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ABSTRACT

Several explanations have been reported in the literature about the origin of extended-

range oscillations (EROs) in the atomic pair-correlation function of amorphous materials.

Although the radial ordering beyond the short-range order of about 5 Å has been extensively

studied in amorphous materials, the exact nature of the radial ordering beyond a nanometer is

still not resolved. This dissertation address this problem and explains the nature of the EROs

by using high-quality models of amorphous silicon (a-Si) obtained from Monte Carlo and

Molecular Dynamics simulations. The extended-range ordering in a-Si is examined through

radial oscillations on the length scale of 20-40 Å by comparing the distribution of atoms

in different coordination shells in a-Si with that in partially ordered networks of Si atoms

and disordered configurations of crystalline silicon. In addition, the origin and structure of

the First Sharp Diffraction Peak (FSDP) of a-Si near 2 Å−1 and that of amorphous silica

(a-SiO2) near 1.5 Å−1 wavevector region is studied with particular emphasis on the position,

intensity, and width of the FSDP. Likewise, the effects of temperature, structural disorder,

and anharmonicity on the vibrational mean-square displacement (MSD) of Si atoms of a-Si

are studied using harmonic approximation and ab initio molecular-dynamics simulations.

This study shows that weak radial ordering exist in the atomic correlations of a-Si

extended up to 20-40 Å. The analysis of the radial shell-by-shell contribution to the FSDP

of a-Si reveals that the second and fourth radial shells significantly contribute to the FSDP

of a-Si. A similar analysis of the FSDP of a-SiO2 indicates the higher contribution to the

FSDP of a-SiO2 is from the third and fourth radial shells. Also, an approximate functional

relation has been obtained between the position of the FSDP and the average radial distance

of Si atoms in the second radial shell of a-Si. On the other hand, the analysis of the effect of

anharmonicity on the MSD of Si atoms suggests the vibrational motion in a-Si is practically

unaffected by anharmonic effects at temperatures below 400 K.
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Chapter 1

INTRODUCTION

1.1 Amorphous Semiconductors

Amorphous solids are condensed phase materials having no long-range translational order-
ing or periodicity in their atomic arrangements. As a result, they do not exhibit a discrete
diffraction pattern like crystalline materials [1, 2] . Although, amorphous materials have
no structural long-range ordering, they have some structural order extended up to a few
nanometer length scale, which includes short-range (≈ 5 Å) to medium-range orders (≈
5-20 Å). [2, 3] Amorphous materials have significant presence in technological applications.
One of the technologically promising amorphous materials type is covalent semiconduc-
tors, which are widely used in modern day electronics and photovoltaic, such as a-Se in
electro-photography, a-Si:H in photovoltaic and thin-film transistors [4, 3], and amorphous
chalcogenides in memory devices.

The distinct short-range order of an amorphous semiconductor gives elecronic density
of state with a band gap similar to that of its crystalline counterpart, where some indistinct
band edges diffuse into the band gap due to varying inter-atomic distances between the
nearest neighbor atoms [5]. Except for some elemental amorphous semiconductors, such as
a-Si and a-Ge, resistivity of an amorphous semiconductor depends on temperature [6], given
as, ρ(T ) = ρ0 exp( Eg

2kβ T ) where, ρ0, Eg, kβ , and T are the resistivity of the semiconductor,
the band gap energy, the Boltzmann’s constant, and temperature, respectively. In elemental
amorphous semiconductors, which lie in column IV-A, V-A, and VI-A of modern periodic
table, outer octet of electrons is completed by covalent bonding and sharing of pair of
electrons between the neighboring atoms. The elemental semiconductors of type V-A in
general show layered-like structures and VI-A and IV-A show rings or chains like three-
dimensionally connected structures, respectively. The polyatomic semiconductors somehow
have complex structures based on the atomic connectivity of the different atom types.

Amorphous materials can be prepared in laboratories using various methods. Some of the
highly practiced methods are thermal evaporation, sputtering, chemical vapor deposition [7],
and radiation induced amorphization technique [8]. Likewise, several computational meth-
ods have been developed in the past decades to generate model(s) of amorphous material(s),
such as Molecular dynamics (MD) simulations [9, 10], Monte Carlo (MC) simulations [11],
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genetic algorithm (GA), simulated annealing (SA) methods [12], using empirical, tight-
binding, and first-principle total-energy functionals [13], each having their own advantages
and limitations.

1.2 Amorphous Silicon

Amorphous silicon, a-Si, is a non-crystalline form of silicon, where each atom is bonded
to four neighboring atoms through covalent bonds to form a tetrahedral configuration
similar to that in crystalline silicon (c-Si). It is a prototypical covalently bonded amorphous
semiconductor with a wide range of applications as electronic and photovoltaic materials.
The structure of a-Si consist of short-range structural ordering extended up to a nano-meter,
nm, length scale. Figure 1.1 represent a snapshot of the topology of a-Si and c-Si in diamond
structure, and Figure 1.2 shows the comparison of the atomic pair correlations of a-Si and
c-Si up to 8 Å radial length. The structure of a-Si is mainly characterized by the absence of
long-range translational order of c-Si or the non-repeating pattern of tetrahedral units.

The lack of long-range order in a-Si leads to a number of structural characteristics
that differ from its crystalline counterpart in diamond c-Si. Additionally, a-Si can have a
coordination number, the number of bonds per atom, not always four but as low as two to
as high as five. Due to high density of defects and interface states in a-Si, its performance
in electronic devices are often limited compare to that of c-Si. The wider band gap of
a-Si (1.7 eV), as compared to c-Si (1.1 eV), makes it more suitable for optoelectronic
applications [14], such as thin-film solar cells. In a-Si, defects can act as the recombination
centers for carriers. The high resistance of a-Si which restricts the recombination of carriers
makes it more suitable for photoelectric uses. [14]

On the other hand, the low electron mobility in a-Si reduces the efficiency of a-Si in
some electronic applications, such as field-effect transistors [15]. The high defect density of
a-Si also prevents any substitutional doping of impurities [16] in its atomic network. Some
limitations of a-Si as electronic materials have been overcome by passivating the dangling
bonds with hydrogen, called hydrogenated amorphous silicon (a-Si:H). [17, 18] Passivation
of dangling bonds can reduce the density of defects and improve the electrical conductivity
of a-Si, which makes a-Si:H an essential electronic material for thin-film transistors [19],
photovoltaics solar cells [20], digital displays [21], and optical scanners [22].

Understanding the complete structure of a-Si is essential to uncover details of its func-
tional properties. In the past decades, a-Si is a widely studied disordered material. Many
experimental [23, 24] and theoretical [25, 26] attempts have shown the structural short-range
order in the atomic structure of a-Si, including the optical, electrical, and vibrational prop-
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Figure 1.1: The topology of a-Si (left) and c-Si in diamond structure (right).
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Figure 1.2: Comparison of the atomic pair correlation function of a-Si and c-Si up to 8 Å of
radial separation.

erties. Experimental studies have shown that the structure of a-Si can considerably vary
from sample to sample depending upon the preparation method and experimental conditions.
The self-ion implantation technique is the most reliable method to produce the pure a-Si
sample with no defects and voids up on relaxation [27, 28]. The comparison of the radial
distribution function (RDF) of a-Si and c-Si have shown that the first and second peak of
the RDF of a-Si are the broadened version of the peaks of c-Si where crystalline third peak
missing in a-Si and the fourth and fifth peak are merged in to one.

Laaziri et al. (1999) [27, 28], using X-ray, and Fortner and Lannin [29], using Neutron
diffraction method have measured high resolution RDFs, from the Fourier transform of
structure factor S(Q) measured in large Q-range extended up to 55 Å−1. The RDFs obtained
thereafter reveals both as-implanted and annealed samples are under co-ordinated, having
coordination number 3.55-3.79 and 3.88-3.90, respectively. Likewise, the bond length
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and bond angle for the as-implanted a-Si sample are found to be 2.35 Å and 107-109◦

with variance of 9-11◦, respectively. Since the real-space information extracted from the
experimental results are based on the Fourier transform of Q-space data, Qmax is an important
parameter to be considered in evaluation of atomic structure using experimental data. For
converged or reliable value of CN, the Q-space diffraction data should be for at least 40 Å−1,
with a resolution of at least 0.1 Å−1. To understand the actual structure of a-Si in atomistic
level many hand made and computer generated models of a-Si have been purposed and
studied in this recent few decades.

The earliest models of a-Si were the hand made models developed by Polk (1971) [30]
and Connell, and Temkin (1974) [31], the models characterized by a local tetrahedral envi-
ronment similar to that of c-Si. Later, the models were digitized by Polk and Boudreaux [32]
and optimized by Steinhardt et al. [33] using Keating potential [34]. Henderson and Herman
(1972) [35] have generated random network model of 64-atom a-Si system with no-dangling
bonds, using periodic boundary condition and consideration of thermal and structural dis-
order. An a-Si model, as a tetrahedra packed into a regular structure in curved space, was
introduced by Kléman and Sadoc (1979) [36]. As a modern approach, Wooten and Weaire
(1987) [37, 26] have put forward three strategies for modeling an amorphous materials im-
plementing the concept of the energy minimization, which are accretion (sequential addition
of atoms in a cluster), molecular dynamics, and randomization followed by relaxation. Later,
Wooten-Weaire-Winer [26] developed a model with each Si atom having four-fold bonds
similar to c-Si. Barkema and Mousseau (2000) [38], improved this process further by starting
from a completely random configuration instead of c-Si system and using Stillinger-Weber
(SW) potential for total-energy relaxation. They have successfully generated large systems
of a-Si of 1,000–4,096 atoms. The energy gap of 1.3 eV is obtained in the electronic density
of state of those defect free model of a-Si, showing a consistency with experimental results.
Using WWW algorithm and employing local relaxation techniques Vink et al. (2001) [39],
in O(1) calculation, developed 20,000-atom models of a-Si.

The classical and ab-initio molecular dynamics (MD) [40, 25, 41, 42] are the modeling
methods currently popular in the field of computational material science. In molecular
dynamics method, starting from a properly equilibrated Si liquid at high temperature (higher
then melting temperature) the system is cooled down to a desired temperature at higher
cooling rates. The system is further relaxed at that temperature to be considered as a final
configuration. Atta-Fynn and Biswas (2018) [40, 41] have implemented a classical MD
method to generate, till known, largest a-Si modles of 400,000-atom, with nearly 97% fold-
fold atoms and average bond-length of 2.36 Å. Tight binding molecular dynamics [43, 9],
Reverse Monte Carlo [44, 45], and constraints based data-driven methods, such as empirical
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Figure 1.3: A snapshot of the topology of a-SiO2 showing bonding of Oxygen (red spheres)
and Silicon atoms (green spheres).

potential structure refinement [46], force-enhanced atomic refinement (FEAR) [47], and
Information-driven inverse approach INDIA [48, 49] are some recently purposed methods
each showing certain degree of promises to address the real structure of a-Si using experi-
mental data. In this dissertation, we have presented in-depth analysis of structural, electronic,
and vibrational properties of a-Si and a-SiO2 using the atomistic models, generated via
Monte-Carlo and Molecular Dynamics simulation methods.

1.3 Amorphous Silica

Amorphous silica (a-SiO2) is one of the materials having stoichiometric composition of
SiO2. Amorphous silica is composed of three-dimensional network of silicon-oxygen (Si-O)
tetrahedra, SiO4, with varying degree of disorder. Each SiO4 tetrahedron consist of four
oxygen atoms at the corners of a tetrahedra with a silicon atom at its center. These tetrahedra
can link together in different ways resulting a wide range of structure with different degree
of connectivity. Among the possible Si-X (X=Si, O) bonds Si-O bond is the most stable
bond with average length of ≈ 1.62 Å, which is smaller than exact sum of the covalent radii
of Si (1.11 Å) and O atoms (0.66 Å) due to the ionic nature of the bond. A snapshot of
the topology of a-SiO2 is given in Fig. 1.3. The structure of a-SiO2 have been studied via
x-ray [50] and neutron diffraction methods [51] where Si-Si correlations and Si-O-Si bond
angle are better studied via the x-ray diffraction and O-O correlations and O-Si-O bond
angle are better studied via the neutron diffraction methods, based on the atomic sizes and
nature of the diffraction pattern.
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The lack of well-defined crystal like structure of a-SiO2 gives some unique properties,
such as high surface area, high porosity, and thermal and chemical stability [52]. Amorphous
silica is one of the widely used materials in cosmetics, pharmaceutical, food industry, and
construction. It can also be used as a catalyst or as a support material for catalysts [53] and
has excellent thermal stability with high resistance to thermal shock.

1.4 First Sharp Diffraction Peak

The study of amorphous materials has a long history dating back to the 19th century. The
development of x-ray diffraction techniques [54, 55] followed by transmission electron
microscopy [56] and neutron scattering techniques [57] have allowed study of the atomic-
scale structure of amorphous materials in greater detail, leading to a better understanding of
the properties and behavior of such materials. Likewise, many computer generated models
have been proposed to study atomic scale properties of the amorphous solids. One of the
frequently studied structural feature of amorphous materials is the First Sharp Diffraction
Peak, (FSDP), observed near 1-2 Å−1 of the wavevector region of the static structure factor.
In general, FSDP is a signature feature due to medium-range order in amorphous networks
which shows variation with density, pressure, temperature, and composition of the system.
In this dissertation, to keep consistency with previous literatures, we defined the first sharp
peak in diffraction plot with intensity of about 50% or higher of that of principle peak as the
FSDP of a-Si and a-SiO2.

In tetrahedral materials having corner-sharing or edge-sharing motifs, position of the
FSDP is estimated at k1 =

2π

d , where d is the peak position of the first peak in real-space
atomic correlations of the corresponding crystalline structure [58, 59]. This explanation,
however, can not explain the FSDP of liquids which barely have any crystal structure [60].
In other cases, FSDP in amorphous materials is explained as the feature due to layered or
cage-like motifs and chemical ordering of clusters of voids around the cations [61].

In binary materials of types AX2, such as GeSe2 and ZnCl2, FSDP arises primarily due
to A-A, cation-cation, and A-X, cation-anion correlations in large ring structures extended
up to 4-8 Å [60, 62, 63]. In case of a random network of structural units with dimension of
the order of 2π/Q0, where Q0 is the position of the FSDP, the FSDP arises as a result of
competition of the form factor and structure factor for the centers of the units. Similarly, in
binary covalent glasses, intensity of FSDP decreases with temperature due to the thermal-
vibrations at high temperature which reduce the sharpness of the peaks of RDF,. Decreasing
density of binary covalent materials can enhance the medium-range order resulting intensed
first peak in wavevector space. On contrary, the FSDP of a-SiO2 measured via X-ray
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diffraction method have shown intensity of the FSDP increases with temperature because of
its low thermal expansion [63]. In g-SiO2, FSDP depends on the MROs which arises as the
residue of crystalline MROs [58]. In alkali-silicate glasses, the dominant contribution on the
FSDP arises from the radial orders of up to 10 Å [64].

In void-based models, with chemical short-range ordering of interstitial voids, Lee
(1994) [65] and Elliott (1991) [61] have shown that the FSDP of binary glasses arising as a
pre-peak in the concentration-concentration partial structure factor, which in liquid ZnCl2
depends on the void-void correlations [66]. For monoatomic systems, such as a-Si and a-Ge,
only a few explanations have been reported indicating the radial ordering of 10-20 Å is the
factor behind the origin of the FSDP. In a-Si and a-SiO2, different experiments have reveal
the position of the FSDP increases linearly with density of the system. [67, 68, 69] Despite
many experimental and computational attempts of last few decades a universal explanation
of the FSDP is yet a controversial topic. [66, 63, 61]. In general, the FSDP in glasses should
be independent of the dimensionality, validity for covalent and ionic bonding, and useful to
estimate required parameters. [63].

The FSDP in liquids and glasses is a ubiquitous feature arises due to MRO in network
structure [65, 63, 70, 71]. In amorphous materials MRO refers the regime due to large rings
structure, layer-like ordering, and the interstitial voids [65, 61]. The main objective of this
dissertation is to discuss the origin and structure of the FSDP in the covalent monoatomic
and binary solids, a-Si and a-SiO2 as the prototypes, in atomistic point of view. Also, a
functional relation between radial correlations and the FSDP of tetrahedral network models
of nearly 100% four-fold disorderd network of a-Si is analyzed via information-theoretical
point of view.

1.5 Outline of the dissertation

Chapter 2 presents a brief discussion of the simulation techniques, which are partly or
fully implemented in this study for modeling a realistic configurations of a-Si and a-SiO2.
In addition, a brief discussion of the structural descriptors of amorphous materials, the
electronic density of state, Debye-Waller factor, and atomic dynamics is given.

A discussion about the origin of the extended-range oscillations in real-space atomic
correlation in ultra-large models (≈ 400,000-atom) of a-Si is presented in Chapter 3. Using
various network of Si atoms having different degree of (dis)order and distorted c-Si systems
obtained from diamond c-Si, extended-range ordering of a-Si in real space atomic correlation
is studied in atomistic point of view. In addition, an analysis of the impact of the EROs on
the first sharp diffraction peak of a-Si is discussed in details.
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Chapter 4 and 5, present the analysis of the origin and structure of the first sharp
diffraction peak of the structure factor of covalent networks of a-Si and a-SiO2, respectively.
A functional relation is observed between the position of the FSDP and average cubic radial
distance of the atoms in second radial shell of a-Si, which is reported in a literature for the
first time. The contribution from the real-space atomic correlations of a-Si and a-SiO2 to
the FSDP is discussed on the basis of the atomic correlations from diffrent radial shells.

In Chapter 6, atomic mean square displacement of Si atoms of a-Si is studied in harmonic
approximation using lattice dynamics calculation method. The dynamics of atoms having a
perfect four-fold bonding and atoms having dangling-bond (three-folds) are examined for
nearly 100% four-fold networks and the networks with clustered or isolated dangling bonds
and voids. Finally, the summary of the dissertation is stated in Chapter 7. Chapter 3 and 4
are adapted from the publications published in PRB (2022) [72] and PSS(b) (2021) [69],
respectively.
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Chapter 2

COMPUTER MODELING AND CHARACTERIZING THE
STRUCTURE OF AMORPHOUS MATERIALS

2.1 Computer Modeling of amorphous materials

Computer generated models are essential in understanding the structure and properties of the
amorphous materials from an atomistic point of view. Till now, various modeling techniques
have been implemented in the study of functional materials, such as semiconductors, energy
materials, photoelectric materials, and biomaterials. Different modeling techniques have
their unique advantages and limitations based on the approximations used. A brief discussion
of the computer simulation methods, which we have partly or wholly implemented for
generation of the atomistic models implemented in this disseration work, is given in this
section.

2.1.1 Continuous Random Network Model

Modeling a material as a continuous random network (CRN) [73] of constituent atoms
is an ideal method for isotropic and homogeneous amorphous semiconductors, such as
a-Si and a-Ge. In this method, materials are considered a random arrangement of atoms
bonded with flexible bonds that can rotate or vibrate to allow a high degree of structural
disorder. The atomic arrangement is constrained by the material’s specific density and
chemical composition. The continuous network between the constituent atoms ensures the
material is not just a collection of isolated clusters of atoms. For amorphous semiconductors,
their network structure is well represented by the continuous random network (CRN) model
introduced by Zachariasen [73] in 1932. The quality of a CRN model can be assessed
in terms of topological and configurational properties, including coordination number,
bond-angle distributions, and deformation energy.

2.1.2 Wooten-Weaire-Winer (WWW) method

Wooten, Weaire, and Winer, in the early 1980s, have developed a model representing an
amorphous material as a random packing of spheres with different radii, known as the
Wooten-Weaire-Winer (WWW) method.[26]. The basic steps used for the generation of a
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computer model of an amorphous material using the WWW method are as follows,
i) Start with a cubic periodic crystalline structure,
ii) Randomize the system using sequence of bond switching while preserving the tetrahedral
bonding and introducing five- and sevenfold rings,
iii) At the end of a sequence of bond switching, relax the system using Keating potential
within the constraints of the neighbor list,
iv) Accept or reject the model using Monte-Carlo for the minimum energy.

In this dissertation, we have implemented the improvised WWW method modified by G.
T. Barkema and N. Mousseau [38] to generate the CRN models of a-Si, the details of the
modified method is further discussed in Chapter 4.

Set initial conditions
(ri(t0) & vi(t0))

Get new forces
Fi(ri)

Solve the equations of motion
over a short step ∆t
ri(t) → ri(t+∆t)
vi(t) → vi(t+∆t)

t = t + ∆t

Is t > tmax?

Final Configuration

Yes

No

Figure 2.1: A general flowchart of a molecular dynamics simulation method.
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2.1.3 Molecular Dynamics (MD) Method

The molecular dynamics (MD) simulation is a simulation method based on the time evolution
of a system of interacting particles, such as atoms or molecules, which relies on the empirical
force fields that consist of the set of equations used to calculate the potential energy and
forces from particle coordinates. The position and velocity of the particles at discrete time
steps are calculated by integrating Newton’s equations of motion using different algorithms,
such as velocity and leap-frog Verlet algorithm [74, 75].

In MD simulation, each atom is considered as a particle of mass mi. The force, Fi, is
then calculated as,

Fi =−
∂V (r1, ...,rN)

∂ ri
= mi

∂ 2ri

∂ t2 (2.1)

where, ri is the instantaneous position of the ith particle.
The inter-atomic potentials, such as Keating potentials [34] and Stillinger-Weber (SW)

potentials [76], can be implemented in the simulation of covalent amorphous materials such
as a-Si. In general, MD simulation follows an initialization of atomic position and velocity,
equilibrium of the system over a time step using force equations, and model finalization. In
actual calculation, periodic boundary conditions are required to avoid any surface related
artifacts. A simple flowchart showing the steps of an MD simulation is presented in Fig. 2.1.

The MD simulation method is suitable for investigating the structure and dynamics of
amorphous materials to gain insights into how the properties of a material get influenced by
factors such as temperature, pressure, and composition. Additionally, the MD simulation
technique is beneficial for understanding the mechanisms of crystallization, melting, and
deformation of materials [77].

2.1.4 Monte Carlo Method

The Monte Carlo method [78, 79] is a random sampling technique, can be used estimate
the properties of interest, such as thermal and mechanical properties, by generating random
configurations and averaging over a large number of configurations of a material system.

The Metropolis Monte Carlo technique, based on Markov chain Monte Carlo (MCMC)
algorithm [80], is a powerful MC method for simulating systems with many degrees of
freedom. A general flowchart showing steps of an MCMC simulation is given in Fig. 2.2.
An overview of the steps of the Metropolis Monte-Carlo method is as follows [80];
1. Choose an initial configuration and calculate the energy (E),
2. Generate a new configuration by making a small change to the current configuration,
by randomly moving an atom or molecule, or by changing the orientation of an atom or
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Initial configuration
(input)

Calculate energy, E1

Make a change in the configuration
r → r + δr

Calculate energy, E2

4E = E2 − E1

Is 4E < 0 ?
exp(−4E

kβT
) < p

p ∈ (0, 1)

Update configuration

Final configuration

Yes

No No

Yes

Figure 2.2: A simplified flowchart of the Markov chain Monte Carlo (MCMC) algorithm.

molecule, and calculate the energy (E ′) of the new configuration.
3. Calculate the change in energy (∆E = E ′−E)
If ∆E ≤ 0, accept the new configuration.
If ∆E > 0, accept the new configuration with a probability equal to exp(−∆E/kT ), where k
is the Boltzmann constant and T is the temperature.
4. Repeat steps 2-3 for a large number of iterations to generate an energy-minimized
configuration.
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2.2 First principles modeling: Density Functional Theory (DFT) method

Density functional theory (DFT) is a first-principle quantum mechanical method that does
not require higher-order parameters for modeling a configuration. Since Hohenberg and
Kohn first applied it in 1964 [81], DFT has been widely used in physics, chemistry, and
materials science. In a DFT calculation, the ground state properties of many-body systems
can be uniquely determined by using electron density rather than solving Schrödinger
wavefunctions. It is considered an efficient method to investigate the electronic structure of
atoms, molecules, and solid materials.

In general, DFT calculation is based on the two unique theorems known as Kohn-
Hohenberg theorems [81], stated as (i) the ground-state energy of a many-body system is a
unique functional of the electron density n(rrr), i.e., E = Fn(rrr) and (ii) the actual electron
density is the electron density that minimizes the energy of the overall functional.

Kohn and Sham (1965) [82] have introduced an approximation method for treating an
inhomogeneous system of interacting electrons, considering the exchange and correlation
portions of the chemical potential of a uniform electron gas as additional effective potentials
in self-consistent equations for the ground state. The Kohn-Sham equation, as a single
particle wave equation, is given as,

Eiψi(rrr) = [
−h̄2

2me
O2 + ve f f (rrr)]ψi(rrr) (2.2)

where, ψi(((r), Ei, and ve f f are the electron orbitals, corresponding eigen values, and effective
potential, respectively. The effective potential, ve f f , in terms of the external potential, Vext ,
and electron density, n(rrr), is given as,

ve f f (rrr) =Vext(rrr)+
∫ n(rrr′)
|rrr−−− rrr′′′|dr′+

δExc[n(rrr)]
δn(r)

(2.3)

where, Exc is the exchange and correlation energy (XC) functional.
Based on the functions used to obtain the required wave equations, DFT calculations

are specified as spatially localized (cluster-type), spatially extended (bulk-type), and plane
wave (spatially extended, periodic functions) calculations [83, 84]. To derive the solutions
of Kohn-Sham equations one requires the XC-functional. Since the proper form of XC func-
tional has yet to be discovered, various approximations have been implemented in the actual
calculations. Some of the widely used approximations are Local Density Approximation
(LDA) [85] and Generalized Gradient Approximation (GGA) [86]. A flowchart showing the
steps of a DFT calculation using a self-consistent force field is given in Fig. 2.3.
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Vn(r) = −
∑

i
Zi

|r−Ri|

Initial gauss for
electron density; n(r)

Generate new potentials
Veff = VH + VXC

Solve Kohn-Sham eq.

− ~2

2mO2φi + (Veff + Vext)φ = Eiφi

Calculate new charge density

n(r) =
∑

i |φi(r)|2

convergence test
n(r) converged?

Done !!

Yes

No

Figure 2.3: Simplified flowchart of the self-consistent Khon-Sham DFT calculation.

2.2.1 Local Density Approximation (LDA)

The LDA method is so called local approximation method as the electron exchange corre-
lation energy at a point is considered a function of energy at that point. The XC-energy
functional in LDA method is given as [85],

ELDA
XC [n(rrr)] =

∫
n(rrr)EXC[n(rrr)]dr

where, EXC is the energy density obtained as the sum of individual exchange and correlation
contributions, i.e., EXC =EX +EC, which is the exchange-correlation energy of an electron in
a non-interacting homogeneous electron gas of the electron density n(rrr). This approximation
is best for the systems with slowly varying charge density.
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2.2.2 Generalized Gradient Approximation (GGA)

In GGA method, XC-energy functional is considered as a function of electron density and
its gradient. Here, the XC-energy functional is [86],

EGGA
XC [n(rrr)] =

∫
n(rrr)EXC[n(rrr),On(rrr)]dr

Since numerous distinct functionals can be used to gain information from the gradient of
the electron density, several functionals have been implemented in the GGA method, among
which Perdew-Wang (PW91) [21] and Perdew-Burke-Ernzerhof (PBE) [20, 22] functional
are the two frequently used functionals.

2.3 Structural descriptors of amorphous materials

In general, amorphous materials are isotropic materials, having properties identical in all
directions. Compared to the periodic structure of crystalline materials, amorphous materials
show significant variation in their local atomic environment. In amorphous materials, the
number of nearest neighbors and neighboring distances can characterize the real-space local
atomic environments. In this dissertation, we have implemented the following descriptors to
analyze the atomic distribution of amorphous materials up to various length scales.

2.3.1 Static Structure Factor

For an electron with charge distribution, ρdV , the scattering intensity in terms of the
scattering factor, fe, is given as [87],

I = fe f ∗e (2.4)

where,
fe =

∫
exp[

2πi
λ

(sss− sss0).rrr]ρ(rrr)dV (2.5)

The scattering factor for an electron in terms of the scattering vector, k = 4π sinθ

λ
, assuming

spherical symmetry, is given as,

fe =
∫

∞

r=0

∫
π

φ=0
exp[ikr cosφ ]ρ(r)2πr2 sinφ dφ dr

=
∫

∞

0
4πr2

ρ(r)
sinkr

kr
dr (2.6)
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For the atoms with n electrons, the atomic scattering factor is the sum of the scattering
factor of each individual electrons, i.e.,

f = ∑
n

fen = ∑
n

∫
∞

0
4πr2

ρn(r)
sin(kr)

kr
dr (2.7)

The scattering intensity from an assembly of N particles, using Born approximation is then
given as,

I =
N

∑
i=1

N

∑
j=1

fi f j exp[
2πi
λ

(sss− sss0).rrri j] (2.8)

For a three dimensional isotropic system,

〈exp[
2πi
λ

(sss− sss0).rrri j]〉=
sin(kri j)

kri j
(2.9)

Hence, Eq. 2.8 becomes,

I =
N

∑
i=1

N

∑
j=1

fi f j
sin(kri j)

kri j
(2.10)

Case I: Monoatomic System:

For a system with N identical atoms Eq. 2.10 can be written as,

I = ∑
i

f 2 +∑
i

∑
j 6=i

f 2 sin(kri j)

kri j

= ∑
i

f 2 +∑
i

f 2
∫

ρi(ri j)
sin(kri j)

kri j
dVj

= ∑
i

f 2 +∑
i

f 2
∫

4πr2[ρ(r)−ρ0]
sin(kr)

kr
dr+∑

i
f 2
∫

4πr2
ρ0

sin(kr)
kr

dr (2.11)

where, ρ(r) = 〈ρi(ri j)〉, is the average density function. For, amorphous materials with no
long-range order, at large r (ρ(r)−ρ0)→ 0. Also, the third term in Eq. 2.11, which depends
on the small angle scattering of the order of k ≤ 2π/R, is neglegible. For finite small angle
scattering Eq. 2.11 becomes,

I = N f 2 +NF2
∫

∞

0
4πr2[ρ(r)−ρ0]

sin(kr)
kr

dr (2.12)

The static structure factor, S(k), in terms of the scattering intensity I, is given as,

S(k) =
I

N f 2 = 1+
4πρ0

k

∫
∞

0
r[g(r)−1]sin(kr)dr
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where, g(r) = ρ(r)/ρ0, is the atomic pair correlation function.

Case II: Polyatomic System:

For a material having n components Eq. 2.12 can be generalized as,

I
N

=
n

∑
i=1

xi f 2
i +

n

∑
i=1

n

∑
j=1

xi fix j f j

∫
∞

0
4πr2 ρi j(r)

x j

sin(kr)
kr

dr (2.13)

−[
n

∑
i=1

xi fi]
2
∫

∞

0
4πr2

ρ0
sin(kr)

kr
dr (2.14)

where, xi, fi, and ρi j(r) are the atomic fraction, scattering factor, and average number of ′ j′

atoms per unit volume at distance r from the atom ′i′. With, the average density function,
ρ(r), Eq. 2.14 becomes,

I
N

= 〈 f 2〉+ 〈 f 〉2
∫

∞

0
4πr2[ρ(r)−ρ0]

sin(kr)
kr

dr (2.15)

The reduced scattering intensity factor is hence,

F(k) = k
[ I

N −〈 f 2〉
〈 f 〉2

]
=
∫

∞

0
4πr[ρ(r)−ρ0]sin(kr)dr (2.16)

Since the structure factor is a one-dimensional projection of diffraction from a three-
dimensional material, information observed via the diffraction structure factor alone is not
sufficient to reveals the actual atomic arrangements in an amorphous material. To understand
the natural structure of the a material, in addition to the structure factor, the radial distribution
function, RDF, is an equally valuable descriptor to be consider.

2.3.2 Radial Distribution Function

The radial distribution function (RDF) [87], J(r), is a statistical measure of atomic two-body
correlations. It provides information about the local ordering or the correlations between
the position of atoms, molecules, or nanoscale building blocks at molecular length scales.
Radial distribution function is useful in finding the strength of intermolecular interactions.
In experiments, the pair correlation function, g(r), can be obtained as the Fourier transform
of the diffraction structure factor, S(Q), given by,

g(r) = 1+
1

2π2ρ0

∫
∞

0

Q[S(Q)−1]sin(Qr)
Q

dQ (2.17)

and, the RDF is,
J(r) = 4πρ0r2g(r)
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For a computer generated model consist of N particles distributed within a volume V ,
atomic pair correlation function (PCF), is given as,

g(r) =
ρ(r)
ρ0

(2.18)

where, ρ0 = N/V is the number density, and ρ(r) is the density function which will be zero
at r < r0 and tends to ρ0 at r� r0. Some important features of radial distribution function
are,
i) position of the first peak of the RDF indicates average bond length of the particles,
ii) the first nearest neighbor cut-off distance is the first minima (depth) of the RDF,
iii) sharpness of the peaks of the RDF indicates the degree of atomic ordering,
iv) area under a first peak of the RDF indicates the coordination number,
v) the RDF is useful in calculation of the thermodynamical properties, such as internal
energy and pressure of a system.

2.3.3 Bond angle Distribution and Ring Statistics

The bond-angle distribution (BD) is a statistical measure that describes the distribution of
bond angles between pair of bonds of an atom with its nearest neighbors as a three-body
correlation. The bond-angle distribution provides information about the local ordering of
atoms, molecules, or nanoscale building blocks in a material and the strength and type of
intermolecular interactions. Bond-angle distribution of a system can be evaluated using
X-ray diffraction and neutron scattering techniques.

Figure 2.4: A toy diagram showing a bond angle (left) between the an atom (red) and its
first nearest-neighbor atoms (blue) and the rings in a network of 9 atoms, the rings are of
size 4 and 8 (right).
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Likewise, ring statistics is a structural descriptor that can characterize the local structure
of amorphous materials. A proper ring should satisfy some specific criteria, such as King’s
criterion [88], shortest path criterion [89], and primitive ring criterion [90]. Based on these
criteria, a ring is the shortest closed path of bonds that starts and ends at the given atomic
site and is not decomposable to smaller rings. In general, ring statistics analyzes a series of
nodes (atoms) connected in a non-overlap closed connection. Each ring is then characterized
by its size, either the total number of atoms of the ring or the number of network-forming
nodes. In the first method, the N-membered ring is defined as a ring with N nodes, while
in a later definition, it is a ring containing 2N nodes. The ring statistics provide a snapshot
of the connectivity of networks, such as short-range order and the local packing of atoms,
molecules, or building blocks in an amorphous material. The size and distribution of rings
indicate the degree of structural disorder, the presence of structural motifs, and the strength
of atomic interactions. A perfect diamond crystal contains 6-fold rings, which can be
different for the covalent amorphous materials having topological disorder. Rings of large
sizes are due to defects or voids in the structure. A ring of (n≥ 4) indicates the topological
order beyond short-range order. Figure 2.4 represents a toy diagram showing a) a bond
angle and b) 4 and 8-fold rings in a network of 9 atoms.

2.4 Electronic properties

Figure 2.5: A diagram representing electronic density of states in a single crystal silicon and
amorphous silicon, localized states can emerge within the band gap of EDoS of a-Si. [91]

Amorphous materials exhibit short-range structural ordering similar to their crystalline
counterparts. Even though there is SRO, it is hard to predict the most extended separation
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between the bonded atoms. Also, due to the absence of long translational order Bloch
theorem [92] is non-fully applicable to describe the electronic properties of amorphous
semiconductors. In amorphous semiconductors, such as a-Si, the valence electrons often are
tightly bound or localized because of the stronger binding forces between the covalently
bonded atoms. As a consequence of tightly bound valence electrons, the electronic density
of state (EDoS) for the localized states extended into the band gap between the energy bands
of the valance and conduction bands, resulting the band tails. In some amorphous materials,
band tails could overlap depending on the degree of impurities. Figure 2.5 represents a
schematic diagram showing the electronic density of state in a single crystal silicon and
amorphous silicon [91], indicating the evidence of band tails in EDoS of an amorphous
solid.

2.5 Debye-Waller Factor

In x-ray diffraction experiments, to measure the intensity of the scattering amplitudes,
crystals or amorphous materials are considered as a perfectly rigid body. In real samples, the
atoms in a material don’t have perfect stable position but will vibrate from the mean position,
for two reasons. The first reason is called zero-point fluctuation, due to the uncertainty
principle of quantum mechanics, which occurs even at 0 K and is independent of temperature.
The next is by elastic waves or phonons, which are temperature dependent. Regardless
the cause, uncertainty of atomic position reduces the magnitude of the interference of the
scattering waves from different atoms of a system.

The atomic form factor [87] of a system with single element is given as,

f = fj exp(−iqqq.rrr j) (2.19)

At a finite temperature, rrr j = rrr0 +uuu j, where rrr0 is the mean position and uuu j is the vibrational
displacement of the atom. The average atomic form factor is then,

f = f j exp(−iqqq.rrr0 j)〈exp(−iqqq.uuu j)〉
= f j exp(−iqqq.rrr0 j) exp(−〈u2〉q2) (2.20)

Hence, the total scattered intensity from an atom is,

I = fff ... fff ∗

= f 2
j exp(−iqqq.rrr0 j) exp(iqqq.rrr0 j)exp(−2〈u2〉q2)

= I0 exp(−2M) (2.21)
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where, M = 〈u2〉.q2. For q = 4π sinθ/λ ,

M = 〈u2〉q2

=
8π2 sin2

θ〈u2〉
λ 2 (2.22)

This intensity reduction factor, e−2M, is known as the Debye-Waller factor.

2.6 Atomic dynamics

The study of the dynamical properties of amorphous materials is not a trivial problem. The
adiabatic (Born-Oppenheimer) approximation [93, 94]- with potential energy given in terms
of the nuclear coordinates, and harmonic approximation [95]- with potential expanded in
the power of the displacement, are the two approximations used in calculation of atomic
vibrational excitations. In harmonic approximation, elementary vibrational excitations are
considered non-interacting and independent. The inclusion of anharmonic terms includes
the interaction between the vibrational excitations.

In general, the hamiltonian for lattice vibrations is given as,

H = ∑
iα

1
2

Miẋ2
iα +

1
2 ∑

iα
i′α ′

Φ
i′α ′
iα xiαxi′α ′ (2.23)

where, i, is the atom index and α = (x,y,z) is the cartesian coordinates in three dimension.
M and xiα are the mass and instantaneous displacement from equilibrium position of an
atom, respectively. The Φi′α ′

iα is a 3N×3N matrix called force-constant matrix, for a system
with N atoms, is given as,

Φ
i′α ′
iα =

∂ 2V (r)
∂xiα∂xi′α ′

(2.24)

The corresponding equation of motion is,

Miẍiα =−∑
i′α ′

Φ
i′α ′
iα xi′α ′ (2.25)

considering the simple harmonic motion, solution for Eq. 2.25 is,

xiα(t) =
uiα√

mi
e(iωt) (2.26)

since uiα is time independent, using equations 2.25 and 2.26, we have

ω
2uiα = ∑

i′α ′
Di′α ′

iα ui′α ′ (2.27)

where, Di′α ′
iα =

Φi′α ′
iα√mimi′

is a real-symmetric matrix, called dynamical matrix. Using the

diagonalized dynamical matrix, equation 2.27 can have 3N real eigenvalues, ω2
j , called

square frequency with 3N normal modes, u j
iα , for each frequency, ω j.
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Chapter 3

EXTENDED-RANGE ORDER IN AMORPHOUS SILICON

The discussion presented in this chapter has been adopted from a publication by D. Dahal,
S. R. Elliott, P. Biswas; Extended-range order in tetrahedral amorphous semiconduc-
tors: The case of amorphous silicon, Phys. Rev. B 105, 115203

3.1 Introduction

The structure of amorphous silicon (a-Si) is well represented by the continuous random
network (CRN) model of Zachariasen [96]. The CRN model of a-Si suggests that each
atom is bonded to four neighboring Si atoms, which form an approximate tetrahedral atomic
arrangement in the amorphous environment. The network is topologically distinct from its
crystalline counterpart (c-Si) owing to the presence of 5-member and 7-member rings. In
addition, a considerable number of hexagonal rings and a few higher-member rings are also
present in the amorphous network. The pair-correlation function (PCF) of a-Si obtained
from CRN models indicates that radial correlations typically extend up to a distance of 15
Å. Although the actual structure of laboratory-grown samples of a-Si may differ from this
simple CRN picture, except for a few properties, the CRN model provides an overall good
description of structural, electronic, and vibrational properties of a-Si that mostly rely on
the short-range order (≈ 5 Å) and, to a lesser extent, the medium-range order (≈ 5–20 Å) of
the network.

Although the structure of a-Si has been extensively studied by using computer-generated
models on the radial length scale of 10–15 Å, there exist only a few studies [61, 97, 98, 41]
that discuss the network structure of a-Si on the medium-range length scale of 20 Å and
beyond. This is partly due to the fact that structural and electronic properties of a-Si are
generally found to be not particularly dependent on the medium-range structure beyond 15 Å
and in part to the computational complexity of conducting quantum-mechanical calculations,
using density-functional theory (DFT), for large models. However, this observation does
not necessarily imply that no medium-range structure exists in a-Si [99]. In this paper, we
address this aspect of the problem by studying the network structure of a-Si using atomistic
models of sizes 21,952 and 400,000 atoms. In particular, we examine two important aspects
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of the medium- and extended-range structures of a-Si that have been reported in the literature.
The first problem involves the presence of weak but noticeable radial oscillations in the
PCF at distances of 20–40 Å. This was first reported by Uhlherr and Elliott [100] and it was
given the name extended-range oscillations in the PCF of a-Si. The second issue is directly
related to the first and it concerns the effect of the medium-range order beyond 15 Å, and
possibly the extended-range order, on the first sharp diffraction peak (FSDP) of a-Si. The
latter corresponds to the first peak of the static structure factor [101], S(Q), at Q = 1.99 Å−1

in a-Si. In the following, we use the term medium-range order (MRO) to imply ordering on
the length scale of 5–20 Å, whereas the term ERO indicates structural ordering beyond 20
Å, including extended-range oscillations.

The role of the medium-range order (MRO) in amorphous networks has been studied
extensively in an effort to understand structure-property relationships in network-forming
glasses, for example, oxides [102, 103, 104, 105, 106] and chalcogenides [107, 108, 109,
110, 111]. The MRO in these systems typically manifests itself as the FSDP, and the position,
width, and intensity of the FSDP characterize the length scale associated with the MRO. The
results from numerous experimental [112, 113, 114, 115, 116, 104, 117] and computational
studies [61, 118, 119, 120, 121, 64, 122] indicate that the MRO/ERO in glassy systems can
extend up to a distance of 30 Å and that it can play an important role in determining a number
of materials properties of network-forming glasses. By contrast, results for tetrahedrally-
bonded elemental amorphous semiconductors, such as a-Si and a-Ge, are few and far
between. Uhlherr and Elliott [100] studied the presence of extended-range oscillations in
a-Si by analyzing experimental neutron-diffraction data of Fortner and Lannin [29] and
the pair-correlation data obtained from atomistic models of size 13,824 atoms. [123] The
authors concluded, via the Fourier inversion of the structure factor in the vicinity of the
FSDP region, that the radial oscillations can extend to at least 35 Å and that it arises from
the propagation of second-neighbor radial atomic correlations. Recently, Roorda et al. [124]
reported the presence of ERO in amorphous Si/Ge using x-ray diffraction measurements at
high resolution. The PCF obtained in their study from the Fourier transform of diffraction
data shows the presence of ERO beyond 20 Å in both a-Si and a-Ge samples. The authors
also noted that the (spatial) periodicity and decay length of the MRO/ERO increase upon
thermal annealing. In view of these observations, the main task of the present study is to
examine the presence of the ERO in large realistic models of a-Si by a direct analysis of the
pair-correlation function and their partial counterparts associated with distant coordination
shells of amorphous silicon.

The rest of the chapter is arranged as follows. In section 3.2, we have provided a
description of the computational methods employed here to generate atomistic models of
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a-Si and a set of partially-ordered networks of Si atoms. This is followed by results and
discussion in section 3.3. The origin of the ERO is addressed from a real-space point of view
of the network structure of amorphous silicon. The relation between the ERO and structure
of the FSDP is also examined in this section by constructing a semi-empirical expression for
the structure factor of a-Si in the Gaussian approximation. This is followed by conclusions
of our work in section 3.4.

3.2 Computational method

The present study involves the use of three different sets of models. The first set consists
of a-Si models obtained from using the Wooten-Winer-Weaire (WWW) [26, 38] algorithm.
The second set comprises a-Si models produced from large-scale molecular-dynamics (MD)
simulations. The third set includes three different types of partially-ordered networks of
Si atoms, denoted by M1, M2, and M3. These networks are not realistic models of a-Si;
they have varying degrees of radial ordering in the respective PCF up to a radial length of 6
Å. In order for the ERO to manifest in the PCF of a-Si at radial distances of 20–40 Å, it is
necessary for the models to be sufficiently large, consisting of a few tens to several tens of
thousands of atoms. To this end, the sizes of the models were chosen to be 21,952 atoms
and 400,000 atoms, which suffice to establish an unambiguous presence of the ERO in the
PCF. In this study, we generated a set of three independent M1/M2/M3 and WWW models
and three MD models for the purpose of configurational averaging of data.

The MD models were produced by initially placing 400,000 Si atoms randomly in a
cubic simulation cell of length 202.4 Å, so that no two atoms could be at a distance of less
than 2 Å. The mass density of the models corresponds to 2.26 g.cm−3, which is close to
the experimental value [125, 28] of the a-Si density, 2.25–2.28 g.cm−3, depending upon
the method of preparation and experimental conditions. The modified Stillinger-Weber
potential [126, 76] was used to calculate the total energy and forces and the velocity-
Verlet algorithm was employed to integrate the equations of motion in canonical ensembles.
The initial temperature was set at 1800 K and the system was equilibrated for 20 ps at
1800 K. The temperature was then gradually decreased, by using a chain of Nosé-Hoover
thermostats [127, 128], from 1800 K to 300 K at an average cooling rate of 5×1012 K/s. The
final structures from the MD simulations were further subjected to geometry optimization
using the limited-memory BFGS algorithm, as described by [129]. Atomic configurations
were collected during the course of simulations once the configurations satisfied a set
of convergence properties, involving a minimum value of the width of the bond-angle
distribution and the number of 4-fold-coordinated atoms in the network.
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The second set of models were produced by using the WWW method. Here, we
employed the modified version of the algorithm, developed by Barkema and Mousseau [38].
The method essentially consists of the following steps: 1) Generate a random configuration
and construct a neighbor list of atoms using an appropriate cutoff value, such that the
network is tetravalent as far as the list is concerned; 2) Employ the WWW bond-switching
algorithm [26, 38] to produce a new configuration and accept or reject the configuration upon
local relaxation of the network via the Monte Carlo method. The bond-switching procedure
largely maintains the tetravalent character of the atomic network during simulations, and
local relaxations were performed by using the nearest-neighbor-based Keating potential [34];
3) Relax the resulting configuration from step 2 at a regular but infrequent interval to include
the structural information from beyond the first shell of neighbors, by using a generalization
of Weber’s adiabatic bond-charge model [130]. For a description of the method, see [38]. In
this study, we have employed three independent 21,952-atom WWW models for obtaining
configurationally averaged values of structural properties.

In addition to the WWW and MD models of a-Si, we have also generated a set of disor-
dered networks, M1–M3, of Si atoms. As stated earlier, these models are partially ordered
and they can be classified by the degree of radial correlations present in the respective PCF.
Specifically, M1 models are highly disordered and have very little or no radial correlations
in the PCF. By contrast, M2 models are characterized by the presence of a well-defined first
peak and radial correlations up to 3 Å. Likewise, M3 models exhibit radial correlations up to
6 Å with a pristine first peak and a part of the second peak, with a well-defined gap between
the peaks. The M2 and M3 models were generated by adding one atom at a time in the
simulation cell so that the addition of each atom satisfied a set of geometric constraints in
order to produce radial correlations up to a length of 4 Å and 6 Å, respectively. The sizes of
the WWW and M1/M2/M3 models were chosen to be 21,952 atoms, with a cubic supercell
of linear size 77.03 Å.

Apart from the WWW, MD, and M1 to M3 models, we have also employed a number
of disordered amorphous silicon (da-Si) and disordered crystalline silicon (dc-Si) con-
figurations in this study. These configurations were produced by including structural
disorder in pristine a-Si and diamond c-Si structures via random displacements of atoms,
using ri,α → ri,α +σ pi,α , from their original positions. Here, ri,α is the α-th component
(α = x/y/z) of the atomic position at site i, σ is the maximum value of the atomic displace-
ment in Å, and pi,α is a random number, which is uniformly distributed between -1 and +1.
The values of σ were chosen from 0.2 Å to 1.2 Å, which correspond to a distortion of the
Si–Si bond length by 8–51% from its average/ideal value of 2.36 Å in a-Si/c-Si. It may be
noted that a value of σ of the order of 0.3 Å satisfies the Lindemann’s criterion of melting,
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producing liquid-like structures of a-Si and c-Si. Thus, the dc-Si configurations with σ �
0.3 Å are considerably disordered compared to their counterparts with σ ≤ 0.3 Å.

Given a distribution of atoms in a disordered network, the structure factor can be obtained
from the Fourier transform of the reduced PCF, G(r). Assuming that the distribution of
atoms in the network is homogeneous and isotropic, the structure factor, S(Q), is given by,

S(Q) = 1+
4πn0

Q

∫
∞

0
r[g(r)−1]sin(Qr)dr

≈ 1+
1
Q

∫ Rc

0
G(r)sin(Qr)dr, (3.1)

where g(r) is the conventional pair-correlation function (PCF), G(r) = 4πn0 r [g(r)− 1]
is known as the reduced PCF, and n0 is the average number density of the system. For
finite-size models, the upper limit of the integral can be replaced by Rc = L/2 by using the
periodic boundary conditions, provided g(r)→ 1 as r→ Rc. We shall see later that this
condition is amply satisfied by models for which Rc is of the order of 20 Å.

3.3 Results and Discussion

3.3.1 Extended-range oscillations in the PCF of a-Si

We begin by establishing the unambiguous presence of radial oscillations in the PCF of a-Si
at a distance of 20–40 Å. Since the calculation of the PCF beyond 20 Å requires sufficiently
large models of a-Si, we first examine the large MD models, consisting of 400,000 atoms.
Thereafter, we proceed to determine the origin of these oscillations by analyzing the three-
dimensional network structure of these 400,000-atom models and a set of 21,952-atom
models obtained from the WWW method. The results from these models will be compared
with the same from the partially-ordered networks, M1 to M3, having varying degrees of
radial ordering up to a distance of 6 Å. The PCFs of the partially-ordered networks, from M1
to M3, are shown in Fig. 3.1, along with the results from the 21,952-atom WWW models
of a-Si. It is evident from the plots that the M2 and M3 models show radial correlations of
up to 4 Å and 6 Å, respectively. The M1 models, on the other hand, exhibit small radial
correlations up to 3 Å, which mostly originate from the imposed constraint of a minimum
separation distance of 2 Å between any two atoms in the network.

Figure 3.2 shows the reduced PCF obtained from the MD models of a-Si, which consist
of 400,000 atoms. The data presented here correspond to the configurational-averaged
values of G(r) from three independent configurations. The inset in Fig. 3.2 shows the
presence of distinct radial oscillations at a distance beyond 20 Å, extending at least up
to 40 Å. Similar oscillations have been also observed in the reduced PCF of 21,952-atom
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Figure 3.1: The pair-correlation functions of three partially-ordered models (M1 to M3) of Si
atoms, showing radial correlations up to a length of 6 Å. The results for a-Si (WWW models)
are shown for comparison with that for the M3 model. The size of the models corresponds
to 21,952 atoms and the PCF data were averaged over three independent configurations for
each model.

WWW models, but in a somewhat weaker form. This is apparent in Fig. 3.3, where we
have plotted the configurationally averaged reduced PCFs for the 400,000-atom MD models
and 21,952-atom WWW models. For comparison, the radial distances (r) in Fig. 3.3 are
scaled by the corresponding position of the first peak (r0) by introducing a scaled variable
R = r/r0. The inset in Fig. 3.3 clearly shows the presence of considerable oscillations in
larger 400,000-atom MD models compared to their WWW counterpart in the region of R

from 6 to 14, which translates into a distance of 14 Å to 33 Å for r0 ≈ 2.37 Å. The observed
differences can be partly attributed to the size and statistics and in part to the nature of
simulations. In general, MD models are considered to be more representative of annealed
samples of a-Si, which are slighly more ordered than their as-deposited counterpart.

Table 3.1 presents some characteristic structural properties of the MD and WWW models.
Since the presence of too many structural defects can affect the local density of the networks,
and the radial correlations between atoms, it is necessary for the models to exhibit properties
that are compliant with experimental observations. The presence of only a few dangling
bonds (up to 1.3%) and floating bonds (up to 1.2%), as well as a small value of the root-
mean-square width, ∆θ , about 9–10◦, of the bond-angle distribution, confirms that the
structural properties of these models are indeed consistent with actual samples of a-Si.
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Figure 3.2: The reduced pair-correlation function, G(r), of a-Si, obtained from a config-
urational averaging of three large MD models of size 400,000 atoms. The inset shows
the presence of radial oscillations up to 40 Å, which are known as the extended-range
oscillations in a-Si.

Table 3.1: Structural properties of three WWW models (W1–W3) and three MD
models (MD1–MD3). The average bond length (〈r〉), average bond angle (〈θ〉), and the
root-mean-square width of bond angles (∆θ ) are expressed in Å and degree, respectively.
Cn indicates the number of n-fold-coordinated atoms (in percent).

Model Bond angle Atomic coordination Bond length
Type Size (N) 〈θ〉 ∆θ C2 C3 C4 C5 〈r〉
W1 21,952 109.21 10.04 0.00 0.00 99.86 0.14 2.36
W2 21,952 109.23 9.83 0.00 0.00 99.9 0.1 2.36
W3 21,952 109.22 9.87 0.00 0.00 99.88 0.12 2.36

MD1 400,000 109.23 9.26 0.02 1.28 97.59 1.11 2.38
MD2 400,000 109.23 9.31 0.03 1.29 97.52 1.16 2.38
MD3 400,000 109.23 9.34 0.02 1.26 97.57 1.15 2.38

To further characterize the models, one often computes the electronic density of states
(EDOS). The EDOS in a-Si is found to be very sensitive to the presence of coordination
defects, especially three-fold-coordinated Si atoms or dangling bonds. The presence of an
electronic gap largely depends on these defects, and the size of the gap is known to be related
to the density of such defects and the degree of disorder in bond-length and bond-angle
distributions. We have therefore calculated the EDOS of 21,952-atom WWW models and
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400,000-atom MD models. Since the diagonalization of the Hamiltonian matrix (H) of such
large a-Si models is highly nontrivial, we had to resort to: a) the tight-binding approximation
of the Hamiltonian; and b) employ the recursion method of Haydock, Heine, and Kelly
(HHK) [131, 132] to obtain the EDOS. In the recursion approach of HHK, one calculates
the projected density of states nα(E), associated with a basis function |α〉 (involving a site
and an orbital), by writing

nα(E) = ∑
k
|〈α|ψk〉|2δ (E−Ek). (3.2)

Here, Ek and ψk are the energy eigenvalues and eigenvectors of H, respectively. Using a
representation of the δ -function and writing z = E + ıε , where ε → 0+, it can be shown that
the projected EDOS can be expressed in terms of the singular part of the diagonal element
of the resolvent of H or the Green’s operator Ĝ(z) = (zÎ− Ĥ)−1. This yields [133]

nα(E) =−
1
π

lim
ε→0+

ℑGαα(E + ıε). (3.3)

The local EDOS obtained from using Eq. (3.3) is averaged over multiple sites to calculate
the total EDOS. For 400,000-atom MD models, the problem is particularly difficult due to
the handling and storage of large matrices and the computational cost associated with the
calculation for all sites. In practice, a few clusters of several hundred atoms are found to
suffice for configurational averaging. Using a fast matrix-vector multiplication scheme and a
compressed representation of the sparse H matrix, one can implement an order-N algorithm
for the calculation of the local EDOS in the tight-binding approximation. The results
obtained from these calculations are shown in Fig. 3.4. The presence of a clean gap, rather
than a pseudo gap, in the EDOS further establishes the quality of the models. The approach
can be adapted to calculate the vibrational density of states in the harmonic approximation,
provided that an efficient scheme to obtain electronic forces for the construction of the
dynamical matrix (DM) of a-Si is available. A simple order-N approach to construct the
DM can be found in Ref. [134].

3.3.2 Origin of extended-range oscillations in a-Si

The first step toward understanding the ERO in a-Si follows from an analysis of the reduced
PCF of disordered crystalline silicon (dc-Si) structures. The inclusion of positional disorder
washes out the sharp δ -functions in the PCF of diamond c-Si and leads to a series of
broadened peaks for the resulting dc-Si structures. A comparison of the reduced PCF of
a-Si with those from dc-Si, for σ = 1.0 Å and 1.2 Å, in Fig. 3.5 reveals that a-Si exhibits
small but noticeable oscillations at large distances of up to at least 30 Å. Despite the fine
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Figure 3.4: The electronic density of states (EDOS) of 21,952-atom WWW and 400,000-
atom MD models obtained from the tight-binding approximation. The presence of an
electronic band gap is clearly visible in the plots.
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Figure 3.5: The presence of radial oscillations in MD models of a-Si (blue) of size 400,000
atoms and two dc-Si structures of size 405,224 atoms from 15 Å to 30 Å. The positions of
the radial peaks of a-Si approximately correspond to those of dc-Si, indicating the possible
presence of weak extended-range ordering in a-Si beyond 15 Å.

structure of G(r) in dc-Si, it is apparent that the positions of the peaks in a-Si approximately
coincide with those in dc-Si. This observation leads to the possibility that the ERO in a-Si
could originate from the presence of weak radial-shell structures on the nanometer length
scale, as in the case of dc-Si. This point is examined at length in the following paragraphs.

Assuming that radial-shell structures exist in the partially-ordered environment of a-Si
at large distances, one may express the total PCF, g(r), as a linear combination of the same
for each coordination shell, gn(r). Thus, g(r) = ∑n gn(r), where gn(r) = 〈g(r = |rn−Ri|)〉i.
Here, r is the distance between a central atom at Ri and its neighbors in the nth coordination
shell at rn, and the symbol 〈〉i stands for the average over all atoms and independent
configurations. Since, for an arbitrary (highly) disordered network, distant radial shells
may not exist or be well defined – depending on the degree of radial disorder – it is more
appropriate to define the nth coordination or topological shell as one that consists of nth
near neighbors of the central atom at Ri. This is schematically illustrated in Fig. 3.6 by
showing the first-shell neighbors (green) and the second-shell neighbors (yellow) of the
central atom (blue). The key point here is that the nth neighbors of a central atom are those
that can be reached (from the center) by a minimum of n distinct and irreversible steps,
irrespective of the presence of well-defined radial shells or not. Thus, the coordination
shells defined above depend on the topology or connectivity of the atomic network, and
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Figure 3.6: A schematic representation showing the first two coordination shells of a central
atom (blue) in a two-dimensional disordered network. The atoms in the first shell (green)
and the second shell (yellow) can be reached from the central atom in one step and two
steps, respectively.

the three-dimensional shape of the shells may not be necessarily spherical. We shall see
later that this can lead to a highly asymmetrical radial distribution of atoms within the
coordination shells of partially-disordered networks. Figure 3.7 shows the shell PCFs, gn(r),
obtained for the first six coordination shells, along with g(r) for a 21,952-atom WWW
model of a-Si. It is apparent that the shell PCFs, for n = 1 to n = 6, can be represented by a
bell-shaped curve in a-Si, with the exception of g3(r) for which a bi-modal distribution is
observed. The latter is consistent with the earlier study by Uhlherr and Elliott [100], who
attributed the bi-modal shape of g3(r) to the end-to-end radial distances of a set of four
neighboring atoms or quartets associated with dihedral angles in a-Si.

Having expressed the total PCF in terms of gn(r), we now examine the oscillations in the
PCF by studying individual gn(r)s, which reflect the characteristic properties of the radial
distributions of atoms in nth shells. In particular, the width of gn(r) is indicative of the
strength of the radial (dis)order in the nth shell. A small value of the width corresponds to a
highly ordered state of atoms within the shell as far as radial ordering is concerned, and vice
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Figure 3.7: The shell pair-correlation function, gn(r), for the nth coordination shell of a
21,952-atom WWW model of a-Si. The total g(r) (dashed black), which is given by the
sum of all shell PCFs, is also shown in the plot.

versa. This assertion can be verified by computing gn(r) for a number of partially-ordered
networks of silicon. Figure 3.8 shows the results for the 13th coordination shell, g13(r)

as a representative example, obtained from 21,952-atom models, of a-Si, dc-Si, and M2.
As stated earlier in Sect. 3.2, the latter model (M2) is characterized by the presence of a
well-defined first-coordination shell, whereas the dc-Si structures are produced by using
a value of σ in the range from 0.3 Å to 1.0 Å. It is apparent that a small value of σ (for
example, σ = 0.3 Å) produces well-defined multiple peaks in g13(r) for dc-Si models.
However, as the value of σ increases and goes beyond 0.6 Å, the peaks in g13(r) coalesce to
form a unimodal distribution. This is unsurprising due to the presence of strong residual
crystalline order in the dc-Si networks for σ ≤ 0.6 Å. By contrast, the width of g13(r)

for a-Si is found to be considerably smaller than its M2 counterpart, which shows a more
radially disordered distribution of atoms within the same shell in M2. This observation is
found to be true not only for g13(r) but also for all gn(r)s. The high asymmetry of g13(r)

for the M2 and dc-Si models can be readily attributed to the connectivity of the atoms in
these models. Since the position of an atom in a given coordination shell is determined by
the number of steps/hops from the central atom, there exist a few atoms in the shell that are
radially close to the central atom but are not reachable (from the central atom) via a small
number of steps/hops, due to the low connectivity of the atoms in the networks for increasing
values of σ . This is reflected in the left tail of the distribution (see Fig. 3.8), which leads
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Figure 3.8: The shell pair-correlation functions, g13(r), obtained from 21,952-atom WWW
models of a-Si (red), dc-Si (blue/purple/cyan), and partially-ordered configurations M2
(green) of Si atoms. The disordered crystalline structures were generated from the diamond
c-Si structure, using σ = 0.3, 0.8, and 1.0 Å.

to a negative value of the skewness for the radial distribution of atoms in the shell. This
can be verified by computing the Fisher-Pearson (FP) coefficient of skewness [135], s, for
g13(r), for different σ values. In general, the FP coefficient of skewness is given by the
standardized third central moment of a distribution, and a negative value of the coefficient
signifies a skewed distribution toward the left, and vice versa. The variation of s with σ for
a number of dc-Si models is shown in Fig. 3.9, along with the corresponding value of the
coefficient for the M2 model for comparison.

Figure 3.10 shows the full width at half maximum (FWHM) of the shell PCFs, gn(r), for
different shells, from n=1 to n=20, for a class of partially-ordered models (M1 to M3), a-Si,
and dc-Si models of size 21,952 atoms. Since dc-Si models tend to exhibit the presence
of multiple peaks in gn(r) for σ ≤ 0.6 Å, the FWHM for the dc-Si models (with multiple
peaks) in Fig. 3.10 is calculated by fitting each individual peak with a Gaussian distribution
and averaging over the resulting FWHM values for all major peaks in the distribution. The
FWHM values (in Fig. 3.10) suggest that the M1 models are highly disordered, whereas the
dc-Si structures with σ = 0.2 Å are the least disordered configurations. This observation is
indeed true by construction. For σ = 0.2–0.5 Å, a significant radial ordering exists in the
dc-Si structures that leads to a small value of the width in Fig. 3.10. The rest of the models,
from M2 and M3 to a-Si, exhibit an increasingly more ordered state of radially distributed
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Figure 3.10: The full width at half maximum (FWHM) for a set of partially-ordered
configurations (M1 to M3), a-Si, and four dc-Si structures of size 21,952 atoms. The dc-Si
structure (with σ = 0.2 Å) is the most ordered configuration, whereas M1 is the least ordered
configuration, by construction.

atoms in the shells. It is apparent that as more radial ordering is incorporated in a model
(for example, M2 and M3), the corresponding FWHM value of gn(r) begins to decrease
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for a given shell. Conversely, the inclusion of (additional) structural disorder increases the
corresponding FWHM value of gn(r) in a model. This can be seen from Fig. 3.11, where
the addition of positional disorder, via random displacements of atoms in M1, M3, and a-Si,
resulted in an increase of the FWHM values of gn(r). This observation also applies to the
total PCF of a-Si. Figure 3.12 shows that the amplitude of the radial oscillations reduces
in the region of 20–40 Å with the addition of positional disorder in a-Si. It may be noted
that the FWHM values for the M1 models, which are highly disordered by construction, are
practically unaffected in Fig. 3.11 in the presence of additional disorder with σ values of the
order of 0.3 Å. Thus, the width (or the average width for a multimodal case) of gn(r) can be
taken as a measure of the radial order/disorder in partially-ordered networks, including a-Si
and dc-Si structures.

3.3.3 Shannon information as a measure of extended-range ordering

The assertion that the width of the shell pair-correlation function, gn(r), can provide a
measure of the disorder in the radial distribution of atoms in the n-th coordination shell of a
disordered network is not particularly surprising and it directly follows from the Shannon
measure of information (SMI) [136]. By normalizing the shell PCF, gn(r), one can readily
construct a discrete probability measure, pi

n, to define the SMI as follows:

S[pi
n] =−k ∑

i
pi

n ln pi
n. (3.4)

In Eq.(3.4), the value of 0 ln(0) is defined to be 0, k is a constant, and pi
n is given by

pi
n =

gn(ri)

∑i gn(ri)
.

The SMI can be understood as providing a measure of the degree of uncertainty or the lack
of radial ordering in the distribution of atoms in the coordination shells. The multiplicative
constant k in Eq. (3.4) can be taken as unity without any loss of generality. The results
for the SMI obtained from M1/M2/M3/a-Si models are shown in Fig. 3.13 for the first
twenty coordination shells. The corresponding results for diamond c-Si are also shown in
the plot for comparison. As one may expect, the SMI values for different shells behave in a
similar manner as that of the FWHM (of the shell PCFs) with respect to the peak position in
Fig. 3.10. Once again, the largest values of the SMI correspond to the highly disordered M1
models, whereas a-Si exhibits the smallest values of the SMI for each shell among M1, M2,
M3 and a-Si. It is noteworthy that, unlike the case of disordered and amorphous Si networks,
the SMI values associated with the coordination shells in the diamond c-Si structure, which
is perfectly ordered, increase considerably with the increasing shell number in a global sense.
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Figure 3.11: The effect of the addition of positional disorder on the FWHM of the shell
PCFs in M1, M3, and a-Si. The FWHM values of the unperturbed models are also shown
for comparison.

This observation can be attributed to the presence of multiple peaks in the higher-order
coordination shells. Since the (shell) PCFs for a crystalline structure consist of a series of
δ -functions, the presence of an increasing number of peaks in the distant shells leads to
more uncertainty in the radial distribution of the atoms in these shells. This is reflected in
the larger value of the SMI for the distant shells. Thus, the SMI can be loosely interpreted
as a global measure of ordering/disordering in the distribution, which is most appropriate
for describing the degree of order/disorder associated with unimodal distributions. However,
for multimodal distributions, such as the dc-Si structures with σ ≤ 0.5 Å, one requires a
suitable local measure of information, for example, the Fisher information [137], in order
to quantify the degree of disorder or uncertainty associated with the radial distribution of
the atoms in the coordination shells. These issues will be addressed elsewhere from an
information-theoretic point of view in a future communication.

The origin of the extended-range oscillations in a-Si can now be interpreted in light of
the results from Figs. 3.7–3.13. Since the full PCF can be expressed in terms of its partial
components, any structural aspects of g(r), such as the extended-range oscillations, can also
be represented by a suitable set of gn(r), associated with the length scale of the oscillations.
Figures 3.10 and 3.13 essentially suggest that, as the degree of radial ordering in the full PCF
increases from M1 to M3, the corresponding width and the Shannon information associated
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Figure 3.13: The Shannon measure of information (SMI), associated with a discrete prob-
ability measure pn, obtained from the shell pair-correlation functions, gn(r), for M1 to
M3, a-Si, and diamond c-Si. For disordered and amorphous Si networks, the results were
averaged over three independent configurations for each shell.

with gn(r) steadily decrease. Thus, the inclusion of radial information of up to a distance
of 4 Å in M2 and about 6 Å in M3 suffices to result in a reduction of the width of gn(r)
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Figure 3.14: The autocorrelation coefficient, γ(rk), of a set of G(r) values from r = 15 Å
to r = 45 Å, constructed from 400,000-atom MD models of a-Si, showing the presence of
radial correlations up to 45 Å. The root-mean-square fluctuations are shown as error bars
(blue vertical lines). For visual clarity, the results for the radial region from 35 Å to 45 Å
are shown in the inset.

associated with the distant coordination shells. Since a-Si is characterized by the presence
of strong radial ordering at least up to a length of 20 Å in the full PCF, it is unsurprising that
a small value of the width of gn(r) of a-Si is reflective of the radial ordering in the distant
shells on the length scale of 20–40 Å. By contrast, the dc-Si models with σ = 0.2–0.5 Å
show significant radial ordering as far as the widths of various gn(r)s are concerned. Thus,
the ERO in a-Si can be understood as the resultant density fluctuations, originating from
highly ordered radial distributions of atoms in the first few coordination/radial shells, which
propagate and decay radially as the (density) fluctuations travel through the distant shells. A
comparison of the results from the M2, M3, and a-Si models in Fig. 3.10 appears to suggest
that the characteristic local radial ordering of up to 6 Å forces the atoms in distant shells to
organize in such a way that small radial oscillations are built up on the length scale of up to
40 Å, when the model is sufficiently large. The presence of these small but distinct radial
oscillations in the full PCF is indicative of the existence of weak extended-range radial
ordering in a-Si up to a length of 40 Å, as far as the size of the a-Si models studied in this
work are concerned.
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3.3.4 Decay of radial correlations, autocorrelation coefficient, and comparison
with experimental diffraction data

The presence of radial atomic correlations beyond 20 Å can be further evidenced by com-
puting the autocorrelation coefficient(s) of G(r). Assuming that M observations, y1, y2, . . . ,
yM, form a time series, where yi = G(ri), the autocovariance coefficient [138], ck, between
the observations that are k-steps apart, is given by:

ck =
1
M

M−k

∑
i=1

(yi− ȳ)(yi+k− ȳ), k = 1, ...,n,n < M. (3.5)

The autocorrelation coefficient at lag k is then expressed as γk = ck/c0, where c0 is the
variance and ȳ is the mean value of the set {yi}. Figure 3.14 shows a plot of γk versus rk.
Here, the set {yi} is constructed by choosing a segment of G(r) from r1 = 15 Å to rn =
45 Å and expressing k in terms of rk = r1 + k∆r, where ∆r is the distance between two
consecutive observations of G(r). It is apparent from the plot that, given the set of G(r)

values from 15 Å to 45 Å, ∆r = 0.05 Å, n = 600, and M = 900, the radial correlations decay
in an oscillatory manner and become almost negligible after 35 Å. The root-mean-square
(RMS) fluctuations of γk, obtained from the configurational averaging of the results from
three independent MD models of size 400,000 atoms, are also shown in Fig. 3.14. Since
the RMS values of the fluctuations are almost of the order of γk for r ≥ 40 Å, the radial
correlations in this region may not be significant, even though the presence of small residual
correlations can be seen in this region.

We now provide a direct comparison of our results with those from diffraction mea-
surements by computing the decay length and the (spatial) period of the ERO at radial
distances beyond 10 Å. High-energy x-ray diffraction measurements on a-Si samples, by
Roorda et al. [124], suggest that the period of oscillations ranges from 2.77 Å to 3.03 Å and
that the decay length in annealed samples of a-Si is about 4.23 Å. Figure 3.15 shows the
decay of the amplitudes of radial oscillations in G(r) for 400,000-atom MD models of a-Si,
which can be roughly considered as the simulated counterpart of annealed samples of a-Si
in experiments. Here, the amplitudes and positions of the peaks are obtained from Fig. 3.2.
The corresponding decay for dc-Si networks for σ = 0.7 Å and 0.8 Å are also included in
the plot for comparison. For visual clarity, the first three peaks of a-Si are omitted from
the plot, by choosing an appropriate range for the y axis. The values of the period and
the decay length obtained from our calculations compare very well with the results from
experiments. The average period of oscillations from 400,000-atom MD models, in Fig. 3.15
(and Fig. 3.2), is found to be 3.2±0.065 Å, which is very close to the experimental value
of 3.03 Å, and the corresponding decay length turns out to be about 4.81±0.012 Å. The

40



6 10 14 18 22 26 30 34
Peak position (Å)

0

0.5

1

1.5

Pe
ak

 h
ei

gh
t (

in
 G

(r
))

a-Si (400,000)
dc-Si (σ = 0.7 Å)
dc-Si (σ = 0.8 Å)
2.35*exp(-x/4.81)

Figure 3.15: The decay of the radial peak heights in G(r) for a-Si (blue) and dc-Si (red
and green) with peak distances. The exponential fit of the peak positions (dashed blue line)
corresponds to the data for a-Si models of size 400,000 atoms. The decay length for a-Si
corresponds to a value of 4.81 Å. The corresponding peak positions for dc-Si structures are
shown for comparison.

latter is somewhat higher than the experimental value of 4.23 Å, obtained from the Fourier
transform of experimental diffraction data by [124]. It is evident from Fig. 3.15 that the
dc-Si models exhibit a rather slow decay, even for considerably large values of σ from 0.7
Å to 0.8 Å.

3.3.5 Relation between ERO and the first sharp diffraction peak in a-Si

In this section, we address the question whether the presence of extended-range oscillations
has any bearing on the position and intensity of the first sharp diffraction peak (FSDP) in
a-Si. Since the origin of the FSDP is strongly related to the presence of medium-range order
(MRO) in glasses, which can extend up to a radial distance of approximately 20 Å, it is
instructive to examine whether the ERO in a-Si can produce any observable effect on the
intensity of the FSDP near 2.0 Å−1.

The effect of distant radial correlations on the position and intensity of the FSDP in a-Si
can be calculated from using Eq. (3.1). However, a direct application of Eq. (3.1) to very
large models can be problematic for two reasons. First, the presence of noise in G(r) at
large R can introduce errors, depending on the signal-to-noise ratio in G(r). This makes it
difficult to identify the optimal value of Rc for large models, by varying the upper limit of
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Figure 3.16: The static structure factor, S(Q), of a 21,952-atom WWW model of a-Si
obtained from the Gaussian approximation (red line) and from direct numerical calculations
(blue circles) using Eq. (3.7).

the integral in Eq. (3.1). Second, for large values of R, the integrand can be highly oscillatory
and conventional integration techniques may not suffice to accurately compute S(Q0) in
the presence of a noisy G(r). To ameliorate these issues, we shall address the problem
by expressing G(r) in terms of suitable distance-dependent radial basis functions, and
calculate the resulting integral analytically to obtain a closed expression for S(Q). Noting
that the oscillations are particularly pronounced in G(r), it is useful to write G(r) as a linear
combination of Gaussian functions

G(r) =
m

∑
i=1

aie−bi(r−ci)
2

(3.6)

in an effort to obtain an analytical expression for S(Q) in terms of the Gaussian parameters.
The parameters ai, bi, and ci determine the approximate peak/trough height, width, and the
(radial) position of the ith peak/trough, respectively, and can be obtained either via a nonlinear
fit of Eq. (3.6) to experimental/simulated reduced PCF data, G(r), or by minimizing a suitable
cost function with respect to the set of parameters (ai,bi,ci). Here, we have taken the second
approach and ensured that bi > 0 for all i. The structure factor can be expressed in terms of
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the fitted Gaussian parameters:

S(Q) = 1+
∫ Rc

0
rG(r)

sin(Qr)
Qr

dr (3.7)

= 1+
1
Q

m

∑
i=1

ai

√
π

bi
sin(Qci) exp

[
−Q2

4bi

]
(3.8)

In writing Eq. (3.8), we have denoted, for notational convenience, the set (ai,bi,ci) as
the fitted values of the parameters and assumed that the center of each Gaussian function,
ci, satisfies the condition 0� ci� Rc so that S(Q) can be written as a sum of Gaussian
integrals (and not error functions) with the integration limit extending from 0 to ∞. This
condition is readily satisfied by choosing an appropriate value of m, such that Rc � cm,
and noting that the first peak of the PCF in a-Si rapidly decays to zero for r ≤ 2.0 Å. In
practical calculations, a value of Rc of the order of 20 Å is found to be sufficient for accurate
determination of S(Q) using Eq. (3.7) [see [69] and Fig. 3.17 here]. The structure factor
obtained from Eq. (3.8) for a 21,952-atom WWW model of a-Si is plotted in Fig. 3.16,
along with the results from direct numerical calculations from Eq. (3.7) for comparison. For
clarity, the wavevector region from 15 Å−1 to 30 Å−1 is shown separately as an inset in
Fig. 3.16.
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The variation of the intensity of the FSDP and the principal peak (i.e., the peak at
3.6 Å−1) can be studied, by using Eq. (3.8), with respect to the number of Gaussian basis
functions m for a given Rc. Writing ∆S(Q, i) = S(Q,m)−S(Q, i), where m=70 for Rc = 30 Å,
Fig. 3.17 shows the convergence of ∆S at Q0 = 1.94 Å−1 and Q1 = 3.6 Å−1 for an increasing
number (i) of peaks/troughs. Here, Q0 and Q1 correspond to the position of the FSDP and
the principal peak, respectively. It is apparent that both S(Q0, i) and S(Q1, i) converge to the
respective limiting value, S(Q,m), very rapidly as i approaches to 30, which corresponds to
a radial length of about 18 Å, as indicated in Fig. 3.17. The length is indicated at the top
of the plot as a secondary x axis, which reflects the non-uniform distribution of Gaussian
peaks/troughs in the radial-region of 0–30 Å. Figure 3.17 suggests that radial correlations
from the region beyond 20 Å do not really play any significant role. This observation can be
stated more precisely. The magnitude of the contribution to S(Q) obtained by including an
additional peak/trough beyond m in Eq. (3.8) can be written as:

|δS(Q,m)| = |S(Q,m+1)−S(Q,m)|

=

∣∣∣∣∣∣
1
Q

√
πa2

m+1

bm+1
sin(Qcm+1) exp

[
− Q2

4bm+1

]∣∣∣∣∣∣

≤ 1
Q

√
πa2

m+1

bm+1
exp
[
− Q2

4bm+1

]
. (3.9)

Substituting Q = Q0 = 2 Å−1 in Eq. (3.9) for the FSDP in a-Si, one obtains:

|δS(Q0,m)|< am+1√
bm+1

exp
[
− 1

bm+1

]
(3.10)

The asymptotic behavior of |δS(Q0,m)| with respect to m follows from Eq. (3.10). Since
G(r)→ 0 as r→ Rc for very large models, the parameter am, which determines the height
of the Gaussian peak, decreases with an increasing value of m, and |δS(Q0,m)| becomes
increasingly smaller as m becomes a large number. In practice, however, |δS(Q0,m)|
fluctuates between 0 and a small value ε due to the presence of numerical noise at large radial
distances, which can be reduced by averaging S(Q) [in Eq. (3.8)] over many independent sets
of fitted Gaussian parameters. Further, a value of Rc of about 30 Å is found to be sufficient
for the calculation of S(Q) from Eqs. (3.7) and (3.8). The results from our calculations
suggest that the average value [139] of ε is typically of the order of 0.025 for radial distances
between 20 Å and 30 Å. This roughly translates into an error of 1.7%, assuming S(Q0)=1.5
for as-deposited samples from experiments [101]. Thus, aside from small fluctuations of
S(Q0) owing to numerical noise, the extended-range oscillations in the radial region of
20–30 Å do not seem to play any observable role in determining the intensity of the FSDP in
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a-Si. A similar conclusion was reached in a recent study [69], where an alternative argument
based on the analysis of the behavior of rG(r) and the sampling of sin(Qr)/Qr within the
radial region from 0 to Rc in Eq. (3.7) was provided by the authors of the study to support
this conclusion.

3.4 Conclusions

The present study addresses the origin of the extended-range oscillations in a-Si from a
real-space point of view. By analyzing a class of large partially-ordered networks of Si atoms
with radial ordering up to a distance of 6 Å in the PCF, it has been shown that the inclusion
of short-range ordering in the first two coordination shells of the disordered networks can
lead to an increased ordering of the atomic radial distribution in distant coordination shells.
A comparison of these results with those obtained from large a-Si and disordered crystalline
configurations reveals that the shell pair-correlation functions for the coordination shells of
a-Si at radial distances of 20–30 Å are considerably ordered and that this radial ordering
manifests in the form of weak oscillations in the total PCF of a-Si, which can be expressed
as a sum of the partial radial distributions from each coordination shell. By using the full
width at half maximum of the peak(s) of the partial PCFs and the Shannon information as
a measure of the degree of order/disorder, one arrives at the conclusion that local atomic
correlations can considerably affect the distribution of atoms in a-Si up to a distance of 40
Å.

An analysis of the amplitude of radial oscillations in the reduced PCF of 400,000-
atom MD models of a-Si shows that the envelope function of the reduced PCF decays
almost exponentially and the resulting decay length (of 4.81 Å) is found to be close to the
experimental value (of 4.23 Å), estimated from the Fourier transform of the diffraction
data obtained for annealed samples of a-Si. Likewise, the period of the extended-range
oscillations (for MD models) is found to be about 3.2 Å, which compares well with the
corresponding experimental value of 3.03 Å for annealed samples. The study also shows that
the structure factor of a-Si can be expressed as a linear combination of a series of Gaussian
functions, whose amplitude is modulated by a sinc function. A convergence study of the
intensity of the FSDP, using the structure factor obtained from the Gaussian approximation,
with respect to the number of peaks in real space shows that the structure of the FSDP is
primarily determined by the radial correlations originating from a distance of up to 20 Å in
a-Si networks, which leads to the conclusion that the ERO has no discernible effects on the
FSDP in a-Si.
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Chapter 4

ORIGIN AND THE STRUCTURE OF THE FIRST SHARP
DIFFRACTION PEAK OF AMORPHOUS SILICON

The discussion presented in this chapter has been adopted from a publication by D. Dahal, H.
Warren, P. Biswas; On the Origin and Structure of the First Sharp Diffraction Peak
of Amorphous Silicon, Physica Status Solidi B, 258: 2000447

4.1 Introduction

The first sharp diffraction peak (FSDP) is a distinct feature of many noncrystalline solids,
which are characterized by the presence of a peak in the low wavevector region (1–2 Å−1)
of the structure factor of the solids. Although the origin of the FSDP in many multinary
glasses is not yet fully understood from an atomistic point of view, it has been shown
that the FSDP is primarily associated with the presence of the short-range and medium-
range order, which entail voids, chemical ordering, large ring structures, local topology,
and atomic correlations between constituent atoms in the amorphous environment of the
solids [140, 141, 142, 70, 143].

The FSDP is ubiquitous in many disordered condensed-phase systems. Numerous
experimental [140, 141, 144, 145, 60] and theoretical [142, 107, 146] studies have reported
the (near) universal presence of the FSDP in glasses and liquids/melts. In glasses, the origin
of the FSDP can be largely attributed to the presence of layered structures [147], interstitial
voids [142, 70, 143], chemical disorder [70], and large ring structures [60] in the networks,
which constitute a real-space description of atomic correlations on the nanometer length
scale. Elliott [142] has shown that the FSDP in binary glasses can be interpreted as a prepeak
in the concentration-concentration structure factor, which is caused by the presence of the
chemical ordering between constituent atoms in the networks. Likewise, the interstitial
voids have been found to play an important role in the formation of the FSDP in tetrahedral
amorphous semiconductors [70], e.g., a-Si. On the other hand, Susman et al. [60] have
reported that in binary AX2 glasses, the A–A and A–X correlations within the extended
ring structures can give rise to the FSDP. Busse and Nagel [147] have suggested that the
existence of the FSDP in g-As2Se3 can be ascribed to the inter-layer atomic correlations
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in the glassy network. Experimental studies on GeSe3 and GeSe5 glasses by Armand et
al. [148] have indicated that the Ge–Ge atomic correlation on the length scale of 6-7 Å is the
primary cause of the FSDP, which is supported by molecular-dynamics studies by Vashishta
et al. [107].

The behavior of the FSDP in covalent glasses often shows an anomalous dependence
with respect to temperature [141, 149], pressure [149, 68], and composition [144, 150].
Following the well-known Debye-Waller [151] behavior, one may assume that the peaks
in the structure factor should decrease with the increase of the temperature of the system.
However, the first (sharp) diffraction peak of many glassy systems has been found to remain
either invariant or become more intense and narrower at high temperature [141, 67]. A
notable exception is vitreous silica (v-SiO2), which does not follow the behavior stated
above. The intensity of the FSDP of v-SiO2 has been observed to decrease with increasing
temperature, due to the thermally induced motion of the atoms and the associated diffused
scattering [152], leading to the broadening of the first peak [149]. Likewise, the position
and the width of the FSDP have been observed to vary with the pressure or density of the
glasses [67, 68]. Neutron diffraction [153] and molecular-dynamics studies of densified
v-SiO2 [154] have indicated that the intensity and the width of the FSDP can change with the
density of the samples/models. These changes can be attributed to the frustration induced
by the reduction of Si–O–Si bond angles and the changes in the Si–Si and O–O atomic
correlations on the length scale of 4–10 Å when the system is densified. A similar conclusion
can be made for GeO2 glass, when the glass is densified [106]. The addition of extrinsic
atoms in glassy networks has been also found to affect the first sharp diffraction peak. Lee
and Elliott [150] have noted that the inclusion of extrinsic atoms in v-SiO2 can change
the chemical ordering of the interstitial voids in the glassy network, which can alter the
shape/width of the FSDP.

While the great majority of earlier studies mostly examined the origin and the behavior
of the FSDP in borate, chalcogenide, oxide, and silicate glasses [143, 155, 58, 156], there
exist only a few studies [142, 70, 100] that address the structure of the FSDP in tetrahedral
amorphous semiconductors, such as a-Si and a-Ge. Elliott and coworkers [70, 100] have
addressed the problem at length, but their studies are primarily focused on the origin of the
extended-range oscillations (ERO) in a-Si. The results from their studies, which are based
on the (Fourier) inversion of experimental structure-factor data of Fortner and Lannin [29]
and highly defective a-Si models of Holender and Morgan [123], suggest that the ERO arise
from the preferential propagation of second-neighbor correlations in the network, which
in turn can significantly affect the intensity of the FSDP up to a radial length scale of 20
Å. However, no systematic analysis of the results with respect to the size of models is
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provided and, thus, in the absence of direct numerical evidence, it is not clear to what extent
the intensity of the FSDP is truly affected by atomic correlations originating from radial
distances beyond 15 Å.

The key purpose of this chapter is to provide a systematic study of the structure of the
FSDP, chapter with an emphasis on the position, intensity, and width of the peak, with the
size of the models. In addition, the origin of the FSDP in a-Si is addressed by obtaining
a quantitative estimate of the contribution of atomic pair correlations from different radial
shells and their effect on the intensity and position of the FSDP. The relationship between
the peaks in the structure factor and its real-space counterpart, the reduced pair-correlation
function, is addressed, and an approximate functional relation between the position of the
FSDP in a-Si and the radial distance of the atoms in the second radial shell of the amorphous
network is obtained. Throughout this chapter, we shall use the term FSDP to refer to the first
peak of the structure factor of a-Si at Q0 = 1.9–2 Å−1 in discussing our results. Likewise, the
term principal peak will be used to indicate the second peak at Q = 3.6 Å−1. For amorphous
silicon, this terminology has been used previously by others [70, 100], and it is consistent
with the fact that the peak at Q0 is indeed the first peak of S(Q) and that it is reasonably
sharp and strong with a value of the intensity S(Q0), which is about 67% of the intensity of
the principal peak.

The rest of the chapter is planned as follows. Section 4.2 provides a brief description
of the simulation method for producing atomistic models of a-Si via the modified Wooten-
Winer-Weaire (WWW) [26, 38] method, the calculation of the radial pair-correlation func-
tion, and the structure factor for these models. This is followed by results and discussion in
section 4.3, with an emphasis on the origin and the structure of the FSDP. The conclusions
of this study are presented in section 4.4.

4.2 Models and Methods

For the purpose of generating atomistic models of a-Si, we have employed the well-known
WWW method. The details of the method can be found in Refs. [26, 38]. Here, we have
used the modified version of the method, developed by Barkema and Mousseau (BM) [38].
In the modified WWW approach, one starts with a random configuration that consists of N

atoms in a cubic supercell of length L. The volume of the supercell is chosen in such a way
that the mass density of the model corresponds to about 2.28 g.cm−3, as observed in a-Si
samples produced in laboratories [101, 28]. Initially, following the BM ansatz, the nearest
neighbors of each atom are so assigned that a tetravalent network is formed [157]. This is
achieved by choosing a suitable nearest-neighbor cutoff distance, up to 3 Å, between Si
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atoms. The resulting tetravalent network is then used as the starting point of the WWW bond-
switching algorithm. New configurations are generated by introducing a series of WWW
bond switches, which largely preserve the tetravalent coordination of the network and the
energy of the system is minimized using Monte Carlo (MC) simulations. The acceptance or
rejection of a proposed MC move is determined via the Metropolis algorithm [158] at a given
temperature. Here, the energy difference between two configurations is calculated locally
by using the Keating potential [34], which employs an atomic-index-based nearest-neighbor
list of the tetravalent network during MC simulations. In addition, the total energy of the
entire system is relaxed from time to time using the Stillinger-Weber potential [76]. Finally,
the configurations obtained from the modified WWW method were relaxed using the first-
principles density-functional code SIESTA [159]. For the models with 216 atoms to 3000
atoms, a full self-consistent-field calculation, using the generalized-gradient approximation
(GGA) [86] and a set of double-zeta basis functions, was carried out. The remaining models
of size from 4096 atoms to 6000 atoms were treated using the non-self-consistent Harris-
functional approach [160] with a single-zeta basis set in the local density approximation
(LDA) [85]. To conduct configurational averaging of simulated data, we have generated 10
models for each size starting with different random configurations using independent runs.

Once the atomistic models are generated, the calculation of the structure factor pro-
ceeds by computing the reduced pair-correlation function. The latter is defined as G(r) =

4πrn0[g(r)−1], where g(r) and n0 are the pair-correlation function and the average number
density of a model, respectively. Assuming that the distribution of the atoms in a disordered
network is isotropic and homogeneous, the structure factor, S(Q), can be written as,

S(Q) = 1+
1
Q

∫
∞

0
G(r)sin(Qr)dr

≈ 1+
1
Q

∫ Rc

0
G(r)sin(Qr)dr, (4.1)

where Rc is the length of the half of the cubic simulation cell. The conventional periodic
boundary conditions are used to minimize surface effects and to calculate the pair-correlation
function in Eq. (4.1).

4.3 Results and Discussion

Equation (4.1) suggests that the shape of the FSDP can be fully determined via the Fourier
(sine) transformation of the reduced pair-correlation function G(r), provided that G(r)→ 0
as r→ Rc. Since the shape of the FSDP is primarily determined by the structure factor in the
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vicinity of Q0 ≈ 2 Å−1, it is apparent that one requires sufficiently large models of a-Si, in
order to satisfy the condition above, for an accurate determination of the FSDP. To this end,
we first validate the structural models of a-Si, obtained from the modified WWW method.
Since the latter is a well-established method, we restrict ourselves to the pair-correlation
function (PCF), the bond-angle distribution (BD), and the coordination number (CN) of
Si atoms in the network. It has been shown elsewhere [48] that the knowledge of the PCF,
the BD, and the CN of the atoms are sufficient to establish whether a structural model can
produce the correct electronic and vibrational properties of a-Si or not. The full structure
factor and the normalized bond-angle distribution, obtained from a set of 3000-atom models
of a-Si, are plotted in Figs. 4.1 and 4.2, respectively. For the purpose of configurational
averaging, the results were averaged over 10 independent models of an identical size. The
simulated values of S(Q) in Fig. 4.1 can be seen to agree well with the corresponding
experimental data reported in Ref. [28]. Likewise, the full width at half maximum (FWHM)
of the bond-angle distribution in Fig. 4.2, about 21.4◦, matches with the observed value
of 18◦–24◦ obtained from the Raman “optic peak" measurements [161]. The FWHM of
the bond-angle distribution for the WWW models is also found to be consistent with those
obtained from high-quality molecular-dynamics simulations [162, 163], and data-driven
information-based approaches [48, 49], developed in recent years. A further characterization
of the models is possible by examining the statistics of the CN of Si atoms, the dihedral-
angle distribution, and the presence of various irreducible rings in the amorphous structures.
However, since the WWW models have been extensively studied and validated in the
literature, we will not linger over the validation issue and get back to the central topic of this
chapter by listing the coordination-number statistics of the atoms and some key structural
properties of the WWW models in Table 4.1. The corresponding results for the DFT-relaxed
models are provided in Table 4.2.

4.3.1 Characterization, origin, and the structure of the FSDP in amorphous silicon

Figure 4.3 shows the structure factor of a-Si obtained from four different models, of
size from 216 atoms to 3000 atoms, and experiments [101]. As before, the simulation
data are obtained by averaging over 10 independent models for each size, whereas the
experimental data refer to as-implanted samples of a-Si in Ref. [101]. An examination
of Fig. 4.3 leads to the following observations. Firstly, it is apparent that the 216-atom
model shows a marked deviation from the experimental data near the FSDP, indicating
noticeable finite-size effects originated from small models of linear size of about 16 Å.
By contrast, the larger models, consisting of 1000 to 3000 atoms, have produced the peak
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Figure 4.1: The structure factor of a-Si obtained from simulations and experiments. The
simulated data are from 3000-atom WWW models of density 2.28 g.cm−3, whereas the
experimental data correspond to those from Ref. [28]. The simulated data are obtained by
averaging over 10 models from independent runs.

Table 4.1: Structural properties of a-Si models before DFT relaxation. The number of
i-fold-coordinated atoms (in percent) in the network is indicated as ni. Bond lengths and
bond angles/widths are expressed in Å and degree, respectively. The results are obtained by
averaging over 10 configurations using a nearest-neighbor cutoff value of 2.8 Å.

Size Bond angle & width Coordination number Bond length
N 〈θ〉 ∆θ n4 n3 n5 〈r〉

216 109.25 9.11 100 0 0 2.35
300 109.25 9.32 100 0 0 2.35
512 109.26 9.41 100 0 0 2.35

1000 109.27 9.16 100 0 0 2.35
2000 109.27 9.31 99.95 0 0.05 2.35
3000 109.26 9.39 99.94 0 0.06 2.35
4096 109.26 9.26 99.95 0 0.05 2.35
5000 109.27 9.31 99.97 0 0.03 2.35
6000 109.26 9.39 99.96 0 0.04 2.35

intensity more accurately. Secondly, all the models consistently underestimate the position
of the experimental FSDP [101] at Q0=1.99 Å−1, by an amount of 0.045 Å−1. One can
surmise a number of possible reasons for this discrepancy. These include the inadequacy of
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Figure 4.2: The normalized bond-angle distribution for a-Si, obtained for 3000-atom WWW
models. The full width at half maximum (FWHM) corresponds to a value of 21.4◦. The
distribution is obtained by averaging over 10 independent models.

Table 4.2: Structural properties of DFT-relaxed models of a-Si. The total number of i-fold-
coordinated atoms (in percent) present in the relaxed networks is indicated as ni. Average
bong lengths and bond angles/widths are expressed in Å and degree, respectively. Asterisks
indicate the use of single-zeta basis functions and the non-self-consistent Harris-functional
approximation for relaxation of large models.

Model size Bond angle & width Coordination number Bond length
N 〈θ〉 ∆θ n4 n3 n5 〈r〉

216 109.11 10.14 100 0 0 2.36
300 109.15 10.22 100 0 0 2.36
512 109.13 10.45 100 0 0 2.36

1000 109.15 10.14 100 0 0 2.36
2000 109.14 10.3 99.95 0 0.05 2.36
3000 109.13 10.4 99.96 0.01 0.03 2.36
4096∗ 109.02 10.82 99.95 0.01 0.04 2.37
5000∗ 109.01 10.9 99.94 0.01 0.05 2.37
6000∗ 109.01 10.92 99.95 0.01 0.04 2.37

the classical potentials, the uncertainty of the actual density of the a-Si sample(s) used in
experiments, and a possible sample-to-sample dependence of the experimental results. The
last point can be appreciated by noting that the experimental value of Q0, for as-implanted
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Figure 4.3: The structure factor of a-Si in the vicinity of the FSDP from simulations and
experiments. Experimental data (•) correspond to as-implanted samples from Ref. [101],
whereas simulated data refer to 216-atom (�), 1000-atom (�), 2000-atom (N), and 3000-atom
(�) unrelaxed WWW models.

samples of a-Si, reported in Refs. [29], [101], and [28] differ from each other by about 0.07
Å−1 (see Fig. 4.11). Finally, a first-principles total-energy relaxation of the models, using the
density-functional code SIESTA [159], somewhat remedies this issue at the expense of the
reduction of the peak intensity. This is illustrated in Fig. 4.4, where we have plotted both the
reduced pair-correlation function (see inset) and the configurational-average structure factor
from ten 3000-atom models before and after total-energy relaxation. The increase of the
peak height of G(r) upon relaxation is not surprising in view of the fact that first-principles
relaxations minimized the total energy of the system by reducing the bond-length disorder
at the expense of a minor increase of the bond-angle disorder. The latter is reflected in
the root-mean-square (RMS) width, ∆θ , of the bond-angle distribution before and after
relaxation in Tables 4.1 and 4.2, respectively. By contrast, the shape of the structure factor
near the FSDP remains more or less the same after relaxation, except for a small shift of the
FSDP toward the higher values of Q.

Having addressed the overall shape of the structure factor and the FSDP for a number of
models of varying sizes, we now examine the origin of the FSDP in terms of the real-space
structure of a-Si networks. While it is well-understood that the FSDP in a-Si arises from
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Figure 4.4: Effects of approximate first-principles relaxations on the position and the
intensity of the FSDP of a-Si for a 3000-atom model before (�) and after (•) relaxation. A
small shift of the diffraction peak toward higher values of Q is accompanied by a slight
reduction of the peak intensity in the relaxed model. The corresponding reduced pair-
correlation functions near the first peak are shown in the inset.

the medium-range order in the network, which entails a length scale of a few to several
angstroms, a quantitative characterization of the contribution from different radial shells
is still missing in the literature. We address this aspect of the problem by examining the
role of radial atomic correlations in forming the FSDP, via the Fourier transform of the
reduced PCF, and provide a quantitative measure of the contributions that originate from
the increasingly distant radial shells in the amorphous environment of silicon. This can be
achieved by writing,

S(Q) = 1+F(Q) = 1+
n

∑
i=1

Fi(Q;R′i,R
′
i+1),

where,

Fi(Q;R′i,R
′
i+1) =

1
Q

∫ R′i+1

R′i
G(r) sin(Qr)dr. (4.2)

In Eq. (4.2), Fi(Q;R′i,R
′
i+1) is the contribution to F(Q) from the reduced PCF, G(r), at

distances between R′i and R′i+1. The contribution from a given radial shell can be obtained
by a suitable choice of R′i and R′i+1, where R′i+1 > R′i, and an appropriate set {R′1, . . . ,R

′
n}

covers the entire radial (integration) range to obtain the full F(Q). For example, a choice
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Figure 4.5: The reduced pair-correlation function, G(r), of a-Si obtained from configura-
tional averaging of ten 3000-atom WWW models. The presence of the first six radial shells,
which extend up to a distance of ≈ 12 Å, is highlighted in different colors.

of R′1 = 0 Å and R′2 = 2.8 Å yields F1(Q;R′1,R
′
2), and R′2=2.8 Å and R′3=4.9 Å provides

F2(Q;R′2,R
′
3). The origin of the FSDP and the principal peak can be studied by computing

various Fi(Q) in the vicinity of 2 Å−1 and 3.6 Å−1, respectively. The appropriate values of
R′i for different radial shells can be obtained by inspecting the reduced PCF of a-Si. This is
illustrated in Fig. 4.5, by plotting the configurational-average G(r) obtained from a set of
ten 3000-atom models. We should emphasize that the radial shells correspond to the radial
regions between two neighboring minima in the reduced PCF. Except for the first radial
shell, the radial regions, defined by a pair of consecutive minima in G(r), are not necessarily
identical to the corresponding atomic-coordination shells due to the overlap of the atomic
distribution from different coordination shells.

Figure 4.6 shows the contribution to F(Q) in the vicinity of 2 Å−1 from the first six
radial shells. The plots for different radial shells are indicated by the corresponding shell
color as depicted in Fig. 4.5. It is evident that the chief contribution to the FSDP comes from
F2(Q), which is followed by F4(Q) and F6(Q) in the descending order of magnitude. F2(Q)

and F4(Q) play a crucial role in determining both the intensity and the position of the FSDP,
while F3(Q) and F5(Q) contribute very little to none. By contrast, F1(Q) monotonically
changes in the vicinity of the FSDP and thus contributes to the intensity (and the shape) of
the FSDP near Q0 to some degree but does not play any noticeable role in determining the
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Figure 4.6: The contribution to the FSDP, Fi(Q), near Q0, originating from the first six radial
shells and the total F(Q) (blue). The results correspond to 3000-atom WWW models, and
are averaged over ten configurations. The color of the plots corresponds to the color of the
radial shells in Fig. 4.5.

position of Q0. It is therefore apparent that the position of the FSDP in a-Si is primarily
determined by the information from the second radial shell, followed by the fourth and
sixth radial shells, whereas the rest of the distant radial shells provide small perturbative
corrections. The enumeration of the radial shell-by-shell contribution to F(Q) is a significant
result to our knowledge, which cannot be quantified from a phenomenological understanding
of the Fourier transform of G(r) in Eq. (4.1). A similar analysis reveals that the contribution
to the principal peak at 3.6 Å−1 mostly arises from F2(Q), F1(Q), F4(Q), and F3(Q), in
the decreasing order of magnitude. Once again, F1(Q) is found to provide a positive but
monotonically decreasing contribution with increasing Q in the vicinity of the principal
peak. Thus, the peak at 3.6 Å−1 is principally contributed by the first four radial shells in
the reduced PCF. This observation amply justifies the use of the term ‘principal peak’ to
describe the peak at 3.6 Å−1 in the structure factor of a-Si. Figure 4.7 shows the results for
the principal peak using the same color code as in Fig. 4.5.
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4.3.2 Relation between peaks in S(Q) and G(r)

The results presented in the preceding section on the basis of the partitioning of F(Q)

reveal that the information from the second and fourth radial shells largely determine the
structure, i.e., the position, intensity, and width, of the FSDP in a-Si. We now provide a
physical interpretation of the numerical results and demonstrate that the emergence of the
first two peaks in S(Q), near 2 Å−1 and 3.6 Å−1, respectively, can be deduced simply from
the knowledge of the reduced PCF and the behavior of the integral, involving the sinc(x)
(i.e., sinx/x) function, which defines the structure factor. Noting that the structure factor
can be written as,

S(Q) = 1+F(Q) = 1+
1
Q

∫ Rc

0
G(r)sin(Qr)dr

= 1+
∫ Rc

0
r G(r)

[
sin(Qr)

Qr

]
dr, (4.3)

it is elementary that the peaks in F(Q) (and hence S(Q)) should appear approximately for
those values of Qr for which both sin(Qr)/Qr and rG(r) are maximum. Here, the r values in
Qr are given by the maxima of rG(r). Since the maxima of sin(Qr)/Qr and sin(Qr) are very
close to each other [164] for Qr > 0, and the maxima of G(r) and rG(r) practically coincide,
one may use the maxima of sin(Qr) and G(r) in determining the approximate location of
the first two peaks in S(Q). This implies Qr must satisfy, sin(Qr) = 1, or Qr = (4m+1)π/2,
where m=0, 1, 2, . . . etc. Since the first two maxima of G(r) are given by r1 ≈ 2.35 Å and
r2 ≈ 3.8 Å, respectively, and m = 0 does not admit a physical solution [164], the first major
contribution to the F(Q) comes from the second radial shell for r2 = 3.8 Å and m = 1. This
gives, Q0 = 5π/(2× r2) = 2.07 Å−1. Likewise, the next contribution comes from, for m = 2,
the fourth radial shell with a peak at r4 ≈ 7.24 Å in G(r). This yields, Q0 = 9π/(2× r4) =
1.95 Å−1. A similar analysis shows that the principal peak (Q1) gets its share from the first
radial shell, for m = 1, at Q1 = 5π/(2× r1) = 3.34 Å−1, which is followed by the second
radial shell, for m = 2, at Q1 = 9π/(2× r2) = 3.72 Å−1, the fourth radial shell, for m = 4,
at Q1 = 17π/(2× r4) = 3.69 Å−1, and the third radial shell, for m = 3 and r3 = 5.72, at
Q1 = 13π/(2× r3) = 3.57 Å−1. The exact position of a peak in S(Q) is determined by the
sum of the contribution from the relevant radial shells, which introduce a minor deviation
from the individual estimate above due to the approximate nature of our calculations. Table
4.3 presents a summary of the results obtained from the reasoning above. The estimated
position of the peaks in Fi(Q), for i=1 to 6, is listed in the Table. The first column, shown in
light gray shading, corresponds to the maxima (ri) of G(r) up to a radial distance of 11 Å,
whereas the second row, indicated by dark gray cells, lists the values of Qr = (4m+1)π/2
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Figure 4.7: The contribution, Fi(Q), to the principal peak at Q1 = 3.6 Å−1 from the first
six radial shells of the reduced pair-correlation function. The total F(Q) is shown in blue
color for comparison. The results are obtained via configurational averaging of data from
ten 3000-atom models.

for m=1 to 6. The remaining six rows, between columns 1 and 8, indicate the peak positions
in Fi(Q) that are obtained by dividing the Qr values by the corresponding ri value from the
first column. The estimated positions of the FSDP and the principal peak for a number of
combination of (ri,m) are shown in Table 4.3 by green and red colors, respectively.

Conversely, assuming that the FSDP is located at Q0 ≈ 2 Å−1, one arrives at the
conclusion, by dint of our logic, that the contribution to the FSDP should come from
r = (4m+1)π/(2×Q0) = π/4,5π/4,9π/4, and 13π/4, etc., for m = 0 to 3. The first value
of r, for m = 0, does not provide a physical solution but the remaining values at 3.93 Å,
7.07 Å, and 10.21 Å approximately correspond to the second peak, the fourth peak, and
the sixth peak of G(r) (cf. Fig. 4.5). A similar analysis can be done for the principal peak.
The argument presented here suffices to explain why the information from the distant radial
shells, for r ≥ 15 Å, cannot contribute significantly in the formation of the FSDP. At large
radial distances, when the reduced PCF rapidly vanishes and the concomitant numerical
noises in G(r) become increasingly stronger, sin(Qr)/Qr cannot find, or sample, suitable
values of r with a large G(r), for Q values near the FSDP, to satisfy the condition above.
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Table 4.3: Estimated values of the peak positions, Q, in Fi(Q), obtained from Qr = (4m+
1)π/2 (dark gray cells in the second row for m=1 to 6) and the maxima of G(r) (first column)
in Å. The positions of the FSDP and the principal peak (PP) in Fis are indicated by green
and red colors, respectively. The radial shells that contribute to the FSDP and the PP can be
directly read off the first column.

Maxima 1 2 3 4 5 6 ← m
of G(r) 7.854 14.137 20.42 26.704 32.987 39.27 ← Qr
2.35 3.34 6.02 8.69 11.36 14.04 16.71 Peaks in F1
3.8 2.07 3.72 5.37 7.03 8.68 10.33 Peaks in F2

5.72 1.37 2.47 3.57 4.67 5.77 6.87 Peaks in F3
7.24 1.08 1.95 2.82 3.69 4.56 5.42 Peaks in F4
9.16 0.86 1.54 2.23 2.92 3.6 4.29 Peaks in F5

10.74 0.73 1.32 1.9 2.49 3.07 3.66 Peaks in F6

This leads to small Fi(Q) for the distant radial shells. We have verified that the analysis
presented here is consistent with the results from numerical calculations of Fi(Q).
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Figure 4.8: The dependence of the intensity of the FSDP, S(Q0), with the radial cutoff
distance, Rc, for a number of models of different sizes, as indicated in the plot. The
experimental values of S(Q0) reported in the literature are shown as horizontal dashed lines:
1) S(Q0)=1.52 from Ref. [101]; 2) S(Q0)=1.37 from Ref. [29]; and 3) S(Q0)=1.55 from
Ref. [28].
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The results and discussion presented so far indicate that the radial information from the
reduced PCF of up to a length scale of 15 Å plays a significant role in the formation of the
FSDP. To further establish this point, we now conduct a systematic study of the structure
of the FSDP in terms of the intensity and the width of the peak. The variation of the peak
intensity with the size of the models is studied by plotting the value of S(Q0) against Rc for a
number of DFT-relaxed/unrelaxed models, consisting of 216 atoms to 6000 atoms. Since Rc

is given by the half of the linear size of the models, Fig. 4.8 essentially shows the dependence
of S(Q0) on the radial pair correlations up to a distance of Rc, through the Fourier transform
of G(r). It is clear from the plots (in Fig. 4.8) that the intensity of the FSDP for both
the relaxed and unrelaxed models varies considerably until Rc increases to a value of the
order of 14 Å. This roughly translates into a model of size about 1000 atoms. For even
larger values of Rc, the peak intensity is more or less converged to 1.48 for the unrelaxed
models but considerable deviations exist for the value of DFT-relaxed models from the
experimental value of S(Q0) of 1.52 in Ref. [101]. The deviation of the peak intensity from
the experimental value for small models of a-Si can be readily understood. Since G(r) carries
considerable real-space information up to a radial distance of 15 Å, possibly 20 Å for very
large models, small models with Rc values less than 15 Å cannot accurately produce the peak
position using Eq. (4.1). On the other hand, the peak intensity for the DFT-relaxed models
deviates noticeably (about 0.2–12%) from their unrelaxed counterpart and the experimental
value for as-implanted samples in Refs. [101], [29], and [28]. This apparent deviation for
the bigger models is not particularly unusual and it can be attributed, at least partly, to: 1)
the use of approximate total-energy calculations in the relaxation of large models, via the
non-self-consistent Harris-functional approach using minimal single-zeta basis functions; 2)
the intrinsic difficulties associated with quantum-mechanical relaxations of large models;
and 3) the sample dependence of experimental results, showing a considerable difference in
the value of S(Q0) for as-implanted samples in Fig. 4.8, which is as high as 0.18 from one
experiment to another. Thus, the results obtained in this study are well within the range of
the experimental values reported in the literature [29, 101, 28].

The full width at half maximum, or FWHM, of the FSDP for different models is plotted
against Rc in Fig. 4.9. A somewhat high value of the FWHM for the large DFT-relaxed
models is a consequence of the reduction of the peak intensity. As the intensity of the peak
reduces, the FWHM increases slightly due to the widening of the diffraction plot away from
the peak. An inspection of Figs. 4.8 and 4.9 appears to suggest that the values of FWHM
and S(Q0) are somewhat correlated with each other. In particular, amorphous-silicon models
exhibiting smaller values of S(Q0) (in Fig. 4.8) tend to produce somewhat larger values
of FWHM in Fig 4.9, irrespective of the size of the models and DFT relaxation. This is
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Figure 4.9: The full width at half maximum (FWHM) of the FSDP at Q0 for a number
of models before (�) and after (•) DFT relaxations. The horizontal dashed lines indicate
the experimental values of 0.54 Å−1 (green), 0.57 Å−1 (black), and 0.77 Å−1 (indigo) for
as-implanted samples of a-Si from Refs. [101], [28], and [29], respectively.

apparent in Fig. 4.10, where FWHM and S(Q0) values for all configurations and sizes are
presented in the form of a scattered plot. A simple analysis of FWHM and S(Q) data by
computing the Pearson correlation coefficient, rXY , confirms the suggestion that FWHM and
S(Q0) values are indeed linearly correlated with each other and have a correlation coefficient
of rXY = −0.9. The linear least-square (LS) fit of the data are also shown in Fig. 4.10
by a solid (red) line. The great majority of the FWHM and S(Q) values in Fig. 4.10 can
be seen to have clustered along the straight line within a rectangular region bounded by
the experimental values of FWHM and S(Q0), from 0.54 to 0.77 Å−1 and 1.37 to 1.55,
respectively.

Likewise, the dependence of the position of the FSDP with Rc for the unrelaxed and
DFT-relaxed models is illustrated in Fig.4.11. For the unrelaxed models, Q0 is observed
to converge near 1.95 Å−1, whereas the corresponding value for the DFT-relaxed models
hovers around 1.97 Å. In both the cases, Q0 is within the range of the experimental values,
from 1.95 Å−1 to 2.02 Å−1, shown in Fig. 4.11.

In summary, a systematic study of a-Si models, consisting of 216 to 6000 atoms, firmly
establishes that the structure of the FSDP in a-Si is mostly determined by radial pair
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Figure 4.10: A scattered plot showing the presence a clear correlation between the FWHM
and S(Q0) of the FSDP for a number of models of varying system sizes. The solid (red)
line corresponds to the linear least-square (LS) fit of the data, whereas rXY =−0.9 indicates
the Pearson correlation coefficient for the data sets. The horizontal and vertical dotted
lines indicate the experimental values of FWHM and S(Q0), respectively, obtained for
as-implanted samples of a-Si.

correlations up to a distance of 15 Å, as far as the size of the largest models employed in
this study is concerned. Further, the major contribution to the FSDP arises from the second
and fourth radial shells, along with small residual contributions from the distant radial shells
at a distance of up to 15 Å.

4.3.3 The FSDP and the radial shell structures of a-Si

Earlier, in sections 4.3.1 and 4.3.2, we have demonstrated that the position of the FSDP, Q0,
is primarily determined by F2(Q) and, to a lesser extent, F4(Q). This leads to a possibility
of the existence of a simple functional relationship between Q0 and a suitable length scale
in the real space involving the radial atomic correlations in the network. In this section,
we will show that an approximate relationship between Q0 and the average radial distance,
〈R2〉, of the atoms in the second (radial) shell does exist. Below, we first provide a rationale
behind the origin of this relationship, which is subsequently corroborated by results from
direct numerical calculations.

The first hint that an approximate relationship may exist follows from the behavior of
Q0 with the (mass) density, ρ , of the models. In Fig. 4.12, we have plotted the variation
of Q0 against ρ for a-Si. For this purpose, the density of a set of 3000-atom models is

62



6 8 10 12 14 16 18 20 22 24 26
Rc (Å)

1.7

1.8

1.9

2

2.1

2.2

Q
0

216 300 512 1000 2000 3000 4096 5000 6000

Q
0
 = 1.99 

Q
0
 = 1.95

Q
0
 = 2.02

DFT-relaxed
Unrelaxed
Expt 1
Expt 2
Expt 3

Figure 4.11: The dependence of the position of the FSDP, Q0, with the size of the models
before (�) and after (•) DFT relaxations. The horizontal lines correspond to the experimental
value of Q0 for as-implanted samples of a-Si from Refs. [101] (green), [28] (black), and
[29] (indigo).

varied, within the range from 2.12 g.cm−3 to 2.32 g.cm−3, by scaling the length of the cubic
simulation cell and the position of the atoms therein. This involves a tacit assumption that
for a small variation of the density, by about ±5%, the atomistic structure of the network
would remain unchanged and that a simple scaling approach should suffice to generate
low/high-density models. Given that the WWW models of a-Si do not include any extended
defects and voids in the network, the scaling assumption is reasonably correct and suitable
to produce models with a small variation of the density. Figure 4.12 presents the results
from our calculations, which show a linear relationship between Q0 and the density, ρ , of
the models. This linear variation of Q0 with ρ is not particularly unique to a-Si; a similar
behavior has been observed experimentally by Inamura et al. [68, 67] for densified silica.

The results from Fig. 4.12 and the experimental data from Refs. [68] and [67] suggest
that Q0 can vary approximately linearly with the average density, ρ , of the models/samples.
Since ρ is inversely proportional to the cubic power of the simulation cell size (L) for a
given number of atoms, Q0 also varies as 1/L3 when the density is varied by rescaling
the volume. Thus, for homogeneous and isotropic models with no significant variation
of the local density, which the WWW models satisfy in the absence of extended defects
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Figure 4.12: The variation of the peak position (Q0) for 3000-atom models of a-Si with its
mass density before (�) and after (•) DFT relaxations. The value of Q0 has been observed
to vary linearly with the density of the model. The experimental values of Q0 (horizontal
dashed lines) correspond to as-implanted samples of density 2.28 g.cm−3 from Refs. [28]
(black), [101] (green), and [29] (indigo).

and voids, it is reasonable to assume that Q0 ∝ 1/r3
i j, where ri j(ρ) is the distance between

any two atoms in the network, at sites i and j, of average density ρ . In view of our earlier
observation that the position of the FSDP is largely determined by F2(Q)(see Fig. 4.6), one
may posit that ri j values between R2 and R3 in G(r) mostly affect the peak position at Q0.
These considerations lead to the suggestion that by substituting r3

i j by its average value of
〈r3

i j〉 = 〈R3
2〉 for the atoms in the second radial shell, Q0〈R3

2〉 should remain constant, on
average, upon density variations via volume rescaling. Likewise, one can invoke the same
reasoning and may expect Q0〈R3

4〉 should be also constant but only approximately, due to
the limited role and contribution of the atoms in the fourth radial shell in determining the
position of Q0.

The efficacy of our argument can be verified by results from direct numerical calculations.
A plot of Q0〈R3

2〉 (and Q0〈R3
4〉) versus the average density ρ in Fig. 4.13 (and Fig. 4.14)

indeed confirms our prediction. It may be noted that the observed (absolute) deviation,
∆, of Q0〈R3

2〉 values in the density range 2.15–2.3 g.cm−3 in Fig. 4.13 is of the order of
±0.46σ , where σ is the (largest) standard deviation obtained by averaging results from 10
independent models for each density. By contrast, the corresponding deviation for Q0〈R3

4〉 in
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Fig. 4.14 is found to be more than two standard deviation, as indicated in the plot. The large
deviation of Q0〈R3

4〉 values is not unexpected in view of the small contribution of F4(Q) (to
the FSDP) that originates from the fourth radial shell. Thus, the results from Fig. 4.13 lead
to the conclusion that Q0 is approximately proportional to the inverse of the average cubic
power of the radial distance, 〈R3

2〉, of the atoms in the second radial shell in a-Si. It goes
without saying that the use of 〈R2〉3, instead of 〈R3

2〉, does not change the conclusion of our
work, as the difference between these two values is found to be about 1.92–2.1 Å3, for the
mass density in the range of 2.15 to 2.3 g.cm−3, which simply shifts the plot (in Fig. 4.13)
vertically downward by a constant amount.

We end this section by making a comment on the possible role of distant radial atomic
correlations, or extended-range oscillations (ERO), in G(r) on the FSDP, based on our
preliminary results from 6000-atom models. Although the presence of ERO in ultra-large
models of a-Si beyond 15 Å is an undisputed fact [100], a direct determination of the effect
of the ERO on the FSDP in a-Si is highly nontrivial due to the presence of intrinsic noises
in G(r) at large radial distances. Numerical calculations using 6000-atom models of a-Si
indicate that only a minute fraction of the total intensity of the FSDP results from the radial
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4〉 for the atoms in the fourth radial shell of

a-Si in the density range from 2.15 to 2.3 g.cm−3. The large deviation of Q0〈R3
4〉 values,

indicated by ∆≈ 2.5σ , from a constant value suggests that no simple relationship between
Q0 and 〈R3

4〉 exists.

region beyond 15 Å. These calculations do not include any possible artifacts that may arise
from the noises in G(r) at large distances. The observed deviation in the peak intensity, due
to the truncation of the radial distance at 15 Å and at higher values, is found to be about
1–2%, which is less than one standard deviation (σ ) associated with S(Q0), obtained from
using the maximal radial cutoff distance Rc(= L/2), as far as the results from 6000-atom
models are concerned. Figure 4.15 shows the variation of the intensity near the FSDP for
five different cutoff values from 15 Å to 18 Å and 24.85 Å. It is apparent that the changes in
S(Q) near Q0 are very small as the radial cutoff value increases from 15 Å to 18 Å. These
small changes in the intensity values are readily reflected in Fig. 4.16, where the fractional
errors associated with the calculation of S(Q,ri) are plotted against Q for ri = 15 Å to 18
Å. Thus, as far as the present study and the maximum size of the models are concerned,
the ERO do not appear to contribute much to the FSDP. However, an accurate study of the
ERO in a-Si would require high-quality ultra-large models, consisting of several tens of
thousands of atoms, and a suitable prescription to handle noises in G(r) at large distances.
These and some related issues concerning the origin of the ERO in a-Si and their possible
role in S(Q) will be addressed in a future communication.
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Figure 4.15: The structure factor, S(Q), in the vicinity of the FSDP from 6000-atom a-Si
models. The change in S(Q) due to varying radial cutoff distances, ri, is found to be less
than one standard deviation (∆S(Q0) ≈ 0.85σ for ri = 15 Å, and 0.46σ for ri = 18 Å).
The standard deviation, σ , is obtained from using the maximal radial cutoff L/2, which is
given by 24.85 Å. The results correspond to the average values of S(Q) obtained from 10
configurations.

4.4 Conclusions

In this chapter, we have studied the origin and structure of the FSDP of a-Si with an
emphasis on the position, intensity, and width of the diffraction peak. The study leads to
the following results: 1) By partitioning the contribution of the reduced PCF to the FSDP,
which originates from the Fourier transform of radial atomic correlations in the real space, a
quantitative measure of the contribution to the FSDP from different radial shells is obtained.
The results show that the position of the FSDP in a-Si is principally determined by atomic
pair correlations in the second, fourth, and sixth radial shells, in the descending order of
importance, supplemented by small residual contributions from beyond the sixth radial shell;
2) A convergence study of the position, intensity, and width of the FSDP, using a set of
models of size from 216 to 6000 atoms, suggests that the minimum size of the models must
be at least 1000 atoms or more in order for the results to be free from finite-size effects. This
approximately translates into a radial length of 14 Å, which is consistent with the results
obtained from the radial-shell analysis of the reduced PCF; 3) A theoretical basis for the
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is the absolute error and Rc (=24.85 Å) is the half-length of the cubic simulation cell for
6000-atom models. The error due to the truncation of the radial distance at ri can be seen to
be around 1–2%, which is well within one standard deviation of S(Q0) (see Fig. 4.15).

results obtained from numerical calculations is presented by examining the relationship
between the peaks in the structure factor and the reduced PCF. Contrary to the common
assumption that the peaks in the structure factor and the reduced PCF are not directly related
to each other, we have shown explicitly that the knowledge of the reduced PCF alone is
sufficient not only to determine the approximate position of the FSDP and the principal
peak but also the relevant radial regions that are primarily responsible for the emergence
of these peaks in the structure factor, and vice versa; 4) The study leads to an approximate
relation between the position of the FSDP and the average radial distance of the atoms in the
second radial shell of a-Si networks. For homogeneous and isotropic models of a-Si with
no significant variation of the local density, it has been shown that the position of the FSDP
is inversely proportional to the cubic power of the average radial distance of the atoms in
the second radial shell. The result is justified by providing a phenomenological explanation
– based on experimental and computational studies of the variation of the FSDP with the
average density of a-Si samples and models – which is subsequently confirmed by direct
numerical calculations for a range of density from 2.15 to 2.3 g.cm−3.
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Chapter 5

RADIAL SHELL CORRELATIONS AND FIRST SHARP
DIFFRACTION PEAK OF AMORPHOUS SILICA

5.1 Introduction

Amorphous silica, a-SiO2, is one of the extensively studied covalent material in solid state
physics. Many experimental [165, 166, 167] and theoretical studies [61, 168, 169] have
shown that the first sharp diffraction peak (FSDP) of a-SiO2 appears at the low wavevector
region near 1–1.5 Å−1 of the structure factor of a-SiO2. Origin of the FSDP of a-SiO2 is
primarily due to medium-range orders such as ordering of the interstitial voids around the
network-forming cations [61] and crystalline layers or quasilattice planes [58].

The first sharp diffraction peak of a-SiO2 depends on the radial correlations of medium-
range order [168]. In an atom-void cluster model of a-SiO2, Elliott (1991) has indicated
the origin of FSDP is due to the low atomic occupancy zones in cluster networks [61]. On
the other hand, the partial structure factor obtained from density-density or charge-charge
correlations shows the FSDP of a-SiO2 has significant contribution from the chemical
ordering on the amorphous network of atoms extended up to 4-8 Å, with a negligible
contribution of the radial correlations beyond 8 Å [168]. Which is identical as in a-GeSe2

and a-SiSe2 glasses [107], even though connectivity of those glasses is different as compared
to a-SiO2. In oxides and chalcogenide glasses the FSDP arises as a prepeak of concentration-
concentration structure factor [170].

Significant variation on the position and intensity of the FSDP of a-SiO2 with mass
density have been observed in diffraction experiments [166, 149]. The position of the
FSDP shifted towards the larger-Q region and intensity/height of the FSDP decreased with
incresing mass density. In silica glass, densification shows no changes in the short-range
order of the system. Even though densification can lower the Si-Si and O-O bond-length,
densification cause nearly negligible change in Si-O bond-length with nearly no changes in
the short-range order of the system, which indicates FSDP as the feature arises due to the
intermediate-range orders [149]. The decrease in Si-O-Si bond-angles changes real-space
structure ordering that shifted FSDP at the larger-Q region [166, 149], however the changes
are inconsistent with elastic compression of silica glass [166].
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Uchino et al. (2005), in a real-reciprocal space analysis of silica using continuous
wavelet transform technique, have shown the dominant correlation on the FSDP of silica
is associated with second-neighbor correlations, such as Si-O-Si-O-Si and O-Si-O-Si-O
extended up to 5 Å [171]. The Si-Si, O-O, and Si-O correlations all contribute on the FSDP
of a-SiO2, an anti-correlation from Si-O is inevitable on the diffraction peak at the vicinity
of 3 Å−1 [169].

In this chapter, we have analyzed the origin of the FSDP of a-SiO2 using real-space
radial correlations from different radial shells. Rest of the chapter is aligned as follows, in
section 5.2, the methods implemented in model generation and calculation of the reduced
scattering intensity, F(Q), of a-SiO2 are presented in brief. Contribution of the radial shell
correlations on the FSDP of a-SiO2, including those for the partial reduced scattring intensity,
are discussed in section 5.3. The relevent conclusions thereafter are stated in section 5.4.

5.2 Computational Methods

The atomistic model of a-SiO2 is generated using decorated and relax method [172] from a
216-atom supercell of a-Si with four-fold coordination and no defects, as a starting point.
Amorphous silica consist of tightly centered bond angles at the tetrahedral angle. Later,
bond-center VI (Si) is added to all IV-IV (O-O) bonds and the coordinates are adjusted to
match the experimental density of a-SiO2 about 2.20 g.cm−3. [173] The final configuration
is then relaxed using the first-principles density functional code SIESTA [159], for full
self-consistent-field calculation using generalized-gradient approximation [86] and a set of
double-zeta basis functions.

For an isotropic binary system with N atoms, the reduced scattering intensity factor [87]
is given as,

F(Q) = Q
[ I

N −〈 f 2〉
〈 f 〉2

]
=

Q

〈 f 〉2
[
∑
i j

xix j fi f j (Ii j−1)
]

F(Q) = Q
[ f 2

1

〈 f 〉2
x2

1 (I11−1)+
f 2
2

〈 f 〉2
x2

2 (I22−1)+
2 f1 f2x1x2

〈 f 〉2
(I12−1)

]
(5.1)

Ii j is the partial interference function, given as,

Ii j = 1+
4πρ0

Q

∫
∞

0
r
[
gi j(r)−1

]
sin(Qr)dr (5.2)

where gi j(r) =
ρi j(r)
ρ0 x j

, ρi j(r) is the average number density of type j atoms at distance r from
type i, and ρ0 =

N
V the number density of the system. The structure factor, S(Q), in terms of

F(Q), is hence,

S(Q) = 1+
F(Q)

Q
(5.3)
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For actual calculation the upper limit of the integeral in Eq. 5.2 is trancated to the radial cut
off, Rc, half of the box length of the cubic simulation cell.
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Figure 5.1: The total neutron structure factor of a-SiO2 from simulation (blue line). The
experimental S(Q) of v-SiO2 by Susman et al. [149] is given for comparison (red dots).

5.3 Results and Discussion

Figure 5.1 shows the total neutron structure factor, S(Q), of a-SiO2 consist of 648 (216 Si
and 432 O) atoms, calculated using Eq. 5.3 in Faber-Ziman approach [174] compared with
S(Q) of v-SiO2 obtained from neutron diffraction experiment [149]. Including the diffrac-
tion peaks at the larger Q region, which are associated with the short-range correlations in
SiO4 tetrahedral units, the FSDP from simulation shows good agreement with the result
from neutron diffraction experiment at room temperature. The position of the FSDP of
a-SiO2 is observed near 1.5 Å−1, within the Q-range, 1- 2 Å−1, suggested in diffraction
experiments [165, 166] and molecular dynamic simulations [61, 169]. The bond angle dis-
tribution for O-Si-O and Si-O-Si bonds are represnted in figure 5.2. The model implemented
here shows the average bond angle for O-Si-O and Si-O-Si bonds are 109.5

◦ ± 3.5
◦

and
141.5

◦±12.5
◦
, close to the experimental results, 109

◦
and 144-152

◦
, respectively. [175, 176]
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Figure 5.3: The reduced pair-correlation function, G(r), of a-SiO2 extended up to 10 Å. The
first seven distinct radial shells are highlighted with different colors.

5.3.1 Radial shell analysis of the reduced scattering intensity (F(Q))

Figure 5.3 shows the reduced PCF, G(r), of a-SiO2, the distinct radial shells, extended up
to ≈ 10 Å, are highlighted with different colors. The reduced scattering intensity for an
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isotropic binary system is given as,

F(Q) =
∫

∞

0
G(r) sin(Qr)dr

where, G(r)(= 4πrρ0[g(r)−1]) is the reduced pair correlation function. For the contribution
of real space correlations arises from different radial shells to the FSDP of the reduced
scattering intensity factor, Eq 5.4 is further defined as,

F(Q) =
n

∑
i=1

Fi(Q;Ri,Ri+1)

where,

Fi(Q;Ri,Ri+1) =
∫ Ri+1

Ri

G(r) sin(Qr)dr.

is the contribution to F(Q) from a radial shell at between Ri and Ri+1. For clarity, the term
F(Q) used in this chapter differs with the similar notation used in monoatomic system as
discussed in the previous chapter.
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Figure 5.4: Contribution to the FSDP of a-SiO2 from different radial shells, colors used
for the plots are consistent with the colors of the corresponding radial shells presented in
Fig. 5.3.

The contribution of the real-space correlations from the different radial shells to the
FSDP of a-SiO2 near the vicinity of 1.5 Å−1 is given in Fig. 5.4. The majority of structure
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of the FSDP is coming from the third and fourth radial shell extended between 3-6 Å. Some
minimal positive contribution is from the sixth and seventh shell. The impact of radial shell
correlations on the FSDP indicates the radial correlations of 3-6 Å play a vital role in the
origin of the FSDP, when entire radial correlations are considered.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Q (Å

-1
)

-1.5

-1

-0.5

0

0.5

1

1.5
F

(Q
)

F
O-O

(Q)
F

Si-O
(Q)

F
Si-Si

(Q)
F(Q)

Figure 5.5: The reduced scattering intensity, F(Q), of a-SiO2 at the vicinity of the FSDP
(blue), the contribution from Si-Si (green), Si-O (red), and O-O (black) correlations, in
terms of the (weighted) partial reduced scattering intensity, Fαβ (Q), are compared for their
contribution to the FSDP.

A comparison of the FSDP of a-SiO2 with the weighted partial reduced scattering
intensities due to atomic correlations of types Si-Si, Si-O, and O-O is presented in Fig. 5.5.
At the vacinity of the FSDP, a majority of structure of the FSDP appears from Si-O and O-O
correlations with minimal background contribution from Si-Si correlations, consistent with
the diffraction pattern observed via neutron scattring experiments. [169]

Till now, from the radial shell analysis of the FSDP, contribution of third and fourth
radial shells or the Si-O and O-O correlations is observed inevitebal to the FSDP of a-SiO2.
To understand the role of the real-space correlation on the origin of the FSDP, a comparison
of the partial atomic pair-correlation functions is given in Fig. 5.6. Figure 5.6 reveals the
impact of O-O-O and Si-O-Si correlations on the structure of the FSDP. In countary to the
oxides and chalcogenide glasses, Si-Si correlations plays minimal role in the origin of the
FSDP of a-SiO2.
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5.3.2 Real space contribution to the partial reduced scattering intensity factors

The partial reduced scatering intensity, Fαβ (Q); α,β = Si,O, are analyzed based on the
partial real space correlations obtained from the radial shells on the corresponding partial
pair-correlation function, Gαβ (r). The total Fαβ (Q) is given as,

Fαβ (Q) = ∑
j

F j
αβ

(Q;R j
αβ

,R j+1
αβ

)

where,

F j
αβ

(Q;R j
αβ

,R j+1
αβ

) =
∫ R j+1

αβ

R j
αβ

Gαβ (r) sin(Qr)dr.

where, R j
αβ

and R j+1
αβ

representes the lower and higher end of the jth radial shell.
Figures 5.7- 5.9, represent the partial correlations, Gαβ (r), separated in to diffrenet radial

shells, with corresponding partial reduced scattering intensity, Fαβ (Q), and the contribution
of each radial shell of Gαβ (r) to the Fαβ (Q) at the vicinity of the FSDP of a-SiO2. The major
contribution to the FSDP of a-SiO2, as observed in Fig. 5.5 is from the Si-O correlations.
Later, we analyzed the contribution of the radail shells of GO-O(r) to the FO-O(Q). as
presented in Fig. 5.7. The second and fourth radial shell of GO-O(r) play constructive role
to the first diffraction peak of the FO-O(Q). On the other hand, major role on the FSi-O(Q) is
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Figure 5.7: The radial shells in the partial reduced pair-correlation function GO-O(r)(upper
plot) and the radial shell contribution to the partial reduced intensity factor, FO-O(Q), (lower
plot) at the vicinity of the FSDP.
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the partial reduced scattering intensity FSi-O(Q).
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Figure 5.9: Distinct radial shells of GSi-Si(r) (above) and the contribution to the FSDP of
FSi-Si(Q) arises from the corresponding radial shells (below).

obtained from the first radial shell, as shown in Fig. 5.8. Likewise, the second and fourth
shell contributed must of the structure of the FSi-Si(Q), as given in Fig. 5.9.
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Figure 5.10: The partial PCF gαβ (r) obtained from a-SiO2 system of density 2.10 g.cm−3

(blue) and 2.30 g.cm−3 (red), respectively

After analyzing the impact of the real-space correlations arises from different radial
shells of the total or partial pair correlation function, it is apparent to that the real-space
correlations extended up to 8-10 Å have their role on the existance of the FSDP in wave-
vector space structure of a-SiO2, the correlations related with MROs in the amorphous
network of a-SiO2.

5.3.3 Variation of the FSDP with density

The variation of the position and intensity of the FSDP of a-SiO2 with mass density is
presented in figure 5.12. Figure 5.12 suggests that the position of the FSDP increases
approximately linearly with the mass density. A rapid decrease on the intensity, S(Q0), of
the FSDP is oserved at higher density The structural difference between the silica models
at 2.10 g.cm−3 and 2.30 g.cm−3 are given in figure 5.10 and figure 5.11. Figure 5.10
represents the partial pair correlation function of a-SiO2 at densities 2.10 g.cm−3 and 2.30
g.cm−3, respectively. Minimal changes are observed in the atomic correlations with density,
depending on the connectivity of the atom-atom types. The reduced scattering intensity at
two different densities, are shown in Fig. 5.11. Except for FO-O(Q), position of the first peak
in partial reduced scattering intensity is observed shifted towards the higher Q region where
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Figure 5.11: The partial reduced scattering intensity Fαβ (Q) of a-SiO2 of density 2.10
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minimal change in the intensity of the diffraction peak is obtained. The structural ordering
at the medium-range length scale can vary with density of a amorphous system as change in
bond angles or connectivity of the atoms occur. [177] Increasing density of a silica glass
introduces 5 and 6 folds in Si-O coordinations [178] which reduce the Si-Si and O-O bond
length, as a consequence of which the position of the FSDP shifted towards the higher Q
region. [178]

5.4 Conclusion

A through analysis of the first sharp diffraction peak of the reduced scattering intensity,
F(Q), of a-SiO2 in atomic point of view, using computer simulated model of 648 atoms, at
density of 2.20 g.cm−3, is presented in this study. The real space information obtained from
the diffrent radial shells, characterized by distinct correlations, are analyzed for their impact
on the FSDP of a-SiO2 at the vicinity of 1.5 Å−1. The major contribution to the FSDP of
a-SiO2 is observed coming of the radial correlations of the third and fourth radial shell of
the reduced pair correlation function, located between 3-10 Å radial length. The impact of
the real-space correlations is further varified from similar analysis of the partial reduced
scattering intensity factor. Comparison of the partial reduced scattering intensity due to Si-O,
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Figure 5.12: Variation on the position, Q0, and intensity, S(Q0), of structure factor, S(Q), of
a-SiO2 with density.

O-O, and Si-Si correlations indicated Si-O and O-O correlations have significant impact on
the FSDP of a-SiO2, with minimal contribution from Si-Si correlations. As reported in the
previous literature, the radial correlations beyond the SRO are observed having their role in
the origin and structure of the FSDP of a-SiO2.

Also, within the range of the density considered in this study, intensity of the FSDP is
found rapidly decreses with mass density. In opposite, the position of the FSDP shifted
towards the higher Q-region, as a consequences of the rearrangment of the atoms beyound
SRO. However, the observation made in this study are not completely noval, we have
presented a detail study based on the radial shell analysis approach to reveal the role of the
real-space correlations arises from some discrete radial shells to the origin of the FSDP of
a-SiO2, a binary covalent solid.
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Chapter 6

DEBYE-WALLER FACTOR AND DYNAMICAL PROPERTIES OF
AMORPHOUS SILICON

6.1 Introduction

The influence of thermal vibrations on the intensity of diffraction maxima in crystals has
been extensively studied in the literature [151, 179, 180, 181, 182]. Following Debye’s
original work [151], where vibrations in crystals were assumed to be independent of the
position of atoms in a lattice, more accurate calculations by Faxén [179] and Waller [180]
showed that thermal vibrations reduce the intensity of the diffraction maxima but do not
affect the sharpness of the diffraction lines. The missing intensity from the spectra was found
to be present in the general background, which is known as the temperature diffuse scattering
(TDS). The intensity reduction factor, e−2M, is known as the Debye-Waller factor [183],
where M = 8π2〈u2〉sin2

θ/λ 2 for elemental solids. The mean-square displacement (MSD)
of atoms, 〈u2〉, along a direction Q, is perpendicular to the reflecting plane and θ is the
glancing angle of incidence with the plane. The vector Q is given by (k−k0), where k
and k0 are the wavevectors for the scattered and incident beams, respectively. In Bragg
geometry, the scattering angle 2θ is given by the angle between k and k0, and |k| = |k0|
for elastic scattering with |Q|= 2|k|sinθ = 4π sinθ/λ , where λ is the wavelength of the
scattering radiation.

The relationship between the Debye-Waller factor and finite-temperature atomic vibra-
tions in solids was extensively studied in the last century [151, 179, 180, 181, 182, 184, 185,
186, 187, 188, 150]. However, the great majority of these studies are primarily focused on el-
emental and molecular crystals using a variety of theoretical methods. Among these methods,
the so-called statistical-moment approach [189], Green function techniques [184, 185], and
lattice-dynamical calculations, employing valence force fields, shell models, and adiabatic
bond-charge models [186, 187], are particularly noteworthy. In recent years, the calculation
of the Debye-Waller factor of crystalline materials has been addressed by using total-energy
and forces from density-functional theory (DFT) [190, 188, 150]. By contrast, there exist
only few studies that address the effect of the Debye-Waller factor in the amorphous state,
e.g. As, SiO2 and InP [191, 192, 193]. Unlike monoatomic crystals, the MSD of an atom in
an amorphous solid varies from site to site and depends on the local topology of the network.
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As a result, the MSD of amorphous solids can significantly depend on the structural quality
of the models employed in the calculations. It is therefore absolutely necessary to compute
the Debye-Waller factor using high-quality structural models of amorphous solids obtained
from density-functional calculations.

The absence of translational symmetry in amorphous solids means that the normal modes
and frequencies of vibrations have to be determined in the coordinate space by computing
the environment-dependent atomic force constants without the benefit of any symmetry
considerations. It is therefore necessary to calculate the Debye-Waller factor of amorphous
solids by computing the MSD of atoms in real space. Since the MSD of an atom at high
temperatures can be shown to be proportional to the inverse square of the normal-mode
frequencies in the harmonic approximation, it is also necessary to employ a reasonably large
model of amorphous solids in an effort to include the contribution of atomic displacements
from low-frequency normal modes of the system. This requirement can pose a computational
impediment to accurate ab initio calculations of the MSD of atoms in real space for large
models using an extended set of basis functions [194]. In this paper, we undertake such
a task and study the effect of local disordering and atomic coordination on the MSD of
atoms in amorphous silicon (a-Si). The effect of the Debye-Waller factor on the intensity of
diffraction peaks is studied with emphasis on the first sharp diffraction peak (FSDP) and the
principal peak of a-Si. The variation of the MSD of atoms with temperature in the presence
of coordination defects and short- and medium-range ordering in a-Si networks is discussed.
We also examine the effect of the temperature-induced anharmonicity on the vibrational
dynamics of Si atoms in a-Si at high temperatures and the possible role of low-frequency
vibrations on the molar specific heat of a-Si at low temperatures. Furthermore, the Debye
temperature of a-Si is computed using the harmonic and quasiharmonic approximations and
the results are compared with the same obtained from experiments.

Section 6.2 is devoted to the development of model a-Si networks and incorporation of
defects and extended-range inhomogeneties, which are followed by quantum-mechanical
lattice-dynamical calculations of the MSD of atoms in real space in the harmonic approx-
imation and direct ab initio molecular dynamics (AIMD) simulations without the use of
the harmonic approximation. Section 6.3 presents results and discussion, where the role of
short-range ordering and coordination defects on the MSD of atoms is examined at low and
high temperatures. The Debye temperature and the molar specific heat of a-Si are calculated
and compared with the corresponding experimental values from the literature. A discussion
of role of the low-frequency vibrations of a-Si and their effects on the molar specific heat
is presented and the effect of anharmonicity on the MSD of atoms at high temperatures is
discussed in this section. The conclusions of our work in given in Sec 6.4 .

83



6.2 Method and Models

In this study, we have used a set of high-quality a-Si models obtained from a combination
of classical and AIMD simulations. The term ‘high-quality’ here refers to the fact that
structural, electronic, and vibrational properties of the models are in good agreement with
experimental data and that the models are free from any coordination defects. Below, we
give a brief description of the simulation method for model construction, which is followed
by lattice-dynamical calculations of the MSD of atoms in the harmonic approximation. The
calculation of the MSD from direct AIMD simulations that take into account the volume
expansion of a-Si and the anharmonicity in atomic forces at high temperatures is also
discussed in this section.

6.2.1 Generation of a-Si models

The simulation method employed here consists of two steps. In the first step, several 500-
atom and 1000-atom defect-free configurations, confined in a cubic simulation cell with the
experimental mass density of a-Si of 2.28 g cm−3 [125], were produced using the modified
Stillinger-Weber (SW) potential [195] via classical MD simulations. The simulations were
performed in canonical ensembles with a time step of 1 fs, and the temperature of the
system was maintained by a chain of Nosé-Hoover thermostats [127, 128]. The second step
involved thermalization of the resulting classical models at 300 K using AIMD simulations.
The AIMD runs were conducted for 5 ps using the density-functional code SIESTA [196] by
employing a set of double-zeta (DZ) basis functions [194]. The use of the DZ basis functions
is necessary for the calculation of the mean-square displacement (MSD) of atoms, which was
found to be dependent on the choice of the basis functions. The total energy and forces were
computed by solving the Kohn-Sham equation in the self-consistent field approximation,
and the exchange-correlation contribution to the total energy was obtained by using the
generalized gradient approximation (GGA). The resulting configurations from the AIMD
runs were further relaxed geometrically via the limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm [197] to obtain a set of final structures for studying the Debye-Waller
factor in a-Si. A detailed discussion of the method employed here and the validation of the
resulting models can be found in Ref. [129]. For the calculation of the MSD of tetrahedral
sites, we have used two independent 500-atom models of a-Si with no coordination defects
in the networks.

In order to examine the effect of coordination defects and extended-range inhomo-
geneities on the Debye-Waller factor of a-Si, we have also studied a few defective models
with dangling bonds and voids. Specifically, we have used five independent configurations
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with 2–3 at. % of dangling bonds and two additional independent configurations with no
coordination defects but a pair of spherical voids of radius 4 Å to generate robust MSD
statistics. The dangling bonds (DB) studied in this work are of two types. The first type of
DBs are vacancy-induced, which can be produced by removing a tetrahedrally-bonded Si
atom from a 100% defect-free a-Si network. The removal of a tetrahedrally-bonded atom
creates four neighboring dangling bonds (DB) at the vacancy site. Several such quartets
of DBs were introduced in the network and the resulting network was annealed at 300 K
(and 600 K) for a time period of 5 ps, followed by ab initio total-energy relaxation of the
networks. Care was taken to ensure that at least 2–3 at. % of the total DBs persist in the
final configurations. The second type of DBs studied here are sparsely distributed in the
network, with no neighboring DBs in the vicinity of 10 Å. Since direct MD simulations
cannot produce these isolated DBs in a controlled manner, we have employed an accelerated
metadynamics simulation method to generate these models. Metadynamics simulations of
a-Si [198] can produce configurations with a given concentration of n-fold-coordinated Si
atoms, with n=2–5, for generating a sparsely distributed DBs in the networks. A description
of the method in the context of simulating a-Si models via metadynamics simulations was
discussed by some of us in Ref. [198]. The configurations obtained from metadynamics sim-
ulations were thermalized at 300 K (and 600 K) for 5 ps, followed by ab initio total-energy
relaxation. Likewise, two independent 100% defect-free a-Si models were used to produce
models with a pair of nanometer-size voids by thermalizing and relaxing the configurations.
The final configurations were used to study the effect of voids on the MSD of Si atoms.

6.2.2 Debye-Waller factor from lattice-dynamical calculations

To study the temperature dependence of the MSD of atoms in a vibrating solid, we have taken
two distinct approaches. The first approach involves lattice-dynamical calculations in the
harmonic approximation, whereas the second approach relies on direct AIMD simulations
in canonical and microcanonical ensembles. The latter enables us to include some aspects
of temperature-induced anharmonic effects that can appear at high temperatures. Assuming
that uiα(t) is the displacement of atom i along the α direction, where α = (x,y,z), the
potential energy of the vibrating system can be written as a Taylor expansion about the
equilibrium positions of the atoms. Neglecting the cubic and higher-order terms for small
atomic displacements and noting that the linear terms vanish at the equilibrium position, the
equations of motion can be written as

miüiα(t) =−∑
jβ

Kiα, jβ u jβ . (6.1)
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The coefficient Kiα, jβ is an element of the force-constant matrix and it denotes the magnitude
of the force acting on the i-th atom along the α direction when the j-th atom is displaced by
a unit distance along the β direction. Substituting vi =

√
miui, and assuming the solution

of (6.1) to be simple harmonic, v(t) = v0 exp(−ıωt), the system of linear equations in (6.1)
can be expressed in a matrix form

D−ω
2I = 0. (6.2)

Here, D is a real symmetric 3N×3N matrix, which is known as the mass-adjusted force-
constant matrix or the dynamical matrix, Diα, jβ = Kiα, jβ/

√mim j, and I is the identity
matrix. The eigenvalues and the normalized eigenvectors of D give the squared frequencies
(ω2) and the polarization vectors (ê) of the atoms for the normal modes, respectively. For a
system in stable mechanical equilibrium, all the eigenvalues of D are positive. The atomic
displacement at site i is obtained from a linear combination of the normal modes

uiα(t) =
1√
mi

∑
n

A0(n) êiα(n)e−ıωnt (α = x,y,z). (6.3)

In Eq. (6.3), A0(n) is the vibrational amplitude for the n-th normal mode, which may include
a phase factor, and êiα(n) are the three polarization vectors of atom i, for α = (x,y,z),
associated with the mode n. The value of A0(n) is indeterminate from Eq. (6.2), but it can
be obtained by calculating the average kinetic/potential energy of the system in thermal
equilibrium. Assuming T is the average kinetic energy, we have

T =

〈
∑
i,α

1
2

miu̇2
i,α

〉

=

〈
∑
i,α
n,n′

ωnωn′

2
A0(n)A∗0(n

′)êiα(n) · ê∗iα(n′)eı(ωn′−ωn)t

〉

=

〈
∑
n,n′

ωnωn′

2
A0(n)A∗0(n

′)δnn′ e
−ı(ωn−ωn′)t

〉

=

〈
∑
n

1
2

ω
2
n A2

0(n)
〉
=

〈
∑
n

1
2

En

〉
= ∑

n

1
2
〈En〉 (6.4)

where we have used the orthonormality condition

∑
i,α

êiα(n) · ê∗iα(n′) = δnn′

and the last step in Eq. (6.4) follows from the non-interacting nature of the normal modes in
solids. A similar calculation shows that the average potential energy, V, of the system is also
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given by Eq. (6.4). Since the normal modes can be treated as a set of independent harmonic
oscillators, the average energy 〈En〉 for each mode in thermal equilibrium at temperature T

is given by the quantum-mechanical expression

〈En〉= h̄ωn

[
1
2
+

1
exp(h̄ωn/kBT )−1

]
(6.5)

and the MSD follows from Eqs. (6.3)–(6.5)

u2
iα = ∑

n

〈En〉
miω2

n
|êiα(n)|2 (6.6)

= ∑
n

h̄ |êiα(n)|2
miωn

[
1
2
+

1
exp(h̄ωn/kBT )−1

]
. (6.7)

The MSD, 〈u2〉, can be readily obtained from averaging over all atoms and coordinate
directions and the Debye-Waller factor follows from

M =
8π2 sin2

θ

λ 2 〈u2〉, (6.8)

where λ and 2θ are the wavelength of the scattering radiation and the angle of scattering,
respectively.

At high temperatures, when h̄ωn/kBT � 1, one obtains the classical expression of
the MSD by substituting 〈En〉 ≈ kBT in Eq. (6.6). The first term in Eq. (6.7) gives the
contribution to the MSD from the zero-point motion (ZPM) of atoms, which leads to
weak inelastic scattering even at absolute zero temperature [199]. The effect of thermal
vibrations of atoms is reflected in the second term. The computation of the MSD in the
lattice-dynamical approach can now be summarized as follows: (i) Thermalize the models
at each temperature of interest for 5 ps, followed by ab initio total-energy optimization
to prepare the system for the calculation of the D matrices; (ii) Construct the D matrices
numerically in the harmonic approximation, by displacing each atom, say by 0.005 Å, along
the six coordinate directions (±x, ±y, and ±z); (iii) Diagonalize D to obtain the squared
frequencies and the polarization vectors of the atoms for each mode, and calculate the MSD
from Eq. (6.7). To produce good statistics, the results in Sec 6.3.1 were obtained from
defect-free networks by averaging over two independent configurations, whereas those in
Sec IIIB are obtained from five to ten independent configurations with 2–3% dangling bonds
in the network.

6.2.3 Debye-Waller factor from direct AIMD simulations

The lattice-dynamical approach presented earlier does not include any anharmonic effects
and it is suitable for temperatures well below the Debye temperature of solids. The effects
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of anharmonicity on the vibrational dynamics of atoms in a-Si can be studied via direct
AIMD simulations in canonical and microcanonical ensembles. In this approach, the system
is first equilibrated at a given temperature in canonical ensembles so that the vibrational
dynamics of the atoms are reflective of any temperature-induced structural changes that
may take place in the system. Once the system is in equilibrium at a given temperature
in canonical ensembles, it is then allowed to evolve in microcanonical ensembles. The
use of microcanonical ensembles maintains the hamiltonian structure of the dynamics and
conserves the total energy of the system in the absence of any thermostatting mechanism.
Since the use of constant-volume NVE ensembles can partly restrict the system to include
the effect of anharmonicity due to thermal expansion, the volume of the system before NVE
runs was adjusted for each temperature as

V (T ) =V (T0)[1+ γ(T −T0)]
3, (6.9)

where γ is the coefficient of linear expansion of a-Si, V (T ) is the volume of the system at
temperature T , and T0 = 300 K. For annealed samples of a-Si, the experimental value of
γ is of the order of 4×10−6 K−1[200]. This value leads to a change of volume of about
0.36% at 600 K from the original volume at T0 = 300 K. Thus, it is unlikely that a change of
temperature from 300 K to 600 K would induce a notable change of MSD values due to the
volume expansion of the solid.

The MSDs of the atoms were calculated from equilibrium microcanonical trajectories,
and averaging the results over time and independent configurations during microcanonical
runs. The MSD of atom i at temperature T can be written as

〈u2
i (T )〉= 〈〈(ri(t,T )− r0

i (T ))
2〉t〉config, (6.10)

where ri(t) is the position of atom i at time t and the symbol 〈. . .〉X denotes averaging with
respect to a variable X . Since the approach involves conducting long AIMD simulations in
canonical and microcanonical ensembles, using double-zeta (DZ) basis functions for several
independent configurations and temperatures, it becomes computationally prohibitive for
large system sizes. We shall see later in Sec 6.3.4 that the use of extended or DZ basis
functions is of paramount importance to accurately calculate the MSD and the molar specific
heat of a-Si. We have therefore restricted our simulations to three 216-atom models of a-Si
for the calculation of the MSD. The canonical and microcanonical runs were conducted for a
time period of 10 ps each, with a time step of 1 fs, and the atomic trajectories were collected
by evolving the system for an additional 10-ps microcanonical run beyond equilibration. The
MSD of the atoms were then calculated from Eq. (6.10) for three independent configurations
at several temperatures in the range from 300 K to 600 K.
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6.3 Results and Discussion

6.3.1 Temperature dependence of the Debye-Waller factor in a-Si

In discussing our results, we begin with the variation of the MSD of atoms with the density
of model a-Si networks. Since the density of a-Si samples can depend on preparation
methods and experimental conditions, which may affect the local structure of a-Si and hence
local atomic force constants, it is important to examine whether the vibrational motion of
Si atoms is sensitive to the density of a-Si in the temperature range of 300–600 K. Figure
6.1 shows the variation, or the lack thereof, of the MSD, 〈u2〉, of atoms with the density
of a-Si at 300 K and 600 K. The data correspond to the average values obtained from two
independent 500-atom model configurations. The results suggest that the MSD is almost
independent of the density of a-Si within the range of 2.14–2.30 g cm−3. This observation is
not surprising, noting that the models studied in this work have no coordination defects and
that a small variation of the density – obtained via a homogeneous scale transformation of
atomic distances, followed by thermalization at 300 K (and 600 K) for 5 ps and total-energy
optimization – from 2.3 to 2.14 g cm−3 affects atomic distances by a linear scale factor of s =
1.024. Assuming that the system behaves as a harmonic solid, it can be shown that the MSD
remains practically unchanged in the long-wavelength limit under a scale transformation
from r→ sr in the nearest-neighbor approximation between atoms. However, a small
change of the MSD may result from the high-frequency modes and the deviation from the
nearest-neighbor approximation of the atomic force constants [201]. This is apparent from
the results shown in Fig. 6.2, where a small shift of the MSD is found to lie well within one
standard deviation of the distribution. It may be noted that the results for the model with the
lowest density at 300 K and 600 K have been explicitly verified by constructing the model
from a starting random configuration with a density of 2.14 g cm−3.

In the lattice-dynamical approach, the dependence of the MSD on temperature is gen-
erally studied in the harmonic approximation. Elementary calculations in Sec 6.2.2 show
that, for small oscillations in the classical limit, the contribution to the MSD from thermal
vibrations is directly proportional to the temperature of the system. However, this linear
relationship may not hold at high temperatures, when the presence of thermally-induced
anharmonic vibrations and the thermal expansion of a solid can lead to a coupling between
normal modes. The anharmonicity in atomic vibrations results in an increase of the MSD of
atoms at high temperatures, which we shall discuss in Sec 6.3.5.

Figure 6.3 shows the variation of the MSD, 〈u2〉, with temperature for model a-Si
networks with a density of 2.28 g cm−3. The contributions to 〈u2〉 from the zero-point
motion (ZPM) and thermal vibrations of the atoms are shown separately in the figure. The

89



2.12 2.16 2.2 2.24 2.28 2.32

 ρ (g.cm
-3

)

0

0.01

0.02

0.03

0.04

0.05

0.06

〈u
2 〉 

 (
Å

2 )

a-Si (500-atom)

T = 300 K
T = 600 K

Figure 6.1: The MSD, 〈u2〉, of Si atoms in a-Si with its density in the harmonic approxi-
mation from lattice-dynamical calculations. The MSD values can be seen to be practically
independent of the density at 300 K (blue) and 600 K (red).

MSD values due to thermal vibrations can be seen to increase linearly with temperature
in Fig. 6.3, an observation which is consistent with the theoretical results obtained from
the harmonic approximation in the temperature range of 300–600 K. For comparison,
the MSD values for diamond-structure c-Si are also presented in Fig. 6.3. A somewhat
higher value of 〈u2〉 in a-Si compared to c-Si can be attributed to the disorder associated
with the local tetrahedral environment of a-Si. In a-Si, the atoms are bonded to four
neighboring atoms in an approximate tetrahedral arrangement, which is characterized by
the disorder in the bond-angle and bond-length distributions. The presence of disorder
reduces the strength of Si–Si bonds in the amorphous phase. This is in contrast to c-Si,
where Si atoms are strongly bonded to each other in an ideal tetrahedral arrangement. This
strong and compact tetrahedral bonding results in slightly stiffened atomic force constants
(and relatively high values for normal-mode frequencies in the harmonic approximation)
compared to its amorphous counterpart. Thus, following Eq. (6.6), the MSD of Si atoms
in a-Si can be expected to be somewhat larger than that in c-Si when an identical thermal
perturbation is applied to excite the system.

The temperature dependence of the Debye-Waller factor, e−2M, is plotted in Fig. 6.4
for Q = 1.99 Å−1 and 3.6 Å−1. These two values of Q correspond to the position of the
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Figure 6.2: A comparison of the distributions of u2
i of atoms in a low-density model (blue)

and a high-density model (red) of a-Si at 300 K obtained from two independent models
with no coordination defects. The MSD values for the distributions are indicated as dashed
vertical lines.

first sharp diffraction peak (FSDP) and the principal peak in the static structure factor
of a-Si, respectively. Since the wavevector transfer |Q| = 4π sin(θ)/λ , the value of the
Debye-Waller factor at different temperatures for the two peaks can be readily calculated
for a given scattering wavelength λ . Figure 6.4 shows a plot of e−2M versus T for CuKα

X-radiation with λ = 1.54 Å. The results suggest that the intensity of the principal peak in
a-Si is considerably affected by thermal motion of the atoms in solids even at 300 K. The
intensity of the FSDP at 300 K, however, is reduced by a factor of about 0.94, leading to
small inelastic scattering at 300 K. The missing intensity can be found to be present in the
background, which originates from temperature-diffuse scattering.

We now examine the role of short-range ordering on the MSD of atoms in amorphous
Si networks. Unlike crystals, where one expects a narrow distribution of u2

i , induced by
thermal vibrations of atoms in an identical atomic environment, the MSD of an atom in
amorphous networks varies from site to site, and it largely depends on the local atomic
coordination and the disorder associated with bond lengths and bond angles. Figure 6.5
shows the distributions of atomic displacements, P(u2

i ) versus u2
i , in a-Si at temperatures

300 K and 600 K, along with their crystalline counterparts. The results correspond to the
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Figure 6.3: The variation of the MSD, 〈u2〉, with temperature in the harmonic approximation
for a-Si and c-Si. The contribution to the MSD from the zero-point motion (ZPM) of the
atoms is explicitly shown as horizontal lines.

average values of u2
i obtained from two independent defect-free of configurations of 500

atoms. Owing to the crystalline symmetry of atomic positions, the distributions for c-Si in
Fig. 6.5 are found to be rather narrow and with a root-mean-square width that increases with
the temperature of the system. The heights of these distributions are intentionally truncated
at a value of 0.1 for clarity of presentation and comparison. By contrast, the distributions for
a-Si appear almost gaussian for small atomic displacements, except for a weak non-gaussian
tail for high values of u2

i . For crystals, the gaussian shape of P(u2
i ) readily follows from

lattice-dynamical considerations and it can be shown analytically [202] that the Fourier
transform of P(u2

i ) is directly related to the temperature factor of atoms. However, the
presence of local atomic ordering/disordering in amorphous networks can considerably
influence the otherwise random thermal motion of atoms, which leads to a notable deviation
from an ideal gaussian behavior arising from highly disordered sites. We shall see soon that
the non-gaussian behavior of P(u2

i ) is significantly enhanced in the presence of coordination
defects and other inhomogeneties in the network.

The origin of the non-gaussian tail, associated with high u2
i values, in defect-free a-Si

networks can be traced back to a few clusters of Si atoms, which are sporadically distributed
in the network. These atoms vibrate with relatively high amplitudes compared to the rest
of the atoms in the network. This is illustrated in Fig. 6.6, using a 500-atom model of a-Si
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Figure 6.4: The variation of the Debye-Waller factor of a-Si, e−2M, with temperature for Q
= 1.99 Å−1 (blue circles) and 3.6 Å−1 (red triangles). The results are obtained by using λ =
1.54 Å, which corresponds to Cu Kα lines. The Q values chosen correspond to the FSDP
(1.99 Å−1) and the principal peak (3.6 Å−1) in the structure factor of a-Si.

at 300 K. Silicon atoms that are associated with high u2
i values, with u2

i > 0.0195 Å2, are
shown in red color. This translates into a value of atomic displacement, which is about 6%
of the average Si–Si bond length of 2.36 Å. An examination of the sites with high u2

i values
reveals that these sites are characterized by the presence of long Si–Si bonds, the length of
which is about 2–5% larger than the average bond length of 2.36 Å. The additional stretching
introduces disorder in the bond-length distribution and weakens the bonds. This affects the
nearest-neighbor force constants (K) between Si atoms with long bonds and results in a
reduction of some normal mode frequencies (as ω2 typically decreases with decreasing K),
leading to a larger value of u2

i for these sites from Eq. (6.6) upon thermal excitation.

6.3.2 Effects of defects and inhomogeneities on the MSD

Turning now to discuss the role of structural defects on the MSD and individual squared
displacements, we examine the effect of three-fold-coordinated atoms, or dangling bonds,
and extended inhomogeneities, such as voids, on the vibrational MSD of atoms. To this end,
we have studied two types of dangling bonds. The first type of DBs are vacancy induced,
which were produced by removing a tetrahedrally-bonded Si atom, whereas the second type
of DBs are sparsely distributed in the network. The creation of these DBs is discussed in
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Figure 6.5: The distributions of local squared displacements, u2
i , for a-Si at 300 K (blue)

and 600 K (red). The solid lines (blue and red) indicate a gaussian fit of the data. The
corresponding results for c-Si are also shown in the plot (as green and black lines), which
are truncated for visual clarity and comparison. The results for a-Si correspond to 100%
defect-free networks.

section 6.2.1. In the following, we shall refer to these dangling bonds as clustered (or type
I) and isolated (or type II) DBs, respectively. The results of our calculations, which are
presented in Figs. 6.7–6.10, enable us to make the following remarks.

First, a comparison of u2
i values obtained for the tetrahedral sites with no defects and

clustered DB sites (in Fig. 6.7) shows that atomic displacements of the DB atoms are
notably larger than their tetrahedral counterpart by a factor of two or more. Second, a small
number of DB atoms can be seen to have u2

i values larger than 0.05 Å2 at 300 K, and 0.1
Å2 at 600 K. This indicates substantial local movement of some atoms near the defective
sites and the subsequent healing of a dangling bond to form a tetrahedrally-bonded atom.
Indeed, it was observed that a considerable number of clustered DBs introduced in the
network reorganized themselves to form stable tetrahedral bonding following thermalization
and structural relaxation. Third, a relatively large value of u2

i at the DB sites can be
partly attributed to the presence of reduced atomic coordination, which renders the atoms
more susceptible to move. A normal-mode analysis reveals that a few low-energy modes
contribute considerably to u2

i of the DBs compared to the tetrahedral sites. This is evident
from Fig. 6.8, where a color-map representation of u2

i (ν j) – the contribution to u2
i at the
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DB site i from the normal mode ν j – is presented against the normal-mode frequencies
and atomic sites. The left panel in Fig. 6.8 corresponds to the results obtained for the
clustered DBs at 300 K, whereas the right panel shows the same for an identical number
of tetrahedrally-bonded atoms. Atomic indices of sixty-five clustered/tetrahedral sites are
indicated along the abscissa, whereas the first eighty low-frequency normal modes are
indicated along the ordinate. The color in the plot is indicative of the partial contribution of
u2

i (ν j) (in percent) to the total MSD of atom i. The significant presence of red specks in
the left panel is indicative of high contributions arising from a few tens of low-frequency
normal modes at the clustered DB sites. The vertical indices along the Y axis correspond
to the frequency range of 0 to 110 cm−1 for j=1 to 80. A similar observation applies to
Fig. 6.9 where the results for the isolated DBs are presented.

The distributions of u2
i obtained for the clustered and isolated DBs are found to be quite

different from each other. This is evident from Fig. 6.10, where the distributions resulting
from the clustered (filled red) and isolated (filled green) DBs at 300 K are plotted. The fine
structure in the distribution for the latter is reflective of the degree of sparsity of the isolated
DBs in the network. The first green peak in Fig. 6.10 indicates the presence of several
truly isolated DBs in the network. The subsequent green peaks are reflective of a somewhat
lesser degree of sparsity of the remaining isolated DBs in the network. An analysis of the

Figure 6.6: A 500-atom model of a-Si showing several Si atoms with a large value of u2
i at

300 K. Silicon atoms with top 10% of u2
i values are shown in red color with a slightly larger

radius. The rest of the atoms are shown in yellow color.

95



0.02 0.04 0.06 0.08 0.1 0.12 0.14
u

i

2 
(Å

2
)

0

0.5

1

T (300 K); Clustered DB
T (300 K)

0

0.5

1

1.5

T (600 K); Clustered DB
T (600 K)

P
(u

i2 ) 

a-Si (500)

a-Si (500)

Figure 6.7: A comparison of the distributions of u2
i for the tetrahedral sites (black and green)

of 100% defect-free a-Si networks and the clustered DBs (filled blue and red) at 300 K and
600 K. The distributions are normalized to an integrated value of 10−2.

distribution of the isolated DBs in the networks shows that almost half of the 65 DBs are
sparsely distributed in the network with an average separation distance of 10.3 Å, and a
good majority of these sites contribute to the first (green) peak.

Likewise, the effect of microvoids on the MSD of atoms can be studied by introducing a
couple of voids in the network. Figure 6.11 shows the MSD at 300 K, 450 K and 600 K,
before and after introducing two voids of diameter 8 Å in two 500-atom models of a-Si.
The plots in Fig. 6.11 show that the MSD has considerably increased due to the presence
of several defective atoms on the surface of the voids. The presence of local disorder
and reduced coordination considerably weakens the effective force constants between
neighboring atoms that leads to an increase of the MSD of the atoms on the surface of the
voids.

6.3.3 Debye temperature of a-Si from the MSD of atoms

Having discussed the variation of the MSD of atoms with temperature in the presence of
disorder and defects, we now obtain estimates of the Debye temperature, Θd , and compare
the results with those from experiments. To this end, we first note the following caveat
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Figure 6.8: A color map showing the contribution to u2
i at clustered DB sites (left panel) and

tetrahedral sites (right panel) from the first eighty normal modes (indexed along Y axis) at
300 K, distributed in the frequency range of 0 and 110 cm−1. The abundance of red specks
in the left panel indicates a large contribution at the DB sites from the low-frequency modes.
The rightmost vertical bar indicates the percentage contribution of u2

i (ν j) to total u2
i . The

results correspond to 65 DB sites and tetrahedral sites selected from the same models.

about the definition of the Debye temperature for amorphous solids. In experiments, the
Debye temperature of crystalline solids is generally determined by comparing the measured
specific-heat data at low temperatures (below 25 K) with the expression for the specific
heat given by c1T + c3T 3 in the Debye approximation, where the coefficient c1 is related
to the contribution from the electronic degrees of freedom and c3 involves the Debye
temperature Θd . At sufficiently low temperatures, the density of states (DoS) of low-
frequency vibrations in crystals can be adequately represented by a quadratic function of
the frequency, which results in a T 3 dependence of the specific heat. This justifies the use
of the Debye approximation and the resulting Debye temperature as a physical parameter
for crystalline solids. For amorphous solids, however, the above reasoning is weakened by
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Figure 6.9: A color map showing the contribution to u2
i at isolated DB sites (left panel) and

tetrahedral sites (right panel) from individual low-frequency normal modes at 300 K. The
left panel is awash with red specks indicating a high contribution from the low-frequency in
the range of 0–110 cm−1 modes at the DB sites. The results correspond to 65 DB sites and
tetrahedral sites from the models.

the presence of excess low-frequency vibrations in some systems, leading to vibrational
DoS that may not be well represented by a quadratic function of frequency. This in turn can
affect the temperature dependence of the specific heat of amorphous solids. For a number
of glassy systems the coefficient c3 can be greater than the Debye coefficient cd

3 even if
the T 3 dependence of the specific heat is assumed to hold at low temperatures. Since the
experimental values of Θd of a-Si reported in refs. [203] and [204] are obtained by assuming
c3 = cd

3 , we make the same assumption to calculate Θd for the purpose of comparison in
section 6.3.4.

In this section, we calculate an estimate of the Debye temperature of a-Si from the
computed values MSDs at low temperatures by comparing the MSDs with those obtained
from the Debye theory. To achieve this, we start by writing the expression for the MSD at
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Figure 6.10: The distributions of u2
i for clustered (red) and isolated (green) DBs in a-Si

networks at 300 K. The results correspond to the data obtained from 65 DBs from two sets
of five independent models. The results for the tetrahedral sites (black) are from two 100%
defect-free a-Si networks. The distributions are normalized to an integrated value of 0.01.

temperature T in the Debye approximation [202]

u2
d(T ) =

9h̄2

mkBT

[
1

4xd
+

1
x3

d

∫ xd

0

xdx
ex−1

]
, (6.11)

where xd = hνd/kBT = Θd/T and νd is the Debye frequency. In our approach, we proceed
to calculate Θd from Eq. (6.11) by replacing u2

d(T ) with 〈u2(T )〉. To ensure that the
Debye approximation remains valid, we limit ourselves to 〈u2(T )〉 values obtained at low
temperatures of up to 50 K. The Debye temperature is obtained numerically by calculating
the value of xd for which Eq. (6.11) [with u2

d(T )→ 〈u2(T )〉] is satisfied at temperatures
of 10 K, 30 K and 50 K. The average value of xd and Θd are computed from the results.
Table 6.1 lists the results from our calculations. The estimated value of the average Debye
temperature, for a-Si is found to be 541.5±4 K. We should mention that the absence of
low-frequency vibrational modes in small 500-atom a-Si models underestimates the MSD
values at low temperature due to the inverse-square dependence of the MSD on frequency.
Thus, the Θd value obtained here provides a lower bound of the actual Debye temperature
of a-Si.
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Figure 6.11: The MSDs of Si atoms obtained from 500-atom models of a-Si in the presence
of two voids (red diamonds) at 300 K, 450 K, and 600 K. The corresponding values of the
MSD without voids (blue circles) are also shown in the plot for comparison.

Table 6.1 lists the average values of Θd obtained from the MSDs in the temperature range
of 10–50 K, along with the experimental values of Θd . The computed value of Θd in table
6.1 is considerably higher than the value of 430–470 K obtained by Feldman et al. [205].
These authors employed 216-atom models of a-Si and classical potentials to compute elastic
constants and hence the Debye temperature. The large difference between these two values
is not unexpected as the computation of Θd from different theoretical approaches may vary
notably, depending upon the size and quality of structural models, the accuracy of total-
energy and forces used in the calculations, and the sensitivity of calculations. Experimental
values of Θd , obtained from specific-heat measurements of a-Si at low temperature in the
Debye approximation, suggest that Θd values can vary from 478±5 K [203] to 528±20
K [204]. The Θd value obtained from the inversion of Eq. (6.11) in our work is close to
that of Mertig et al. [204] but notably higher than that observed by Zink et al. [203]. In the
next section, we shall further address this issue by calculating the specific heat of a-Si and
comparing the results with those from the Debye approximation at low temperature.
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Table 6.1: Debye temperatures (ΘD) of a-Si obtained from the mean-square displacements
and specifc-heat data at low temperature.

Ts (300 K) Expt. Ts (350 K)
T 〈u2 〉 xD θD(T ) θD 〈u2 〉 xD θD(T )

(K) (Å2) K (K) (Å2) (K)
10 0.00725 53.632 536.31 0.00725 53.606 536.06
30 0.00730 18.092 542.76 487± 5 [203] 0.00731 18.079 542.37
50 0.00752 10.903 545.17 528± 20 [204] 0.00753 10.889 544.48

6.3.4 Debye temperature from the specific heat of a-Si

In this section, we compute the molar specific heat of a-Si from ab initio lattice-dynamical
calculations in the harmonic approximation, and compare the results from experiments.
We then attempt to obtain an estimate of Θd by invoking the Debye approximation at low
temperature and compare Θd with the same from experiments and that from MSDs. The
total vibrational energy of a solid at temperature T , consisting of N atoms, can be written as
a sum of the energy of individual normal modes

Etot =
3N

∑
i=1

[
1
2
+

1
exp(h̄ωi/kBT )−1

]
h̄ωi

= E0 +ET (6.12)

and the molar specific heat, Cv, is given by

Cv

3R
=

1
3N

3N

∑
i=1

kB x2
i exi

(exi−1)2 , where xi =
h̄ωi

kBT
. (6.13)

In Eq. (6.12), the first term E0 gives the total zero-point energy of the solid, which can be
also written as

E0 =
3N

∑
i=1

1
2

h̄ωi =
∫

∞

0
[Cv(∞)−Cv(T )]dT. (6.14)

In practical calculations, the upper limit of the integral in Eq. (6.14) is replaced by a
sufficiently high but finite temperature, and Cv(∞) indicates the classical value of 3NkB at
high temperatures. For a Debye model, the value of the zero-point energy integral is given by
9
8NkBΘd , which can be readily compared with the value obtained from the lattice-dynamical
calculations. This is illustrated in Fig. 6.12, where the integral value from Eq. (6.14) is
found to converge monotonically to the zero-point energy for temperatures in the vicinity of
3000 K. The corresponding value for the Debye model is also shown for Θd = 541.5 K. The
Debye model underestimates the value of the zero-point energy by about 17% from the ab

initio lattice-dynamical results.
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Figure 6.12: The convergence of the mean zero-point energy (ZPE) per vibrational mode for
a-Si obtained from the integral representation in Eq. (6.14) with temperature (blue line). The
horizontal lines correspond to the results obtained from the sum of vibrational frequencies
(red line at 20.5 meV) and that from the Debye model (green line at 17 meV ). A value of
Θd = 541.5 K is used to calculate the ZPE from the Debye approximation.

The molar specific heat Cv of a-Si at different temperature can be calculated from
Eq. (6.13) and the results can be compared with those obtained from the Debye approxima-
tion, using either the experimental value or the lattice-dynamical value of xd (or Θd) from
our work [

Cv

3R

]

d
=

3
x3

d

∫ xd

0

x4ex dx
(ex−1)2 with xd = Θd/T. (6.15)

The results obtained from Eqs. (6.13) and (6.15) are plotted in Figs. 6.13–6.14 as a function
of 1/xd . Here, we have used the experimental values of Θd = 487 K and 528 K from
Refs. [203, 204] and the theoretical value of 541.5 K obtained from ab initio calculations
presented in Sec 6.3.3. An analysis of the plots in Figs. 6.13 and 6.14 leads to the following
observations:

1) A small change of Θd , and hence xd , has very little to no effect on Cv. This is not
unexpected in view of the integral nature of Eq. (6.15) and it is reflected in Fig. 6.13, where
Θd = 487 K and 528 K were used to obtain Cv in the Debye approximation, leading to almost
identical values of Cv. It is evident from Fig. 6.13 that the Debye approximation considerably
overestimates the value of Cv in a-Si – compared to that from ab initio lattice-dynamical
calculations – above a certain temperature Tc (∼ 84 K) and underestimates it below Tc.
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Figure 6.13: The temperature dependence of the molar specific heat, Cv, of a-Si from the
Debye approximation (green line and red circles) and ab initio lattice-dynamical calculations
(blue line). The results for the Debye approximation are obtained by using Θd = 528 K and
487 K (from Refs. [204] and [203], respectively).

Figure 6.14 shows the low-temperature behavior of Cv, which clearly indicates that the
crossover temperature Tc is in the vicinity of 0.16Θd or 84 K;

2) The linear variation of Cv with T in the low-temperature region of 30–60 K (i.e., x−1
d ≈

0.06 to 0.1) in Fig. 6.14 markedly deviates from the Debye-T 3 law at low temperatures. A
linear behavior of Cv is well-known in the experimental literature of non-crystalline solids,
including for a-SiO2, a-Se [203, 206, 207] and dilute magnetic alloys [208], at temperature
of up to 10 K. This behavior is often attributed to the presence of tunneling modes in
two-level systems (TLS) [209] at low temperatures or due to the presence of vibrational
modes in reduced dimensions, where the presence of ordered/disordered parallel atomic
chains (e.g., in Se/a-Se) can lead to a linear behavior over a certain range of temperature.
By contrast, the linear variation of Cv observed here in Fig. 6.14, which is evident in both
experimental and theoretical results, appears at considerably higher temperatures of 30-60
K than 10 K.

3) The peak positions in the experimental and computed plots of Cv/T 3 vs. T in Fig. 6.15
are found to be at x K and y K, respectively. A small rightward shift of the computed
peak with respect to its experimental counterpart possibly arises from the absence of some
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Figure 6.14: Low-temperature behavior of Cv in a-Si from the Debye approximation (red
line), ab initio lattice-dynamical calculations (blue line), and experiments [204] (black line)
in the region of 20–130 K. An approximate linear behavior of Cv can be seen to appear in
the vicinity of 45 K in both experimental and theoretical results, which corresponds to a
frequency value of about 0.9 THz.

low-frequency modes in small models that leads to a slight reduction of the specific heat
(as no energy is needed to excite the missing modes) and causes the peak to move toward a
higher temperature. However, a direct conformation of this surmise is outside scope of the
presence work due to the small size of models employed in our study.

5) Finally, the argument presented above suggests that lattice-dynamical results obtained
from small models may not reproduce the experimental Cv data of a-Si accurately below
80 K due to the absence of the low-frequency modes near the 1-THz region in the VDOS
of our models. This is reflected in Fig. 6.15, where we have compared the results from the
lattice-dynamical calculations in the harmonic approximation with the experimental data
reported by Zink et al [203]. The difference between the experimental and theoretical values
of Cv below 50 K is noticeable and it is likely to originate from the absence of a small number
of excess low-frequency modes or the boson peak in the vibrational density of states in small
models. To ensure that this difference is not simply related to conventional finite-size effects,
we have verified our results using larger 1000-atom models. The results from two larger
1000-atom models do not exhibit any visible change in Fig. 6.15. This is understandable
because in order to observe the possible contribution of the frequencies near the boson peak
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Figure 6.15: A comparison of the specific heat, Cv, of a-Si at low temperatures from
experimental data (black) in Ref. [203] and the present study, using 500-atom (red) and
1000-atom (blue) models, in the lattice-dynamical (LD) calculations. The results from
the Debye theory of specific heat are indicated as a horizontal dashed line (green), which
corresponds to Cv/T 3 = 0.481 for Θd = 541.5 K.

to the specific heat of disordered solids, the size of a model must be significantly large, of
the order of at least 60,000 atoms or more [210], so that the frequencies in the vicinity of 1
THz can appear in the vibrational density of states. This explains the observed deviation of
theoretical Cv values from experimental data in the vicinity of 50 K in Fig. 6.15.

6.3.5 Effects of anharmonicity on the MSD at high temperatures

We now briefly discuss the effects of anharmonicity on the MSD of atoms in a-Si at high
temperatures. It goes without saying that the temperature-induced anharmonic effects
at high temperatures can be truly taken into account by including thermal expansion of
solids in simulations. Since the AIMD simulations presented in Sec 6.2.3 were conducted
in canonical and microcanonical ensembles, where the volume expansion of a-Si was
taken into account on an ad hoc basis, it is not possible to accurately address the role of
anharmonicity on the MSD of atoms. Nonetheless, the results from direct AIMD simulations
should provide a glimpse of the anharmonic effects on the MSD at high temperatures, as the
volume-expansion factor, ∼ (1+3γ∆T ), in Eq. (6.9) turns out to be very small and of the
order of 1.0036 for ∆T = 300 K and γ = 4×10−6 K−1 [200]. Thus, if we make allowances
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Figure 6.16: A comparison of 〈u2〉 obtained from 216-atom model of a-Si using lattice-
dynamical calculations (blue) and direct AIMD simulations (red). The inset shows the
results obtained by using the classical expression of energy, 〈En〉= kBT in Eq. (6.6). See
section 6.3.5 for a discussion.

for not including such a small change of volume of the system, we should be able to observe
the effects of temperature-induced anharmonicity on the MSD of atoms at high temperatures
from direct AIMD results.

Figure 6.16 shows the results obtained from 216-atom models of a-Si using direct AIMD
simulations in NVT and NVE ensembles, along with the results from lattice-dynamical
calculations in the harmonic approximation. The results enable us to make the following
remarks. First, a comparison of 〈u2〉 obtained from the lattice-dynamical calculations with
those from direct AIMD simulations suggests that anharmonicity does not play a significant
role at temperatures below 450 K. A small difference between two sets of data below
450 K can be attributed to the use of the phonon distribution function, 1/[exp(x)−1] with
x = h̄ω/kBT , in the lattice-dynamical calculations. This is apparent from the plot shown as
an inset in Fig. 6.16, where the lattice-dynamical results are re-calculated in the classical
limit using the value of 〈En〉= kBT in Eq. (6.6). Since the AIMD simulations are conducted
by integrating the classical equations of motion, the results obtained from equilibrium
atomic trajectories using Eq. (6.10) are reflective of the classical equipartition theorem.
Consequently, the AIMD results are somewhat underestimated in the temperature range of
300–400 K. Second, the deviation at high temperatures, above 500 K, is likely to originate
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from anharmonic effects in the dynamics. This is partly due to large thermal vibrations,
which can affect the linear dependence of the forces on atomic displacements, and in part
due to the defects and disorder in the amorphous network affecting force constants between
neighboring atoms. Since the experimental value of the Debye temperature in a-Si is about
487–528 K, one may assume that the MSD of atoms can be calculated fairly accurately in the
classical limit from the AIMD trajectories at temperatures above 450 K. Lastly, the use of
the volume-expansion factor of (1+3γ∆T ) in our simulations does not yield any noticeable
changes of the MSD of atoms, even at 600 K. This observation is consistent with the results
observed in Fig. 6.1. It is therefore reasonable to conclude that the observed deviations of
the direct AIMD results from its lattice-dynamical counterpart at high temperatures can only
result from the anharmonic part of the potential in AIMD simulations.

We end this section with a brief discussion of the dependence of the MSD of atoms on
the size of the basis functions and the nature of exchange-correlation (XC) approximations.
Since vibrational excitations in solids typically involve energies of a few tens of meV, it
is crucially important to calculate the elements of the dynamical matrix as accurately as
possible by using an extended set of basis functions and a suitable XC functional appropriate
for the system to be studied. To examine this issue, the MSDs of atoms in a-Si were
calculated using both single-zeta (SZ) and double-zeta (DZ) basis functions (from SIESTA),
and the local density approximation (LDA) of the XC functional and its generalized-gradient
counterpart (GGA). The results of these calculations are shown in Fig. 6.17. It is evident
from the plots that the use of SZ basis functions produces a somewhat larger value of 〈u2〉 at
all temperatures compared to its DZ counterparts. By contrast, the XC approximation has
little or no effect on 〈u2〉 values for a given basis set. A comparison of Θd values obtained
from 〈u2〉 values using SZ and DZ basis functions suggests that the Θd value (of 541.5 K)
derived from the latter matches more closely to the experimental value of 528 K. This
observation is unsurprising and it is a reflection of the fact that the accuracy of the total force
acting on an atom – and hence the elements of the dynamical matrix – crucially depends on
the size of the basis functions used in the calculations. In view of these findings, one may
conclude that the first-principles calculations of vibrational properties of amorphous solids
should be studied using an extended set of basis functions, whenever possible.

6.4 Conclusions

In this paper, we have studied the Debye-Waller factor of a-Si using quantum-mechanical
lattice-dynamical calculations in the harmonic approximation and from direct AIMD simula-
tions that incorporate some aspects of anharmonic effects. The squared atomic displacement
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Figure 6.17: The dependence of the MSD, 〈u2〉, on the single- and double-zeta basis
functions (SZ and DZ) and the exchange-correlation approximations (LDA and GGA) used
in the DFT calculations in this study. The data correspond to the average values obtained at
each temperature from two independent configurations.

(SD), u2
i , is found to vary from site to site and that it considerably depends on the temperature

and the degree of disorder in the local atomic environment of a-Si. In particular, it has been
observed that while the distribution of the local SDs from tetrahedral sites exhibits a nearly
gaussian behavior, the presence of dangling bonds and a few highly disordered sites (e.g.,
long Si–Si bonds) in the networks can lead to a stretched non-gaussian tail in the distribu-
tion. This non-gaussian behavior is distinctly different from that in crystals, where thermal
vibrations of atoms in an ordered atomic environment give rise to a gaussian distribution
in the harmonic approximation. The accuracy of the MSD values from lattice-dynamical
calculations is verified by computing the Debye temperature of a-Si and comparing with
that from experiments. The theoretical value of the Debye temperature of a-Si, averaged
over 10–50 K, is found to be 541.5 K. This value agrees well with the experimental value of
the Debye temperature, which is reported to be in the range of 487–528 K [203, 204].

A comparison of the specific heat, Cv, of a-Si from theory and experiments shows
that the values obtained from the lattice-dynamical calculations match closely with those
from experiments at temperatures from 50 K and above, but deviations occur below 50 K.
A review of experimental and theoretical specific-heat data leads to the surmise that the
absence of a small number of excess vibrational modes (relative to the Debye model) near 1
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THz, which is often described as the boson peak in the reduced vibrational density of states
of disordered solids, could be partly responsible for the deviation at low temperatures below
50 K. However, a definitive answer to this surmise is outside the scope of the present study
as it requires accurate calculations of the vibrational spectra for large a-Si models in order
to examine the vibrational modes near the 1 THz region. Such calculations are prohibitively
difficult due to the requirement of using an extended set of basis functions to construct the
ab initio force-constant matrix for a-Si models with several tens of thousands of atoms.

The effects of anharmonicity on atomic dynamics in a-Si have been studied by com-
puting the MSD from the equilibrium trajectories of Si atoms obtained from direct AIMD
simulations in microcanonical ensembles. Comparisons of results from AIMD and lattice-
dynamical calculations show a small anharmonicity-induced increase of the MSD values
at temperatures above 450 K. The fractional deviation of the anharmonic MSD at high
temperatures from its harmonic counterpart appears to indicate that the results are quali-
tatively similar to those one obtains from using the quasi-harmonic approximation [202].
This suggests that the harmonic approximation works very well below 400 K, which is
considerably noticeably lower than the Debye temperature of 487–528 K for a-Si. Finally,
the Debye-Waller factor at 300 K suggests that the intensities of the first two diffraction
maxima in a-Si, which are referred to as the FSDP and the principal peak, respectively,
reduce by a factor of 0.94 and 0.8, respectively, for CuKα X-radiation. This observation is
quite important and useful in comparing the room-temperature experimental structure-factor
data of a-Si with those from static model calculations, which do not account for thermal
vibrations of atoms.

109



Chapter 7

SUMMARY

In this dissertation, we addressed the origin of extended-range oscillations (ERO) in amor-
phous silicon, using 21,952-400,000-atom models generated using WWW and MD methods
from an atomistic point of view. Analysis of the partially ordered networks of Si atoms
with radial ordering up to a distance of 6 Å reveals extended ordering on the network of
amorphous solids as a propagation of short-range radial ordering, which can be manifest as
weak oscillations in the total pair-correlation function (PCF). By comparing the extended-
range oscillations of partially ordered Si networks, distorted c-Si systems, and large a-Si
configurations, the radial ordering in reduced atomic pair-correlation of a-Si extends up to
20-30 Å. The ordering at extended-range oscillations of a-Si is further verified by using
Shanon information and considering radial oscillations as the combination of gaussian peaks.
Also, the structure factor of a-Si, expressed as a linear combination of Gaussian functions
modulated by a sinc function indicates nearly no contribution of the ERO beyond 20 Å on
the FSDP of a-Si. The FSDP of a-Si is found primarily contributed by the radial oscillations
of up to 20 Å.

Considering the contribution of the radial oscillations up to 20 Å on the FSDP of a-Si,
we then examine the origin and structure of the FSDP (First Sharp Diffraction Peak) in
a-Si and a-SiO2 with particular focus on the position, intensity, and width of the diffraction
peak in the corresponding structure factor, of a monoatomic system, and reduced scattering
intensity, of a binary system. For a-Si, the study based on the DFT relaxed models of
size 216 to 6000 atoms reveals that a significant contribution to the FSDP comes from the
atomic pair correlations in the second, fourth, and sixth radial shells, in addition to small
residual contributions from the radial shells after that. Also, for a monoatomic covalent
system, our observation suggests the minimum model size must be at least 1000 atoms or
more to obtain accurate results free from any finite-size effects. Likewise, an approximate
relation is obtained between the position of the FSDP and the average cubic radial distance
of the atoms in the second radial shell of a-Si networks, suggesting a new explanation for
the real-space and wavevector space structural interrelation. Direct numerical calculations
confirm the results for a density of 2.15 to 2.3 g.cm−3.

In addition, we analyzed the FSDP in the reduced scattering intensity of the a-SiO2

system, consisting of 648 atoms- 216 Si and 432 O atoms. The emphasis is given to the
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contribution of the radial shell correlations on the FSDP of a-SiO2 at the vicinity of 1.5
Å−1, the position of FSDP of binary glasses. A thorough analysis based on the impact of
the radial correlations from specific regions, called radial shells, shows that the FSDP of
a-SiO2 is mostly contributed by the radial information coming from the fourth, third, sixth,
and seventh shells in descending order, extended up to 6-8 Å. The contribution of real-space
correlations of up to 4-8 Å are further verified using similar calculations for the partially
reduced scattering intensity from Si-Si, Si-O, and O-O correlations. Rapid decreases in
the intensity and nearly linearly shifted position of the FSDP are observed as indicated via
diffraction experiments.

Finally, the study of atomic dynamics of Si atoms having tetrahedral bonds or incomplete
(dangling) bonds is conducted in terms of the Debye-Waller factor and mean-square dis-
placement of the Si atoms in a-Si models of size 216-500 atoms using quantum-mechanical
lattice-dynamical calculations in the harmonic approximation and direct ab initio molecular
dynamic simulations for anharmonic approach. Site-to-site varying atomic displacement
is observed with a stretched non-gaussian tail in the distribution of atomic displacement,
a behavior distinctly different from that in crystalline solids. The dynamics of atoms ob-
tained from the lattice-dynamical calculations are validated by calculating and comparing
specific heat with those from experiments at temperatures from 50 K and above. The
atomic dynamics obtained from direct AIMD simulations in microcanonical ensembles
indicate a minimum increase of the MSD values at temperatures above 450 K as an effect
of anharmonicity. Anharmonicity-induced increase of the MSD of Si atoms is possible at
temperatures above 450 K.
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