiency. The proposed scheme can quickly search through a large
number of indices coming from multiple CCs to reply to CS’s query as it does only a
dot product operation. Additionally, the communication and computational overhead
is reasonable compared to the exciting schemes.

6.5 Experiments and Performance Evaluation

6.5.1 Experiment Setup and Evaluation Metrics

To evaluate the proposed scheme, we implemented it using Python and a server with an
Intel® Core™ i5-1035G1 CPU @ 1.19 GHz and 12 GB of RAM running a Windows
10 Home Edition operating system. In our experiments, we used the Indian Institute of
Technology Delhi (IITD) iris image dataset [185], of total size of 2240 files which is publicly
available for download from the IITD website [186]. Each file is a grey scale image of
a human iris. We pre-processed the dataset using scikit-learn Python library [187] and
extracted the features vector as a unit vector. The dot product of a unit vector with exactly
itself will produce 1 as an output [188], which we will use in our matching step at the cloud
server.

The communication and the computation overhead of the proposed scheme were studied.
Also, we thoroughly analyzed search time and compared our results with the work of
Rajasekar et al [189]. Finally, we show the scalability of our system with increased number
of users. All the experiments were run different iris data sample sizes and average results
are reported.

6.5.2 Experiment Results

Communication Overhead

The main advantage of our technique is its simplicity. We tried to make it as lightweight
as possible to suit the needs of resource-limited charging stations. That said, original iris
data files had a resolution of 320 *240 pixels, meaning that they had a size around 230 KB.

80

Table 6.2: Communication Overhead.

Original Iris Image Size 320∗240∗3
Original Iris Image Size in Bytes 230 KB

Pre-processed Iris Image Size 300∗1
Encrypted Iris Image Size 2400∗1

Encrypted Iris Image Size in Bytes 19 KB

Table 6.3: Computation Overhead.

Operation Average Time

TCCKeyGen 11.8 msec
TCSKeyGen 10.9 msec

TEnc 1.1 msec
Tdot 3.9 µsec

Therefore, these original iris images were compressed, normalized, and flattened during the
pre-processing phase to get an index of size 300*1. After the encryption process at either
side (CC or CS) using either the CCKi or the CSKx it will grow up to an index of 2400 * 1,
of Python’s f loat64 data type, which is represented in 8 bytes. This will finally amount to
19 KB only being communicated for each index or authentication query. These findings are
shown in Table 6.2.

Computation Overhead

Table 6.3 gives the times required for the cryptographic operations used in our scheme.
Namely they are, TCCKeyGen, TCSKeyGen, TEnc and TDot . Which respectively denote the times
required for key generation for the charging company CCi and the charging station CSx, the
time required for trapdoor encryption, and the time required to get the dot product of iris
indices and trapdoors. Our findings show that all-important processes were in the order of
msecs and the core of our matching process (the dot product operation) was in the order
of µsec. This proves that our technique is lightweight even with a moderate computing
device, making it quite efficient and practical when used with more powerful cloud servers,
handling numerous authentication requests simultaneously.

Encryption Scalability

We studied the performance of our system in gradually increasing usage scenarios. We
poked into the IITD iris dataset with different subsets with different sample sizes, increasing
the sample size by 250 in each step. We measured the time required to encrypt the entirety
of the subset and plotted the results in Figure 6.2. The Figure shows that our system’s
performance scales linearly with the size of the dataset, corresponding to the increasing
number of system users. The encryption times were within reasonable margins, which is a
practically acceptable cost for privacy.

81

250 500 750 1000 1250 1500 1750 2000 2250
Iris Data Sample Size

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

To
ta

l E
nc

ry
pt

io
n

Ti
m

e
in

 S
ec

on
ds

Figure 6.2: Encryption times across different iris sample sizes.

250 500 750 1000 1250 1500 1750 2000 2250
Iris Data Sample Size

0

10

20

30

40

50

60

Av
er

ag
e

Se
ar

ch
 T

im
e

in
 S

ec
on

ds

Our Method
Rajasekar et al.

1500 1750 2000
0.009623
0.010042
0.010460
0.010879
0.011298

Figure 6.3: Comparing our average search times across different iris sample sizes with the work of
Rajasekar et al.

Search Time Analysis

For each iteration, we tested a number of queries equal to half of the entire sample subset
size at that particular step and averaged over the resulting times. The results show the
average time required for the server to search a subset of encrypted iris data with the query
by performing a dot product operation between the trapdoor and each stored index. If an

82

index was found to be similar, then the user is indeed authenticated, and this concludes the
search process. As we said before in Table 6.3, this dot product operation was in the order
of µsec; consequently, these average search times are also in the order of msec, again with
our generic computer, scaling linearly with the number of searched indices (iris data sample
size). In Figure 6.3, we compared our average search time with the result of Rajasekar et
[189]. In their paper, Rajasekar et al. claim that their proposed technique with fuzzy logic
achieved a recognition time (maps to our search time) of 3 sec with a sample size of 100 iris
data. For that same sample size, we achieved an average of less than 2 msecs, which is 103

smaller in order of magnitude. And as with the size of the searchable data-set grows, the
search time is still in the order of msecs, as shown in the zoomed subfigure in Figure 6.3.
This proves that our system is more efficient and lightweight than this existing technique.

In summary, our experimental results proved that our proposed scheme is relatively
lightweight and suitable for application in EV charging systems with mathematically proved
privacy and unlinkability goals.

6.6 Related Work

The work of [190] surveyed some of the most recent biometric authentication techniques
and how they fair against each other. Human iris biometrics is considered one of the most
reliable methods to distinguish users as it is unique, requires no contact, perfectly stable.
Moreover, it doesn’t damage over time like fingerprints which can easily become damaged.
Also, it cannot be forgotten or easily taken from the person like id cards, badges, etc. [191].

Iris recognition is being directly used in the Qualcomm Snapdragon 835 SoCs, enabling
all sorts of new applications with iris recognition such as Face Unlock on Android and Apple
phones. For example, the authors in [192] discussed system requirements for constraint-
free iris image acquisition in smartphones for iris authentication purposes. Nonetheless,
iris-based authentication schemes can be used on many different types of security systems
such as mobile phones, banking systems, border control, car systems, etc. [193, 194].

In most systems, such as the one proposed in this paper, scanned iris biometric data of
individuals are compared to pre-stored iris biometric data that is located in the cloud [195].
The authors in [196] studied the problem of iris code storage in vast databases of iris
templates. They used a non-homogenous K-d tree structure to improve retrieval accuracy
and efficiency.

In spite of that, biometric authentication may be susceptible to spoofing attacks. Spoofing
is a process used to deceive biometric authentication systems. There are several known
ways on how to spoof biometric systems, [197, 198]. One way to detect spoofing biometrics
through printed images, textured contact lenses, and synthetic creations of iris images is
using a detection method called DESIST [199]. DESIST is composed of a multitude of
algorithms that are used to detect specific types of spoofing.

The authors in [189] combined iris recognition with the use of cryptography to combat
identity fraud attacks. They claimed to propose a computationally lightweight and accurate
technique using hyper-elliptic curve cryptography (HECC). They used a fuzzy logic algo-
rithm to enhance recognition accuracy and speed. Nevertheless, we showed that our scheme
outperforms their technique in terms of recognition time and computational overhead.

83

6.7 Summary

Electric vehicles are gaining popularity every day. Consequently, electric charging systems
are becoming more and more ubiquitous. Hence, there is a need to access these stations in
a secure and trusted manner. This chapter presented an authentication scheme using iris
recognition. The proposed technique utilizes the efficiency of KNN encryption techniques
which provides confidentially for users even against honest-but-curious service providers.
Moreover, the experimental results on the IITD iris dataset showed that our system has
low communication cost and reasonable computational overhead compared to the existing
schemes.

84

Chapter 7

CONCLUSION AND FUTURE WORK

AI is gradually changing the technological services we use in our everyday life. Among
which is smart transportation, coined AVs. These new machines are smart, and they know a
lot of information about their users. They utilize this information to provide new attractive
offerings and protect passengers from imminent dangers among other things. But the
problem is that the collection of all that data presented new security and privacy attack
surfaces that need to be appropriately handled.

In this work, we studied these security and privacy issues and their mitigation strategies
in a layer-based model. Then, we focused on security and privacy issues on Autonomous
Vehicles Cloud Computing (AVCC) platforms. We proposed a compiler-based software
protection technique specifically tailored for the AVCC with two delivery models. Then,
we presented an encrypted authentication system to handle cloud usage and participation
requests form clients and AVs respectively. Then, we presented a more light weight authen-
tication technique more suitable for vehicle charging.

In summary, we discussed open research directions, showed some gaps in existing
literature and paved the way for future work. Hence, we plan to further improve the security
and privacy of the AVCC platform, perhaps focus on resource sharing and aggregation. We
also plan to evaluate our ideas in more realistic environments and against a wider range of
attack scenarios.

85

BIBLIOGRAPHY

[1] Center of Disease Control (CDC). Road Traffic Injuries and Deaths. Accessed Mar. 30, 2022.
[Online]. Available: https://www.cdc.gov/injury/features/global-road-safety/index.html

[2] J. Janai, F. Güney, A. Behl, A. Geiger et al., “Computer vision for autonomous vehicles:
Problems, datasets and state of the art,” Foundations and Trends® in Computer Graphics and
Vision, vol. 12, no. 1–3, pp. 1–308, 2020.

[3] M. Zangui, Y. Yin, and S. Lawphongpanich, “Sensor location problems in path-differentiated
congestion pricing,” Transportation Research Part C: Emerging Technologies, vol. 55, pp.
217–230, 2015.

[4] S. B. Raut and L. Malik, “Survey on vehicle collision prediction in vanet,” in 2014 IEEE
International Conference on Computational Intelligence and Computing Research. IEEE,
2014, pp. 1–5.

[5] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From intelligent grid to
autonomous cars and vehicular clouds,” in 2014 IEEE world forum on internet of things
(WF-IoT). IEEE, 2014, pp. 241–246.

[6] H. Zhou, W. Xu, J. Chen, and W. Wang, “Evolutionary v2x technologies toward the internet of
vehicles: challenges and opportunities,” Proceedings of the IEEE, vol. 108, no. 2, pp. 308–323,
2020.

[7] D. J. Glancy, “Privacy in autonomous vehicles,” Santa Clara L. Rev., vol. 52, p. 1171, 2012.

[8] S. Berghaus and A. Back, “Requirements elicitation and utilization scenarios for in-car use of
wearable devices,” in 2015 48th Hawaii International Conference on System Sciences. IEEE,
2015, pp. 1028–1037.

[9] S. Hess, A. Meschtscherjakov, T. Ronneberger, and M. Trapp, “Integrating mobile devices
into the car ecosystem: tablets and smartphones as vital part of the car,” in Proceedings of
the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular
Applications, 2011, pp. 210–211.

[10] V. L. Thing and J. Wu, “Autonomous vehicle security: A taxonomy of attacks and defences,”
in 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). IEEE, 2016, pp. 164–170.

[11] S. Karnouskos and F. Kerschbaum, “Privacy and integrity considerations in hyperconnected
autonomous vehicles,” Proceedings of the IEEE, vol. 106, no. 1, pp. 160–170, 2017.

[12] R. W. Coutinho and A. Boukerche, “Guidelines for the design of vehicular cloud infrastructures
for connected autonomous vehicles,” IEEE Wireless Communications, vol. 26, no. 4, pp. 6–11,
2019.

86

https://www.cdc.gov/injury/features/global-road-safety/index.html

[13] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review on safety failures, security
attacks, and available countermeasures for autonomous vehicles,” Ad Hoc Networks, vol. 90,
p. 101823, 2019.

[14] C. P. García, S. ul Hassan, N. Tuveri, I. Gridin, A. C. Aldaya, and B. B. Brumley, “Certified
side channels,” in 29th {USENIX} Security Symposium ({USENIX} Security 20), 2020, pp.
2021–2038.

[15] C. Gentry and D. Boneh, A fully homomorphic encryption scheme. Stanford university
Stanford, 2009, vol. 20, no. 9.

[16] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-Preserving Multi-keyword Ranked
Search over Encrypted Cloud Data,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 1, pp. 222–233, Jan 2014.

[17] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, “Secure kNN Computation
on Encrypted Databases,” Proceddings of the 35th SIGMOD International Conference on
Management of Data, pp. 139–152, 2009.

[18] C. Yang, W. Zhang, J. Xu, J. Xu, and N. Yu, “A fast privacy-preserving multi-keyword
search scheme on cloud data,” Proceedings of the 2012 International Conference on Cloud
Computing and Service Computing, CSC 2012, pp. 104–110, 2012.

[19] B. A. Forouzan, TCP/IP protocol suite. McGraw-Hill, Inc., 2002.

[20] H. Zimmermann, “Osi reference model-the iso model of architecture for open systems inter-
connection,” IEEE Transactions on communications, vol. 28, no. 4, pp. 425–432, 1980.

[21] J. Joy and M. Gerla, “Internet of vehicles and autonomous connected car-privacy and security
issues,” in 2017 26th International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2017, pp. 1–9.

[22] L. Adacher, A. Gemma, and G. Oliva, “Decentralized spatial decomposition for traffic signal
synchronization,” Transportation Research Procedia, vol. 3, pp. 992–1001, 2014.

[23] C. Wuthishuwong and A. Traechtler, “Coordination of multiple autonomous intersections
by using local neighborhood information,” in 2013 international conference on connected
vehicles and expo (ICCVE). IEEE, 2013, pp. 48–53.

[24] P. Gora, “Simulation-based traffic management system for connected and autonomous vehi-
cles,” in Road Vehicle Automation 4. Springer, 2018, pp. 257–266.

[25] P. Wagner, “Traffic control and traffic management in a transportation system with autonomous
vehicles,” in Autonomous Driving. Springer, 2016, pp. 301–316.

[26] I. Rubin, A. Baiocchi, Y. Sunyoto, and I. Turcanu, “Traffic management and networking for
autonomous vehicular highway systems,” Ad Hoc Networks, vol. 83, pp. 125–148, 2019.

[27] S. A. Fayazi and A. Vahidi, “Vehicle-in-the-loop (vil) verification of a smart city intersection
control scheme for autonomous vehicles,” in 2017 IEEE Conference on Control Technology
and Applications (CCTA). IEEE, 2017, pp. 1575–1580.

87

[28] F. Ashtiani, S. A. Fayazi, and A. Vahidi, “Multi-intersection traffic management for au-
tonomous vehicles via distributed mixed integer linear programming,” in 2018 Annual Ameri-
can Control Conference (ACC). IEEE, 2018, pp. 6341–6346.

[29] S. El Hamdani and N. Benamar, “Autonomous traffic management: Open issues and new
directions,” in 2018 International Conference on Selected Topics in Mobile and Wireless
Networking (MoWNeT). IEEE, 2018, pp. 1–5.

[30] S. Chuprov, I. Viksnin, I. Kim, L. Reznikand, and I. Khokhlov, “Reputation and trust models
with data quality metrics for improving autonomous vehicles traffic security and safety,” in
2020 IEEE Systems Security Symposium (SSS). IEEE, 2020, pp. 1–8.

[31] K. Rabieh, M. M. Mahmoud, and M. Younis, “Privacy-preserving route reporting scheme for
traffic management in vanets,” in 2015 IEEE International Conference on Communications
(ICC). IEEE, 2015, pp. 7286–7291.

[32] R. Hussain and H. Oh, “On secure and privacy-aware sybil attack detection in vehicular
communications,” Wireless personal communications, vol. 77, no. 4, pp. 2649–2673, 2014.

[33] R. Reshma, T. Ramesh, and P. Sathishkumar, “Security situational aware intelligent road traffic
monitoring using uavs,” in 2016 international conference on VLSI systems, architectures,
technology and applications (VLSI-SATA). IEEE, 2016, pp. 1–6.

[34] S. Ucar, S. C. Ergen, and O. Ozkasap, “Ieee 802.11 p and visible light hybrid communication
based secure autonomous platoon,” IEEE Transactions on Vehicular Technology, vol. 67, no. 9,
pp. 8667–8681, 2018.

[35] J. Ploeg, E. Semsar-Kazerooni, G. Lijster, N. van de Wouw, and H. Nijmeijer, “Graceful degra-
dation of cooperative adaptive cruise control,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 1, pp. 488–497, 2014.

[36] S. Dadras, R. M. Gerdes, and R. Sharma, “Vehicular platooning in an adversarial environment,”
in Proceedings of the 10th ACM Symposium on Information, Computer and Communications
Security, 2015, pp. 167–178.

[37] B. DeBruhl, S. Weerakkody, B. Sinopoli, and P. Tague, “Is your commute driving you crazy?
a study of misbehavior in vehicular platoons,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, 2015, pp. 1–11.

[38] R. M. Gerdes, C. Winstead, and K. Heaslip, “Cps: an efficiency-motivated attack against
autonomous vehicular transportation,” in Proceedings of the 29th Annual Computer Security
Applications Conference, 2013, pp. 99–108.

[39] D. D. Dunn, Attacker-induced traffic flow instability in a stream of automated vehicles. Utah
State University, 2015.

[40] D. D. Dunn, S. A. Mitchell, I. Sajjad, R. M. Gerdes, R. Sharma, and M. Li, “Regular: Attacker-
induced traffic flow instability in a stream of semi-automated vehicles,” in 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE,
2017, pp. 499–510.

88

[41] W. Jiang, H. Li, S. Liu, X. Luo, and R. Lu, “Poisoning and evasion attacks against deep
learning algorithms in autonomous vehicles,” IEEE transactions on vehicular technology,
vol. 69, no. 4, pp. 4439–4449, 2020.

[42] “A collaborative approach for improving the security of vehicular scenarios: The case of
platooning,” Computer Communications, vol. 122, pp. 59–75, 2018.

[43] F. Gonçalves, B. Ribeiro, V. Hapanchak, S. Barros, O. Gama, P. Araújo, M. J. Nicolau,
B. Dias, J. Macedo, A. Costa et al., “Secure management of autonomous vehicle platooning,”
in Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless
and Mobile Networks, 2018, pp. 15–22.

[44] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, and R. L. Cigno, “Plexe: A platooning
extension for veins,” in 2014 IEEE Vehicular Networking Conference (VNC). IEEE, 2014,
pp. 53–60.

[45] M. Nabil, A. Sherif, M. Mahmoud, A. Alsharif, and M. Abdallah, “Efficient and privacy-
preserving ridesharing organization for transferable and non-transferable services,” IEEE
Transactions on Dependable and Secure Computing, 2019.

[46] N. D. Chan and S. A. Shaheen, “Ridesharing in north america: Past, present, and future,”
Transport reviews, vol. 32, no. 1, pp. 93–112, 2012.

[47] M. Furuhata, M. Dessouky, F. Ordóñez, M.-E. Brunet, X. Wang, and S. Koenig, “Ridesharing:
The state-of-the-art and future directions,” Transportation Research Part B: Methodological,
vol. 57, pp. 28–46, 2013.

[48] H. Xu, F. Ordóñez, and M. Dessouky, “A traffic assignment model for a ridesharing transporta-
tion market,” Journal of Advanced Transportation, vol. 49, no. 7, pp. 793–816, 2015.

[49] E. Deakin, K. T. Frick, and K. M. Shively, “Markets for dynamic ridesharing? case of berkeley,
california,” Transportation Research Record, vol. 2187, no. 1, pp. 131–137, 2010.

[50] T. Canada. (2010) High occupancy vehicle lanes in canada. Accessed Mar. 30,
2022. [Online]. Available: https://tc.canada.ca/en/corporate-services/acts-regulations/
canada-transportation-act-review-report.

[51] C. F. Daganzo and M. J. Cassidy, “Effects of high occupancy vehicle lanes on freeway
congestion,” Transportation Research Part B: Methodological, vol. 42, no. 10, pp. 861–872,
2008.

[52] E. Lutostanski. (2014) Carema offers discounted rates on Toll 183A. Accessed Mar. 30,
2022. [Online]. Available: https://communityimpact.com/austin/transportation/2014/02/17/
carma-offers-discounted-rates-on-toll-183a-2/

[53] A. Sherif, A. Alsharif, J. Moran, and M. Mahmoud, “Privacy-preserving ride sharing organiza-
tion scheme for autonomous vehicles in large cities,” in 2017 IEEE 86th Vehicular Technology
Conference (VTC-Fall). IEEE, 2017, pp. 1–5.

[54] A. Sherif, A. Alsharif, M. Mahmoud, and J. Moran, “Privacy-preserving autonomous cab
service management scheme,” in Proceedings of the 3rd Africa and Middle East Conference
on Software Engineering, 2017, pp. 19–24.

89

https://tc.canada.ca/en/corporate-services/acts-regulations/canada-transportation-act-review-report.
https://tc.canada.ca/en/corporate-services/acts-regulations/canada-transportation-act-review-report.
https://communityimpact.com/austin/transportation/2014/02/17/carma-offers-discounted-rates-on-toll-183a-2/
https://communityimpact.com/austin/transportation/2014/02/17/carma-offers-discounted-rates-on-toll-183a-2/

[55] M. Li, L. Zhu, and X. Lin, “Efficient and privacy-preserving carpooling using blockchain-
assisted vehicular fog computing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4573–
4584, 2018.

[56] L. Zhu, K. Gai, and M. Li, “Blockchain-enabled carpooling services,” in Blockchain Technol-
ogy in Internet of Things. Springer, 2019, pp. 75–91.

[57] M. Baza, N. Lasla, M. Mahmoud, G. Srivastava, and M. Abdallah, “B-ride: Ride sharing with
privacy-preservation, trust and fair payment atop public blockchain,” IEEE Transactions on
Network Science and Engineering, 2019.

[58] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An authenticated data
feed for smart contracts,” in Proceedings of the 2016 aCM sIGSAC conference on computer
and communications security, 2016, pp. 270–282.

[59] L. P. Cox, “Truth in crowdsourcing,” IEEE Security & Privacy, vol. 9, no. 5, pp. 74–76, 2011.

[60] N. Cheaz, A. Diaz, M. E. Head, and J. H. Kerr, “Delayed parking optimization of autonomous
vehicles,” Apr. 21 2020, uS Patent 10,625,733.

[61] S. J. Lauffer, J. P. Joyce, D. A. Gabor, S. Abbas, and R. Steven, “Electric parking brake for
autonomous vehicles,” Feb. 4 2020, uS Patent 10,549,731.

[62] B. Rech, S. Gläser, M. Engel, H.-J. Günther, T. Buburuzan, S. Kleinau, B. Lehmann, and
J. Hartog, “Method for a data processing system for maintaining an operating state of a first
autonomous vehicle and method for a data processing system for managing a plurality of
autonomous vehicles,” Mar. 31 2020, uS Patent 10,607,422.

[63] J. Ni, X. Lin, and X. Shen, “Toward privacy-preserving valet parking in autonomous driving
era,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2893–2905, 2019.

[64] M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-taa,” in International conference
on security and cryptography for networks. Springer, 2006, pp. 111–125.

[65] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo filter: Practically
better than bloom,” in Proceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, 2014, pp. 75–88.

[66] C. Huang, R. Lu, X. Lin, and X. Shen, “Secure automated valet parking: A privacy-preserving
reservation scheme for autonomous vehicles,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 11, pp. 11 169–11 180, 2018.

[67] J. Chinrungrueng, U. Sununtachaikul, and S. Triamlumlerd, “A vehicular monitoring system
with power-efficient wireless sensor networks,” in 2006 6th International Conference on ITS
Telecommunications. IEEE, 2006, pp. 951–954.

[68] P. Colijn, L. A. Feenstra, J. S. Herbach, and K. Patterson, “Fleet management for autonomous
vehicles,” Jun. 25 2020, uS Patent App. 16/719,302.

[69] W. Xu, C. Yan, W. Jia, X. Ji, and J. Liu, “Analyzing and enhancing the security of ultrasonic
sensors for autonomous vehicles,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 5015–
5029, 2018.

90

[70] J. Joy and M. Gerla, “Internet of vehicles and autonomous connected car-privacy and security
issues,” in 2017 26th International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2017, pp. 1–9.

[71] C.-M. Chen, B. Xiang, Y. Liu, and K.-H. Wang, “A secure authentication protocol for internet
of vehicles,” Ieee Access, vol. 7, pp. 12 047–12 057, 2019.

[72] B. Ying and A. Nayak, “Anonymous and lightweight authentication for secure vehicular
networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10 626–10 636,
2017.

[73] M. Wazid, P. Bagga, A. K. Das, S. Shetty, J. J. Rodrigues, and Y. H. Park, “Akm-iov: Authen-
ticated key management protocol in fog computing-based internet of vehicles deployment,”
IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8804–8817, 2019.

[74] J. Kang, R. Yu, X. Huang, and Y. Zhang, “Privacy-preserved pseudonym scheme for fog
computing supported internet of vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 8, pp. 2627–2637, 2017.

[75] J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, “Toward secure blockchain-
enabled internet of vehicles: Optimizing consensus management using reputation and contract
theory,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2906–2920, 2019.

[76] M. M. Hossain, R. Hasan, and S. Zawoad, “Trust-iov: A trustworthy forensic investigation
framework for the internet of vehicles (iov).” in ICIOT, 2017, pp. 25–32.

[77] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, “Internet of vehicles: architec-
ture, protocols, and security,” IEEE internet of things Journal, vol. 5, no. 5, pp. 3701–3709,
2017.

[78] C. Bala, W. Schuldzinski, M. Uhlmann, F. Pittroff, J. Lamla, M. Schuhen, M. Askari, S. Schürk-
mann, C. Wiencierz, U. Röttger et al., Beiträge zur Verbraucherforschung Band 9 Der ver-
trauende Verbraucher: Zwischen Regulation und Information. Verbraucherzentrale NRW,
2020, vol. 9.

[79] J. Contreras-Castillo, S. Zeadally, and J. A. G. Ibañez, “Solving vehicular ad hoc network
challenges with big data solutions,” IET Networks, vol. 5, no. 4, pp. 81–84, 2016.

[80] M. H. Eiza and Q. Ni, “Driving with sharks: Rethinking connected vehicles with vehicle
cybersecurity,” IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp. 45–51, 2017.

[81] S. Halder, A. Ghosal, and M. Conti, “Secure ota software updates in connected vehicles: A
survey,” arXiv preprint arXiv:1904.00685, 2019.

[82] S. M. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in an intelligent vehicle
via wireless communication links,” in IEEE Proceedings. Intelligent Vehicles Symposium,
2005. IEEE, 2005, pp. 588–593.

[83] K. Mansour, W. Farag, and M. ElHelw, “Airodiag: A sophisticated tool that diagnoses and
updates vehicles software over air,” in 2012 IEEE International Electric Vehicle Conference.
IEEE, 2012, pp. 1–7.

91

[84] M. Steger, M. Karner, J. Hillebrand, W. Rom, C. Boano, and K. Römer, “Generic framework
enabling secure and efficient automotive wireless sw updates,” in 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2016, pp.
1–8.

[85] K. Mayilsamy, N. Ramachandran, and V. S. Raj, “An integrated approach for data security
in vehicle diagnostics over internet protocol and software update over the air,” Computers &
Electrical Engineering, vol. 71, pp. 578–593, 2018.

[86] A. Dorri, M. Steger, S. S. Kanhere, and R. Jurdak, “Blockchain: A distributed solution
to automotive security and privacy,” IEEE Communications Magazine, vol. 55, no. 12, pp.
119–125, 2017.

[87] T. Zhang, H. Antunes, and S. Aggarwal, “Defending connected vehicles against malware:
Challenges and a solution framework,” IEEE Internet of Things journal, vol. 1, no. 1, pp.
10–21, 2014.

[88] W. Niu, X. Zhang, X. Du, T. Hu, X. Xie, and N. Guizani, “Detecting malware on x86-based
iot devices in autonomous driving,” IEEE Wireless Communications, vol. 26, no. 4, pp. 80–87,
2019.

[89] W. Jiang, H. Li, S. Liu, X. Luo, and R. Lu, “Poisoning and evasion attacks against deep
learning algorithms in autonomous vehicles,” IEEE transactions on vehicular technology,
vol. 69, no. 4, pp. 4439–4449, 2020.

[90] Y. Qian and N. Moayeri, “Design of secure and application-oriented vanets,” in VTC Spring
2008-IEEE Vehicular Technology Conference. IEEE, 2008, pp. 2794–2799.

[91] C. A. Kerrache, C. T. Calafate, J.-C. Cano, N. Lagraa, and P. Manzoni, “Trust management for
vehicular networks: An adversary-oriented overview,” IEEE Access, vol. 4, pp. 9293–9307,
2016.

[92] R. G. Engoulou, M. Bellaïche, S. Pierre, and A. Quintero, “Vanet security surveys,” Computer
Communications, vol. 44, pp. 1–13, 2014.

[93] F. Al-Hawi, C. Y. Yeun, and M. Al-Qutayti, “Security challenges for emerging vanets,” in 4th
Int. Conf. Inf. Technol., Jordan, Amman, 2009.

[94] M. Kassim, R. A. Rahman, and R. Mustapha, “Mobile ad hoc network (manet) routing
protocols comparison for wireless sensor network,” in 2011 IEEE International Conference
on System Engineering and Technology. IEEE, 2011, pp. 148–152.

[95] A. Nanda, D. Puthal, J. J. Rodrigues, and S. A. Kozlov, “Internet of autonomous vehicles
communications security: overview, issues, and directions,” IEEE Wireless Communications,
vol. 26, no. 4, pp. 60–65, 2019.

[96] M. N. Mejri, J. Ben-Othman, and M. Hamdi, “Survey on vanet security challenges and possible
cryptographic solutions,” Vehicular Communications, vol. 1, no. 2, pp. 53–66, 2014.

[97] H. Hasrouny, A. E. Samhat, C. Bassil, and A. Laouiti, “Vanet security challenges and solutions:
A survey,” Vehicular Communications, vol. 7, pp. 7–20, 2017.

92

[98] M. Azees, P. Vijayakumar, and L. J. Deborah, “Comprehensive survey on security services in
vehicular ad-hoc networks,” IET Intelligent Transport Systems, vol. 10, no. 6, pp. 379–388,
2016.

[99] M. Muhammad and G. A. Safdar, “Survey on existing authentication issues for cellular-assisted
v2x communication,” Vehicular Communications, vol. 12, pp. 50–65, 2018.

[100] M. Amoozadeh, A. Raghuramu, C.-N. Chuah, D. Ghosal, H. M. Zhang, J. Rowe, and K. Levitt,
“Security vulnerabilities of connected vehicle streams and their impact on cooperative driving,”
IEEE Communications Magazine, vol. 53, no. 6, pp. 126–132, 2015.

[101] K. M. A. Alheeti and K. McDonald-Maier, “An intelligent security system for autonomous
cars based on infrared sensors,” in 2017 23rd International Conference on Automation and
Computing (ICAC). IEEE, 2017, pp. 1–5.

[102] S. Boumiza and R. Braham, “Intrusion threats and security solutions for autonomous vehicle
networks,” in 2017 IEEE/ACS 14th International Conference on Computer Systems and
Applications (AICCSA). IEEE, 2017, pp. 120–127.

[103] P. Kleberger, N. Nowdehi, and T. Olovsson, “Towards designing secure in-vehicle network
architectures using community detection algorithms,” in 2014 IEEE Vehicular Networking
Conference (VNC). IEEE, 2014, pp. 69–76.

[104] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham et al., “Experimental security analysis of a modern automobile,” in
2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 447–462.

[105] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, T. Kohno et al., “Comprehensive experimental analyses of automotive
attack surfaces.” in USENIX Security Symposium, vol. 4. San Francisco, 2011, pp. 447–462.

[106] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “Canauth-a simple, backward compat-
ible broadcast authentication protocol for can bus,” in ECRYPT Workshop on Lightweight
Cryptography, vol. 2011, 2011, p. 20.

[107] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede, “Libra-can: a lightweight
broadcast authentication protocol for controller area networks,” in International Conference
on Cryptology and Network Security. Springer, 2012, pp. 185–200.

[108] M. Wolf and T. Gendrullis, “Design, implementation, and evaluation of a vehicular hard-
ware security module,” in International Conference on Information Security and Cryptology.
Springer, 2011, pp. 302–318.

[109] P. Kleberger, A. Javaheri, T. Olovsson, and E. Jonsson, “A framework for assessing the security
of the connected car infrastructure,” in ICSNC 2011: The Sixth International Conference on
Systems and Networks Communications, 2011, pp. 236–241.

[110] I. Broster and A. Burns, “An analysable bus-guardian for event-triggered communication,” in
RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003. IEEE, 2003, pp. 410–419.

[111] T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and K. Oishi, “A method of preventing
unauthorized data transmission in controller area network,” in 2012 IEEE 75th Vehicular
Technology Conference (VTC Spring). IEEE, 2012, pp. 1–5.

93

[112] N. Kumar and N. Chilamkurti, “Collaborative trust aware intelligent intrusion detection in
vanets,” Computers & Electrical Engineering, vol. 40, no. 6, pp. 1981–1996, 2014.

[113] M. Raya and J.-P. Hubaux, “Securing vehicular ad hoc networks,” Journal of computer
security, vol. 15, no. 1, pp. 39–68, 2007.

[114] ——, “Security aspects of inter-vehicle communications,” in 5th Swiss Transport Research
Conference (STRC), no. CONF, 2005.

[115] G. Samara, W. A. Al-Salihy, and R. Sures, “Security issues and challenges of vehicular ad hoc
networks (vanet),” in 4th International Conference on New Trends in Information Science and
Service Science. IEEE, 2010, pp. 393–398.

[116] J. Petit and S. E. Shladover, “Potential cyberattacks on automated vehicles,” IEEE Transactions
on Intelligent transportation systems, vol. 16, no. 2, pp. 546–556, 2014.

[117] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles sensors:
Experiments on camera and lidar,” Black Hat Europe, vol. 11, p. 2015, 2015.

[118] B. Cyr, J. Mahmod, and U. Guin, “Low-cost and secure firmware obfuscation method for
protecting electronic systems from cloning,” IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 3700–3711, 2019.

[119] G. Sabaliauskaite, L. S. Liew, and J. Cui, “Integrating autonomous vehicle safety and security
analysis using stpa method and the six-step model,” International Journal on Advances in
Security, vol. 11, no. 1&2, pp. 160–169, 2018.

[120] G. Loukas, E. Karapistoli, E. Panaousis, P. Sarigiannidis, A. Bezemskij, and T. Vuong, “A
taxonomy and survey of cyber-physical intrusion detection approaches for vehicles,” Ad Hoc
Networks, vol. 84, pp. 124–147, 2019.

[121] R. G. Engoulou, M. Bellaïche, S. Pierre, and A. Quintero, “Vanet security surveys,” Computer
Communications, vol. 44, pp. 1–13, 2014.

[122] H. Hasrouny, A. E. Samhat, C. Bassil, and A. Laouiti, “Vanet security challenges and solutions:
A survey,” Vehicular Communications, vol. 7, pp. 7–20, 2017.

[123] M. N. Mejri, J. Ben-Othman, and M. Hamdi, “Survey on vanet security challenges and possible
cryptographic solutions,” Vehicular Communications, vol. 1, no. 2, pp. 53–66, 2014.

[124] S. Karnouskos and F. Kerschbaum, “Privacy and integrity considerations in hyperconnected
autonomous vehicles,” Proceedings of the IEEE, vol. 106, no. 1, pp. 160–170, 2017.

[125] The LLVM Compiler Infrastructure. [Online]. Available: http://www.llvm.org/

[126] C. A. Lattner, “LLVM: An infrastructure for multi-stage optimization,” Master’s thesis,
University of Illinois, 2002.

[127] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of control dependence
to data dependence,” in Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL ’83. New York, NY, USA: ACM, 1983,
pp. 177–189. [Online]. Available: http://doi.acm.org/10.1145/567067.567085

94

http://www.llvm.org/
http://doi.acm.org/10.1145/567067.567085

[128] J. E. Smith, “A study of branch prediction strategies,” in Proceedings of the
8th Annual Symposium on Computer Architecture, ser. ISCA ’81. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1981, pp. 135–148. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800052.801871

[129] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Elsevier,
2011.

[130] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-M. W. Hwu, “A
comparison of full and partial predicated execution support for ILP processors,” SIGARCH
Comput. Archit. News, vol. 23, no. 2, pp. 138–150, May 1995. [Online]. Available:
http://doi.acm.org/10.1145/225830.225965

[131] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt, “Branch classification: a new mechanism for
improving branch predictor performance,” International Journal of Parallel Programming,
vol. 24, no. 2, pp. 133–158, 1996.

[132] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architectures: A Dependence-
based Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.

[133] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating transformations,”
Department of Computer Science, The University of Auckland, New Zealand, Tech. Rep. 148,
1997.

[134] M. Mowbray, S. Pearson, and Y. Shen, “Enhancing privacy in cloud computing via policy-
based obfuscation,” The Journal of Supercomputing, vol. 61, no. 2, pp. 267–291, 2012.

[135] M. Hataba and A. El-Mahdy, “Cloud protection by obfuscation: Techniques and metrics,” in
2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
Nov 2012, pp. 369–372.

[136] G. You, G. Kim, S.-j. Cho, and H. Han, “A comparative study on optimization, obfuscation,
and deobfuscation tools in android.” J. Internet Serv. Inf. Secur., vol. 11, no. 1, pp. 2–15, 2021.

[137] J. Park, H. Kim, Y. Jeong, S.-j. Cho, S. Han, and M. Park, “Effects of code obfuscation on
android app similarity analysis.” J. Wirel. Mob. Networks Ubiquitous Comput. Dependable
Appl., vol. 6, no. 4, pp. 86–98, 2015.

[138] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang, and K. Zhang,
“Understanding android obfuscation techniques: A large-scale investigation in the wild,” in
International conference on security and privacy in communication systems. Springer, 2018,
pp. 172–192.

[139] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware analysis using conditional
code obfuscation.” in The Network and Distributed System Security Symposium NDSS, 2008.

[140] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic approach to automatic
deobfuscation of executable code,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 674–691.

95

http://dl.acm.org/citation.cfm?id=800052.801871
http://doi.acm.org/10.1145/225830.225965

[141] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and A. Thierry, “Codisasm:
Medium scale concatic disassembly of self-modifying binaries with overlapping instructions,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 745–756.

[142] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-obfuscated software: a
semantics-based approach,” in Proceedings of the 18th ACM conference on Computer and
communications security, 2011, pp. 275–284.

[143] B. Cheng, J. Ming, E. A. Leal, H. Zhang, J. Fu, G. Peng, and J.-Y. Marion, “Obfuscation-
resilient executable payload extraction from packed malware,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[144] B. Alouffi, M. Hasnain, A. Alharbi, W. Alosaimi, H. Alyami, and M. Ayaz, “A systematic
literature review on cloud computing security: Threats and mitigation strategies,” IEEE Access,
vol. 9, pp. 57 792–57 807, 2021.

[145] I. Kanwal, H. Shafi, S. Memon, and M. H. Shah, “Cloud computing security challenges: A
review,” Cybersecurity, Privacy and Freedom Protection in the Connected World. Advanced
Sciences and Technologies for Security Applications. Springer, Cham, pp. 459–469, 2021.

[146] M. K. Sasubilli and R. Venkateswarlu, “Cloud computing security challenges, threats and
vulnerabilities,” in 2021 6th International Conference on Inventive Computation Technologies
(ICICT). IEEE, 2021, pp. 476–480.

[147] D. Sampson and M. M. Chowdhury, “The growing security concerns of cloud computing,” in
2021 IEEE International Conference on Electro Information Technology (EIT). IEEE, 2021,
pp. 050–055.

[148] S. Bugiel, S. Nürnberger, A.-R. Sadeghi, and T. Schneider, “Twin clouds: Secure cloud
computing with low latency,” in Communications and Multimedia Security, B. De Decker,
J. Lapon, V. Naessens, and A. Uhl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 32–44.

[149] A. C.-C. Yao, “How to generate and exchange secrets,” in Proceedings of the
27th Annual Symposium on Foundations of Computer Science, ser. SFCS ’86.
Washington, DC, USA: IEEE Computer Society, 1986, pp. 162–167. [Online]. Available:
https://doi.org/10.1109/SFCS.1986.25

[150] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing: Outsourcing
computation to untrusted workers,” in Advances in Cryptology – CRYPTO 2010, T. Rabin, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 465–482.

[151] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic encryption scheme,”
in Advances in Cryptology – EUROCRYPT 2011, K. G. Paterson, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 129–148.

[152] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small key and
ciphertext sizes,” in Public Key Cryptography – PKC 2010, P. Q. Nguyen and D. Pointcheval,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 420–443.

96

https://doi.org/10.1109/SFCS.1986.25

[153] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig, “Trustvisor: Efficient
TCB reduction and attestation,” in 2010 IEEE Symposium on Security and Privacy, May 2010,
pp. 143–158.

[154] D. C. Latham, “Department of defense trusted computer system evaluation criteria,” Depart-
ment of Defense , United States of America, 1986.

[155] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure virtual architecture:
A safe execution environment for commodity operating systems,” SIGOPS Oper.
Syst. Rev., vol. 41, no. 6, pp. 351–366, Oct. 2007. [Online]. Available: http:
//doi.acm.org/10.1145/1323293.1294295

[156] W. Futral and J. Greene, Intel Trusted Execution Technology for Server Platforms: A Guide to
More Secure Datacenters. Springer Nature, 2013.

[157] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive survey,” ACM
Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[158] Advanced Micro Devices, Inc. (AMD), “Strengthening vm isolation with integrity protection
and more,” White Paper, Santa Clara, CA, USA, 2020.

[159] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint Arch., vol. 2016, no. 86,
pp. 1–118, 2016.

[160] O. Demigha and R. Larguet, “Hardware-based solutions for trusted cloud computing,” Com-
puters & Security, p. 102117, 2021.

[161] J. V. Cleemput, B. Coppens, and B. De Sutter, “Compiler mitigations for time attacks on
modern x86 processors,” ACM Transactions on Architecture and Code Optimization (TACO),
vol. 8, no. 4, pp. 1–20, 2012.

[162] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi, “Absynthe: Automatic blackbox
side-channel synthesis on commodity microarchitectures,” in Network and Distributed Systems
Security (NDSS) Symposium, 2020.

[163] C. Shen, C. Chen, and J. Zhang, “Micro-architectural cache side-channel attacks and counter-
measures,” in 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2021, pp. 441–448.

[164] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and D. Gruss, “Platypus:
Software-based power side-channel attacks on x86,” in IEEE Symposium on Security and
Privacy (SP), 2021.

[165] D. McCann, K. Eder, and E. Oswald, “Characterising and comparing the energy consumption
of side channel attack countermeasures and lightweight cryptography on embedded devices,”
in Proceedings of the 2015 International Workshop on Secure Internet of Things, ser. SIOT
’15. USA: IEEE Computer Society, 2015, p. 65–71.

[166] N. Belleville, D. Couroussé, K. Heydemann, and H.-P. Charles, “Automated software pro-
tection for the masses against side-channel attacks,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 15, no. 4, pp. 1–27, 2018.

97

http://doi.acm.org/10.1145/1323293.1294295
http://doi.acm.org/10.1145/1323293.1294295

[167] M. Hataba, A. El-Mahdy, and E. Rohou, “OJIT: A novel obfuscation approach using standard
just-in-time compiler transformations,” in The Proceedings of the 4th Dynamic Compilation
Everywhere workshop held in conjucntion with 10th HiPEAC Conference. ACM, 2015.

[168] J. Nagra and C. Collberg, Surreptitious Software: Obfuscation, Watermarking, and Tam-
perproofing for Software Protection: Obfuscation, Watermarking, and Tamperproofing for
Software Protection. Pearson Education, 2009.

[169] C. Edwards, “Researchers probe security through obscurity,” Commun. ACM, vol. 57, no. 8,
pp. 11–13, Aug. 2014.

[170] QEMU: the FAST! processor emulator. [Online]. Available: https://www.qemu.org/

[171] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[172] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of control dependence to
data dependence.” New York, NY, USA: Association for Computing Machinery, 1983.

[173] M. Hataba, A. Sherif, and R. Elkhouly, “A proposed software protection mechanism for
autonomous vehicular cloud computing,” in 2021 IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), 2021, pp. 878–881.

[174] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu, “Function-hiding inner
product encryption is practical,” in International Conference on Security and Cryptography
for Networks. Springer, 2018, pp. 544–562.

[175] V. S. Miller, “The weil pairing, and its efficient calculation,” Journal of cryptology, vol. 17,
no. 4, pp. 235–261, 2004.

[176] H. Goumidi, S. Harous, Z. Aliouat, and A. M. Gueroui, “Lightweight secure authentication
and key distribution scheme for vehicular cloud computing,” Symmetry, vol. 13, no. 3, p. 484,
2021.

[177] Q. Huang, Y. Yang, and Y. Shi, “Smartveh: Secure and efficient message access control and
authentication for vehicular cloud computing,” Sensors, vol. 18, no. 2, p. 666, 2018.

[178] V. Kumar, M. Ahmad, A. Kumari, S. Kumari, and M. K. Khan, “Sebap: a secure and
efficient biometric-assisted authentication protocol using ecc for vehicular cloud computing,”
International Journal of Communication Systems, vol. 34, no. 2, p. e4103, 2021.

[179] Q. Jiang, J. Ni, J. Ma, L. Yang, and X. Shen, “Integrated authentication and key agreement
framework for vehicular cloud computing,” IEEE Network, vol. 32, no. 3, pp. 28–35, 2018.

[180] S. Rana, D. Mishra, and S. Gupta, “Computationally efficient and secure session key agreement
techniques for vehicular cloud computing,” in Advances in Communication and Computational
Technology. Springer, 2021, pp. 453–467.

[181] D. Bhattacharyya, R. Ranjan, F. A. A., and M. Choi, “Biometric authentication: A review,”
International Journal of u and e Service, Science and Technology, vol. 2, 2009.

[182] M. M. Alrifaee, “A short survey of iris images databases,” Available at SSRN 3616735, 2020.

98

https://www.qemu.org/

[183] C. Ream, “What you should know about biometrics in the cloud,” National Security Agency,
Eyelock Whitepaper, 09 2016.

[184] W. Zhang, S. Xiao, Y. Lin, T. Zhou, and S. Zhou, “Secure ranked multi-keyword search for
multiple data owners in cloud computing,” in Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on. IEEE, 2014, pp. 276–286.

[185] A. Kumar and A. Passi, “Comparison and combination of iris matchers for reliable personal
identification,” in 2008 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, 2008, pp. 1–7.

[186] IITD Iris Database. [Online]. Available: https://www4.comp.polyu.edu.hk/~csajaykr/IITD/
Database_Iris.htm

[187] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[188] A. I. Borisenko et al., Vector and tensor analysis with applications. Courier Corporation,
1968.

[189] V. Rajasekar, J. Premalatha, and K. Sathya, “Enhanced biometric recognition for secure
authentication using iris preprocessing and hyperelliptic curve cryptography,” Wireless Com-
munications and Mobile Computing, vol. 2020, 2020.

[190] Z. Rui and Z. Yan, “A survey on biometric authentication: Toward secure and privacy-
preserving identification,” IEEE Access, vol. 7, pp. 5994–6009, 2019.

[191] N. Nedjah, R. S. Wyant, L. M. Mourelle, and B. Gupta, “Efficient yet robust biometric iris
matching on smart cards for data high security and privacy,” Future Generation Computer
Systems, vol. 76, pp. 18–32, 05 2017.

[192] S. Thavalengal, P. Bigioi, and P. Corcoran, “Iris authentication in handheld devices-
considerations for constraint-free acquisition,” IEEE Transactions on Consumer Electronics,
vol. 61, no. 2, pp. 245–253, 2015.

[193] N. Ortiz, R. D. Hernande, R. Jimenez, M. Mauledeoux, and O. Aviles, “Survey of biometric
pattern recognition via machine learning techniques,” Contemporary Engineering Sciences,
vol. 11, 2018.

[194] Q. Guo and J. Zheng, “An iris recognition algorithm for identity authentication,” 2018
international Conference on Intelligent Transportation, Big Data and Smart City ICITBS,
2018.

[195] Z. Shi and Guangdong, “Processing method and system for identity authentication with mobile
terminal based on iris recognition,” Huizhou TCL Mobile Communication, 10 2015.

[196] K. A. Bakshi, B. Prasad, and S. K., “An efficient iris code storing and searching technique
for iris recognition using non-homogeneous k-d tree,” in 2015 International Conference on
Emerging Research in Electronics, Computer Science and Technology (ICERECT), 2015, pp.
34–38.

99

https://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm
https://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm

[197] C. Rathgeb and A. Uhl, “Attacking iris recognition: An efficiient hillclimbing technique,”
IEEE/IAPR International Conference on Patter Recognition (ICPR, pp. 1217–1220, 2010.

[198] “Statistical attack against iris-biometric fuzzy commitment schemes,” IEEE Computer Soociety
Conference on Computer Vision and Pattern Recognition Workshops, pp. 22–30, 2011.

[199] N. Kohli, D. Yadav, M. Vatsa, R. Singh, and A. Noore, “Detecting medley of iris spoof-
ing attacks using desist,” 2016 IEEE 8th International Conference on Biometrics Theory,
Applications and Systems (BTAS), 2016.

100

	Software Protection and Secure Authentication for Autonomous Vehicular Cloud Computing
	Recommended Citation

	INTRODUCTION
	SECURITY AND PRIVACY ISSUES IN AUTONOMOUS VEHICLES: A LAYER-BASED SURVEY
	Introduction
	Application Layer Security
	Operating System Level
	Network Level
	Physical Level
	Related Work
	Summary

	A PROPOSED SOFTWARE PROTECTION MECHANISM FOR AUTONOMOUS VEHICULAR CLOUD COMPUTING
	Introduction
	Background Information and Related Work
	Preliminaries
	Related Work

	System Description
	Network Model
	Threat Model

	Proposed Technique
	Experiments and Results
	Summary

	ENHANCED OBFUSCATION FOR SOFTWARE PROTECTION IN AUTONOMOUS VEHICULAR CLOUD PLATFORMS
	Introduction
	System Description
	Proposed Technique
	Experiments and Results
	Related Work
	Summary

	A PRIVACY-AWARE SYSTEM FOR AUTHENTICATION IN AUTONOMOUS VEHICLES CLOUD COMPUTING
	Introduction
	System Models
	Network Model
	Threat Model
	Design Goals

	Proposed Scheme
	Privacy and Security Analysis
	Experiments and Discussions
	Communication Overhead
	Computation Overhead

	Related Work
	Summary

	PRIVACY-PRESERVING BIOMETRIC-BASED AUTHENTICATION SCHEME FOR ELECTRIC VEHICLES CHARGING SYSTEM
	Introduction
	System Models
	Network Model
	Threat Model

	Proposed Scheme
	System Initialization
	User Registration
	Encrypting Iris Data
	Submit Authentication Query
	Matching Iris Encrypted Data

	Privacy Analysis
	Experiments and Performance Evaluation
	Experiment Setup and Evaluation Metrics
	Experiment Results

	Related Work
	Summary

	CONCLUSION AND FUTURE WORK

