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ABSTRACT 

According to Gibson and Gibson (1955) perceptual learning is a process of 

developing the skill to differentiate previously undifferentiated but available information. 

The initial investigations focused on object identification, lacking a behaviorally relevant 

functional task. In the current study participants learned to differentiate between novel 

objects (feelies). To test the role of visual exploration objects were viewed from either a 

side or a top view and were displayed as either static pictures or rotating about a vertical 

axis. In Experiment 1 a simple object discrimination task was used. Perfect accuracy was 

achieved sooner in static conditions compared to motion conditions regardless of 

viewpoint, suggesting that visual exploration was not necessary. Experiment 2 

investigated if a functionally relevant task would necessitate the usage of exploratory 

activity for perceptual learning. Three priming conditions were included to provide task 

contexts of varying behavioral relevance. Participants were required to 1) think of 

potential uses (i.e., affordances) for the feelies, or 2) think of one specific use provided 

by the experimenter, or 3) were asked to describe the object’s physical appearance using 

semantic labels. The opportunity to visually explore objects in varied ways benefited 

learning the most in the condition in which observers had to come up with potential uses 

for the objects. This prime promoted functionally relevant, deep levels of processing. The 

most efficient and stable pattern of learning was observed when participants actively 

generated uses for moving objects that were shown from the side view. It was concluded 

that exploratory activity facilitates perceptual learning of affordances. 
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CHAPTER I – Introduction 

“The world is so full of a number of things, I’m sure we should all be as happy as 

kings.” This quote from writer and poet Robert Louis Stevenson perfectly embodies the 

incredibly complex and diverse world we live in; so full of innumerable sights, smells, 

sounds, and events that we are never left wanting for stimulation. From the moment of 

birth to death, we are constantly experiencing a plethora of sensations from ourselves and 

all that is around us. This flow of information is so continuous and ubiquitous that we 

never stop to consider how or when we came to perceive these things. When did you first 

realize that a cup was not the same object as a bowl? How did you come to recognize that 

a steak knife was different from a butter knife? We take for granted that we know these 

things now but spare little thought to what it would mean if we had never acquired this 

knowledge. 

Perceptual learning can be thought of as the improvement of perception from 

experience (learning to perceive), and the acquisition of knowledge as a function of 

changes in perception (perceiving to learn; Pick, 1992). These changes in perceptual 

abilities and knowledge allow us to better function in our environment by improving our 

ability to guide actions, perform tasks efficiently, and focus on relevant information 

(Gibson & Pick, 2000). Failure to develop these skills would essentially limit us to the 

capabilities of a young infant. Understanding the process of perceptual learning is 

necessary to comprehend and appreciate human development. Additionally, perception 

and perceptual learning can be thought of as a life-long process, allowing us to 

continually adjust and coordinate with our environment (Szokolszky et al., 2019), so 

perceptual learning is relevant to anyone of any age. 
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The goal of the current project was to examine perceptual learning of objects that 

are entirely novel and free from any experiential bias. Participants performed a 

discrimination task in which they observed a set of ten objects (feelies) that were either 

rotating or stationary from different viewpoints and determined if each object is the same 

as, or different from a target object. In addition, I investigated if associating novel objects 

with a potential use would enhance perceptual learning.  

The theorized involvement of learning and experience in perception can be traced 

back to Hermann von Helmholtz and his theory of perception. Like the Gestalt theorists, 

Helmholtz (1911) believed that perception was more than the sum of our sensations; the 

stimuli in our environment are impoverished compared to the information-rich 

perceptions we experience, and therefore required additional mental processing to 

become meaningful. However, unlike the Gestalt theorists, Helmholtz did not believe that 

perception relied solely on innate principles. Helmholtz diverged from the traditional 

views of perception by making learning an essential aspect of his theory of perception. 

According to this theory, perceived properties of distal stimuli (e.g., object’s size and 

distance) are subject to unconscious inferences based on specific contingencies learned 

from the world (i.e., experience). The present contribution focused on the ecological 

theory of perceptual learning (Gibson & Gibson, 1955) which was in sharp contrast with 

Helmholtz’s approach.  

The ecological theory of perceptual learning was created in response to the rise in 

popularity of cognitive theories of learning and their shared belief that perception 

necessitated the involvement of complex cognitive processes such as thinking, problem-

solving, language, concept formation, information processing, and other internal mental 
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structures because the information about environmental stimuli received through sensory 

organs is impoverished, incomplete, and insufficient to explain the rich perceptions we 

experience. Therefore, these impoverished stimuli required enrichment and structuring in 

the form of additional processing (e.g., association from experience), which serves to 

supplement the sensations (Ertmer & Newby, 2013; Gibson & Pick, 2000; Lobo, 2019). 

Unconvinced that stimuli were impoverished and required supplementation from 

cognitive processing to be meaningful, James and Eleanor Gibson created an alternative 

theory based on their belief that perception does not require any additional mental 

processes such as representation, memory, and association because “the world is enough” 

(i.e., stimuli provide enough information for the perceptions we experience without 

supplementation from cognition). According to the ecological theory of perceptual 

learning (Gibson & Gibson, 1955), information is ample and structured, able to fully 

specify the layout, surfaces, objects, and events of the environment. Perceptual learning 

occurs because perception begins as unrefined and inefficient. Before perceptual learning, 

information is overly generalized, and attention is not selective enough (Gibson 1961, 

1963; Gibson & Pick, 2000). Learning reduces generalization among stimuli, increases 

precision of discrimination, and allows previously undetected (i.e., undifferentiated) 

variables or distinctive features to be detected and utilized. Perception, therefore, is not a 

process of enriching or adding to the input from the environment, but of differentiating 

the information that is already available (Gibson & Gibson 1955; E. Gibson, 1961, 1963, 

1969; J. J. Gibson, 1979). 

As a test of their theory of perceptual learning, Gibson and Gibson (1955) 

conducted a study in which children and adults were shown a series of drawings called 
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“scribbles”. Seventeen spring-like coiled scribbles varied from each other on different 

dimensions (e.g., number and spacing of coils, and direction of coiling of each scribble) 

but were ultimately very similar to each other and were intended to be initially 

indistinguishable from one specific coil-like scribble that was identified as the critical 

item. Another set of twelve scribbles were less coil-like and more closely resembled basic 

shapes (e.g., triangle, bullseye, heart), and were intended to be distinguishable from the 

critical item at the beginning of the study (see Figures 1 & 2 on pg. 36 of Gibson & 

Gibson, 1955). Participants were presented with the critical item for five seconds, told it 

was the critical item, and that they asked to identify it as such each time they saw it 

presented. They then viewed a series of cards on which 34 scribbles were presented for 

three seconds each. During each session of presentations, the critical item was presented 

four times interspersed with 30 other, non-critical scribbles. After these 34 presentations, 

the critical item was presented again for five seconds. Participants were asked to report 

which items were the same (i.e., the critical item) by giving identifying responses such as 

"that’s it" or "this is the one I saw before” when shown items they perceived to be the 

critical item. These sessions of 36 trials continued (item order randomized) until 

participants identified only the four presentations of the critical item as being the same 

(100% accuracy). No feedback was provided by the experimenter during this experiment. 

The results of the study showed that adults and children 8.5 to 11 years old were able to 

reach 100% accuracy within an average of 3.1 and 4.7 sessions, respectively, 

demonstrating that repeated exposure to stimuli alone (i.e., without supplementation from 

cognitive processing such as association or cues) was enough for participants to learn to 
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differentiate between initially indistinguishable stimuli to the point that they were able to 

identify the critical item from all other items with perfect accuracy. 

The Gibsons continued to develop the ecological theory of perception and 

perceptual learning by elucidating the nature of the information perceived and how we 

utilize this information to improve our perception through learning. In the current 

ecological theory (Gibson, 1979), perception is thought to be direct in the sense that 

perception is the detection of the information that is actually present in the environment, 

and that no intermediary representations or cognitive processes are needed to connect the 

environment and our perception of it. Information is conceptualized as energy patterns in 

space and time that specify states and behaviors in the organism-environment system. 

Therefore, because information is specific to an environmental state of affairs and 

perception is specific to the information, perception is specific to the environmental state 

of affairs (i.e., direct; Michaels & Palatinus, 2014). All the information about the 

environment (including events that take place within the environment) is present in 

ambient arrays of energy surrounding an organism (Gibson, 1979), which must be 

explored by perceptual systems to extract useful information for the organism. 

Perceptual learning teaches us how to narrow down the abundance of information 

from the environment to the optimal information needed. Originally, perceptual learning 

considered this optimal information to be distinctive features (Gibson, 1969), but Eleanor 

Gibson later expanded the theory to include actions, aligning with James Gibson’s (1979) 

concept of perception-action cycles, in which perceiving defines what is available for 

acting and acting defines what is available to perceive. Consequently, the purpose of 

perceptual learning was adapted to be the attainment of information that specifies the 
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properties and affordances of an event, object, or layout, in pursuit of goal-oriented 

actions (Gibson & Pick, 2000; Gibson, 2003).  

Having established “what” we learn through perceptual learning, we should now 

briefly explain “how” perceptual learning is accomplished. According to Gibson (1969; 

2000), differentiation occurs through a process known as the “education of attention”. 

This is an action-based process involving active search and exploration, through which 

the organism becomes more selective about what information it seeks out and uses, 

focusing attention on the most relevant information for exploring, guiding action, and 

performing tasks more efficiently. This echoes James Gibson’s theory that all perception 

is an active process that detects information through exploratory and performatory 

actions (Gibson, 1962; 1963). Exploratory activity provides information about both the 

environment and the capabilities of the organism (Gibson, 1979). The better informed 

about the environment and itself, the better the organism can direct its attention and 

actions efficiently, and the better suited it is to its environment. 

One way that information is collected from the environment is through visual 

perception. Visual perceptual learning has been observed in tasks such as detection or 

discrimination of visual gratings (De Valois, 1977; Fiorentini & Berardi, 1980), stimulus 

orientation judgment (Dosher & Lu, 1998; Petrov et al., 2006), hyperacuity and vernier 

tasks (Fahle & Edelman, 1993; Poggio et al., 1992), motion direction discrimination (Ball 

& Sekuler, 1982), and judgments of object mass from collision (Jacobs et al., 2001). 

Surprisingly, there exists little research on the type of stimuli that we encounter early in 

life and purposely interact with every day of our lives: objects. Some of the first things 

we see in infancy are objects (i.e., toys, bottles, household furniture) and we continually 
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utilize objects throughout our lives to help us accomplish large and small goals (e.g., 

spoons, tv remotes, bars of soap, cars). Both common (Chen & Op de Beeck, 2021; 

Furmanski & Engel, 2000) and novel objects (Gauthier & Tarr, 1997a; Gauthier et al., 

1998; Norman et al., 2004) have been used in perceptual learning and discrimination 

studies. However, learning of common objects can be complicated by previous 

experience and general familiarity.  

The objects to be used as stimuli in the current study (feelies) have never been 

used in a learning task and are sufficiently similar yet distinguishable, making them well-

suited for a discrimination task. Feelies are completely novel, having been designed 

specifically to be unlike any common object (Caviness, 1962). However, feelies are 

similar to many of the everyday objects we encounter in the sense that they are neither 

too complex nor too simple. This means that feelies are more ecologically valid than 

basic geometric stimuli (e.g., lines; Matthews & Welch, 1997; geons, see Biederman & 

Bar, 1999) or very complex but highly specific stimuli (e.g., faces; Gold et al., 1999). 

These characteristics make feelies ideal stimuli for studying object learning. 

In addition to object characteristics, visual perception (and, by extension, visual 

perceptual learning) can also be greatly influenced by the conditions in which viewing 

occurs. A wide range of environmental factors such as radiant and ambient lighting, 

distance, slant/tilt, motion, and perspective/point of view can comprise viewing 

conditions and affect visual perception. As mentioned previously, according to the 

ecological view, learning and perception are active processes in which the 

learner/perceiver seeks out and utilizes information from the environment to inform 

actions (Gibson, 1962; 1963; 1969). In the active process of visually exploring objects, 
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we are apt to move either the object in relation to ourselves (if the object affords 

handling), or ourselves in relation to the objects (such as when a large or heavy object is 

viewed). In either instance, motion creates systematic transformations of visual 

information such as object shading, texture gradients, specular highlights, and boundary 

contours, which can be used to specify 3D shape (Todd, 2004). Additionally, movement 

allows for the presentation of multiple viewpoints (i.e., perspectives), each of which 

displays unique depths and orientations of every visible surface point, causing different 

images of shapes to be projected to the retina as viewing position changes (Hayward, 

2003; Todd, 2004). As such, the ability to sample visual scenes dynamically by assuming 

many viewpoints is essential to active exploration. 

Although motion and viewpoint are potentially rich sources of information for 

visual perception, research on their influence is mixed. Compared to static conditions, 

movement of stimuli (typically rotation in depth) is often beneficial to visual perception 

of 3D shape. Movement has been shown to produce improvements in object recognition 

and discrimination (Norman, Bartholomew et al., 2008; Norman et al., 2000), and 

judgments of ordinal depth (Norman & Raines, 2002) and surface orientation (Norman et 

al., 1995). However, some findings indicate that human observers have difficulty making 

full use of the information provided by movement, such as making large systematic errors 

when judging 3D metric structure from moving or stereoscopic displays (Norman et al., 

1996; Todd, 2004; Todd & Norman, 2003). While small changes in perspective from 

movement (e.g., freely moving the head; ≈10°) are insufficient (Lind et al., 2003), when 

continuous perspective changes of 45° or more are experienced, metric shape can often 

be perceived (Bingham & Lind, 2008; Lind et al., 2014). Furthermore, perception of 
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metric shape can be used to inform object recognition (Lee at al., 2012) and improve 

functional tasks such as reaches-to-grasp (Lee & Bingham, 2010). 

Viewing an object from multiple perspectives provides rich information about 3D 

shape and structure. However, changes in viewpoint can also cause difficulties in object 

recognition and shape constancy (Gauthier & Tarr, 1997b; Gauthier et al., 1998; Norman, 

Bartholomew et al., 2008; Norman et al., 2000; Tarr, 1995; Tarr & Pinker, 1989; Todd & 

Norman, 2003). These issues likely arise because one object, when viewed from different 

perspectives, will project different shapes onto the retina. Individuals may not recognize 

that these different images all belong to the same object and, instead, perceive each image 

as belonging to different objects. Despite findings that perception of objects is often 

viewpoint dependent, most objects can be accurately recognized as the same when 

presented in different orientations (Biederman & Bar, 1999; Biederman & Gerhardstein, 

1993). For example, Shepard and Metzler (1971) found that observers were 96.8 percent 

correct in classifying objects as the same or mirror images of each, regardless of the 

orientation differences. Furthermore, there is some evidence that certain viewing 

perspectives may be advantageous in contexts such as 3D shape perception from surface 

texture (Ware & Sweet, 2004) and decision-making in sports (Mann et al., 2009). 

One purpose of the proposed experiment was to elucidate the nature of perceptual 

learning of ecologically valid objects and examine the influence of motion and viewpoint 

on learning. Rate of learning, discrimination sensitivity, and response time were used to 

assess learning in an object discrimination task. Objects were viewed from either a side 

or a top view and were displayed as either static or moving (rotating about a vertical 
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axis). To the extent that perceptual learning is affected by the presence of motion and/or 

viewpoint differences in one or all of these measures were expected between conditions. 

Any account of learning according to the ecological theory of perception would 

be incomplete without the inclusion of affordances. Affordances are possibilities for 

action, what the environment offers the animal when both the physical properties of the 

environment and the bodily capabilities of the organism are considered. Gibson (1979) 

asserted that affordances are the primary properties that we perceive. Therefore, we do 

not only learn to perceive physical properties of objects, like size, shape, or distance for 

their own sake, we perceive functional relations between objects, ourselves, and the 

world around us (Adolph & Kretch, 2015; Gibson & Pick, 2000). Studies of affordance 

learning often focus on infants (Gibson, 1982; Gibson & Walker, 1984) or robotics 

(Lopes et al., 2007; Montesano et al., 2008; Sun et al., 2010). A difficulty that arises with 

studying object affordance learning is that we are often already familiar with the 

affordances of many common objects, or the affordances are easily detected upon initial 

investigation because most human-made objects are created with the intention to serve 

specific purposes (Dennett, 1987) and therefore usually have salient designed affordances 

(Rachwani et al., 2020). As novel objects, feelies have no obvious or predetermined 

functions but can still be associated with many potential uses and functions (Dowell et 

al., 2020). 

In the second experiment it was hypothesized that a functional description of an 

object should enhance perceptual learning because everyday perception typically 

involves perceiving the affordance properties of objects, and not simply perceiving shape 

for its own sake. Because perception is a process of directly detecting meanings for 
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action and not a matter of simply assigning meaning to objects with certain physical 

properties, associating objects with a functional use (affordance) will likely facilitate 

faster learning compared to learning based on object shape or physical appearance (color, 

texture, etc.).  

Several hypotheses were tested in the present contribution. First, perceptual 

learning was expected to be faster and more accurate when there are opportunities to 

explore objects from multiple viewpoints (H1). This hypothesis was tested in two ways: 

By having the stimulus either move or be static (H1A), and by viewing the stimulus from 

the side or from the top (H1B). It was predicted that perceptual learning should be faster 

and more accurate when the stimulus is viewed from the side as opposed to from the top, 

and when the stimulus is moving as opposed to being static. Second, perceptual learning 

was expected to be faster and most accurate when the task involves thinking about 

potential uses as opposed to simple discrimination (H2). Specifically, perceptual learning 

should be the fastest and most accurate when participants are forced to think of potential 

uses for the objects as opposed to when they are primed to think about a specific use 

provided by the experimenter, or when they are simply asked to describe the object’s 

physical appearance. Viewing a rotating object from a side view while actively thinking 

about what it can be used for should be the optimal combination of factors leading to 

fastest and most accurate learning.
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CHAPTER II – Experiment I: Perceptual Learning of Feelies 

The present experiment tested the influence of viewpoint and motion on the 

perceptual learning of novel shapes in an online experiment. Ten feelies served as stimuli 

and were presented either from above (a relatively unfamiliar viewpoint) or from the side 

(simulating the perspective of an observer seated at a table). Objects were presented as 

either rotating about a vertical axis on a rotating podium or statically against a white 

background. According to Gibson (1988) exploratory activity is necessary for perceptual 

learning to occur. Rotations around a vertical axis supply opportunities to sample the 

information that specifies an object from multiple viewpoints. Additionally, a side view 

provides an egocentric viewpoint that is typically encountered when viewing objects in 

activities of daily life. Thus, it was hypothesized that moving stimuli observed from the 

side would facilitate perceptual learning most effectively. 

2.1 Participants 

Participants were 302 undergraduates at the University of Southern Mississippi 

(USM) who were at least 18 years old. All participants possessed normal or corrected to 

normal eyesight. Participants were recruited through USM’s SONA participant pool. All 

experimental procedures were reviewed and approved by USM’s Institutional Review 

Board (IRB) to adhere to the ethical treatment of human subjects. Data from 67 

participants was excluded due to incompleteness (participants did not complete the full 

experiment). Sixty participants completed the study in its entirety but failed to reach the 

learning criterion (100% accuracy) during the experiment. Consequently, data from these 

participants was not analyzed for accuracy and reaction time with the 175 participants 
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who successfully reached criterion. However, data from participants who failed to reach 

criterion was examined using survival analysis. 

A sensitivity analysis using G*Power (Erdfelder et al., 1996) with 0.80 power, 

estimated that a sample size of 200 would be needed to detect effect sizes that were 

small-to-medium (Cohen’s d = 0.5 - 0.8). The choice to use 175 participants was based 

on the fact that each participant completed several trials as they progressed through 

learning blocks. Each participant who completed the study experienced 176 test trials (22 

per block over 8 blocks). Compared to Gibson and Gibson (1955), in which adult 

participants required an average of 105 test trials to reach the 100% accuracy criterion 

used in this study, the number of trials per participants has been increased, which can 

reduce the overall number of participants needed in a study without sacrificing power and 

has the additional benefit of reducing within-subjects variance (Baker et al., 2021). 

Previous studies using same-different discrimination tasks have utilized this design 

(Dowell et al., 2018; Norman et al, 2004; Norman et al, 2012; Petrov et al., 2006) with as 

few as 9 participants per group when each person completed 120 trials (Norman, Clayton 

et al., 2008). 

2.1.1 Demographics 

Participants were primarily young adults (M = 22.17, SD = 6.64). The majority of 

participants identified as female (N = 204), with a smaller portion identifying as male (N 

= 31). Self-report data of participants’ racial identities shows that most participants were 

White (N = 154), but the sample also included Black (N = 62), Asian (N = 13), American 

Indian (N = 2), and Other (N = 4) individuals. 
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2.2 Materials 

The stimuli used in this study were high-quality digital images and videos of 

copies of the ten original feelies (Gibson, 1962). The original feelies were three-

dimensionally scanned by Phillips and Egan (2016). Using these scans, copies were 

printed via a Tevo Tarantula 3D printer using polylactic acid (PLA) for use in the present 

study (see Figure 1 below). All feelies have a slightly different shape, but the topological 

configuration is identical. This means that all objects have a smooth surface curvature all 

throughout and six identifiable apexes of varying proportions. The mass and volume of 

all objects is comparable with minimal variability. 

2.3 Measures and Data Collection 

Demographics, including age, race, and gender were collected via computer 

responses at the start of the experiment. Normal or corrected-to-normal visual acuity of 

all participants was confirmed via self-report by having participants affirm that they have 

normal or corrected-to-normal (e.g., corrective lenses) vision. Response times for each 

trial were recorded via the Collector (Garcia et al., 2015) software. 

2.4 Design 

The independent variables in this study were Viewpoint, Motion, and Block. 

Viewpoint was between-subjects with two levels: side view or top view. Motion was also 

between-subjects with two levels: static or moving (rotating about a vertical axis). 

Participants were randomly assigned to a Viewpoint and a Motion condition, with a 

comparable number of participants assigned to each condition (Top-Motion n = 40; Top-

Static n = 45; Side-Motion n = 41; Side-Static n = 49). Each participant was presented 

stimulus objects in a series of eight learning blocks. For each participant, one of the ten 
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feelies was randomly selected as the target object. The target object remained the same 

throughout the experiment for each participant but the specific feelie assigned as the 

target varied between participants. The order in which each feelie was assigned as the 

target item was counterbalanced between conditions, with each feelie being selected at 

least four times within each condition in a randomized order. Each learning block 

consisted of 23 total trials: 1 presentation of the target object (study trial), followed by 22 

experimental trials where the nine feelies that are non-targets were presented twice each 

and the feelie that was the target item was presented four times. The object presentation 

order within the 22 experimental trials of each block were randomized, controlling for 

any order effects. The experiment consisted of eight learning blocks. Block was a within-

subjects repeated measure. Dependent variables in this study included the number of 

learning blocks taken for each participant to reach 100% accuracy, discrimination 

sensitivity (measured as d′) for each block (Macmillan & Kaplan, 1985), and response 

time for each trial (in milliseconds). 

2.5 Procedures 

The experiment was conducted online, with participants accessing the experiment 

on a personal computer with high-speed internet connection. Stimuli were displayed on a 

computer screen and participants responded using an input device (i.e., mouse, 

touchscreen, or keyboard). Moving stimuli rotated counterclockwise about a fixed 

vertical axis at a rate of approximately 3.75 rotations per minute (rpm). This resulted in 

objects rotating 67.5° during 3-second stimulus study presentations and 45° during 2-

second test presentations.  
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The procedure used in this study was adapted from Gibson & Gibson’s (1955) 

experiment with slight alterations: Use of fewer objects in the current study (10) 

compared to the original study (30), repeated presentations of non-target items (twice) in 

the current study, omission of re-presentation of target object at the end of each block, 

and shorter presentation times in the current study (3s for target study and 2s for test 

compared to 5s for study and 3s for test in the original Gibson experiment). Presentation 

times were reduced to discourage the use of cognitive strategies (e.g., memory cues and 

associates) by participants when learning to discriminate objects. Given the principle of 

the ecological theory of perceptual learning, attempting to minimize the involvement of 

cognitive processing was essential. Reduced presentation times, omission of re-

presentation of target objects, and repeated presentations of non-targets were 

implemented to increase the difficulty of the task and avoid a possible ceiling effect. 

Upon signing up for the study in SONA, participants were supplied a link to 

access the experiment website. First, participants were shown an informed consent 

document explaining the experiment and their rights. Participants who checked the 

informed consent box at the end then proceeded to the demographics and visual acuity 

screening questionnaire. Participants then progressed to a screen explaining the nature of 

the task and displaying instructions for responding. Participants were told they would 

periodically be presented with a target object (which was the same throughout the 

experiment) along with a series of several other objects (which looked similar to the 

target). Their task was to study the target object carefully (which was identified as such 

each time it was presented for study; i.e., labeled ‘TARGET’) and respond whether each 

presented object was identical to the target object (‘same’) or not identical to the target 
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(‘different’) by selecting ‘same’ or ‘different’ from the multiple choice response list 

displayed after each test object presentation. Participants had 3 seconds to study target 

objects, 2 seconds to view each test objects, and unlimited time to respond. Participants 

in either of the motion conditions viewed objects as 3-second videos for target objects 

and 2-second videos for test object presentations. Participants in the static conditions 

viewed images of target and test objects for 3 and 2 seconds, respectively. No feedback 

was given on any trial. 

At the start of each trial, before any object was presented, a fixation cross 

appeared in the middle of the screen for 500ms. This was immediately followed by a 

250ms blank screen, after which the target or test object was shown. Once the viewing 

period had elapsed, a screen displaying the response options (‘Same,’ ‘Different’ and, in 

the case of an improperly displayed stimulus, ‘Error’) was shown. Participants selected 

their response and confirmed their choice by clicking the ‘Submit’ button to progress the 

experiment. After a response was made, a blank screen was displayed for 250ms 

followed immediately by a visual noise mask (black-and-white checkerboard) for 250ms 

to ensure that after-image effects on the next stimulus presentation are minimized, which 

subsequently began with another 250ms blank screen and a 500ms fixation cross 

presentation before displaying the next object (see Figure 2). Learning blocks proceeded 

until all 8 blocks were complete, at which time a screen displayed a message saying that 

the experiment was complete. Participants were given no feedback at any point in the 

experiment and were not aware of the 100% accuracy learning criterion but were told to 

focus on accuracy while still trying to respond quickly. 
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2.6 Results 

2.6.1 Data Processing 

2.6.1.1 Exclusion Criteria 

Participants who did not complete the experiment were excluded from statistical 

analyses due to incomplete data. 

2.6.1.2 Technical Difficulties 

In the event that a stimulus was not properly displayed during presentation, 

participants were told to enter a response of ‘Error.’ To perform d-prime calculations, a 

response of ‘Same’ or ‘Different’ is required. Thus, the decision to code Error responses 

as False Alarms (in the case of non-targets) or Misses (for targets) was made to provide 

more conservative calculations of accuracy. Data from any participants whose data was 

composed of more than 25% missing or error responses (combined) was categorized as 

‘incomplete’ and was not included in analyses. 

2.6.1.3 Correction to d-prime 

d-prime was calculated using corrected Hit and False Alarm values. In the event 

of total Hit or False Alarm values of 0 or 1, corrections were required to calculate d-

prime. Rates of 1 were replaced with 1-(1/2n). False alarm rates of 0 were replaced with 

1/2n, where n is the number of signal or noise trials (Macmillan & Kaplan, 1985; 

Wickens, 2001). Hit rates of 0 were replaced with .0001. 

2.6.1.4 Response Time Outliers 

Response times that were 3 standard deviations above the average response time 

were regarded as outliers and removed during data analysis. Trimming resulted in the 

removal of 0.5% of trials. 
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2.6.2 Data Analysis 

2.6.2.1 Accuracy and Blocks to Criterion 

A 2 View (side, top) x 2 Motion (rotation, static) between-subjects analysis of 

variance (ANOVA) was used to compare the mean number of learning blocks needed to 

reach 100% accuracy between the four possible conditions to test for potential effects of 

viewpoint, motion, and any interaction between the two variables. A linear mixed-effects 

model was used to analyze any potential differences in d-prime across blocks within each 

of the four conditions and to compare patterns of change in d-prime between conditions, 

with Subject being a random effect and all other variables being fixed effects. Data over 

blocks is typically analyzed across absolute block progression (from the first block to the 

last block needed to reach criterion), with all participants advancing through learning 

blocks until they reach the 100% learning criterion. However, because differences in 

learning rate between participants resulted in unequal numbers of completed learning 

blocks (some took more blocks to reach criterion, while others required fewer), this 

approach is not ideal for capturing improvements that result from the process of 

perceptual learning. Considering that learning in this study was demonstrated as increases 

in object discrimination accuracy (with the goal of achieving perfect accuracy), a more 

realistic representation of learning would follow changes in performance working 

backwards from this common goal of perfect accuracy. By starting at a point where 

performance is equivalent across participants and moving through subsequent blocks, 

learning can be observed as changes in accuracy across relative blocks. This approach 

still captures individual differences but provides a more ecologically valid representation 

by recognizing that the function of perceptual learning is to enhance perceptual abilities 
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so that organisms can interact with their environment more efficiently. Relative blocks 

represent functionally equivalent stages of learning across individuals. The relative block 

on which the participant reached criterion was always labeled as Block 8. For example, if 

a participant reached criterion in Block 3, then the relative blocks corresponding to this 

participant assumed the values of 6, 7 and 8. If a participant finished in Block 5, then the 

relative blocks were labeled 4, 5, 6, 7, and 8, with 4 meaning the first block, and so on. 

Therefore, two mixed-effects models were used to examine learning. An absolute block 

model: d-prime ~ View * Motion * Block + (1 | Subject) and a relative block model: d-

prime ~ View * Motion *newBlock + (1 | Subject), where newBlock is the factor that 

denotes relative blocks. Due to the fact that the value of the criterion was always equal to 

3.046, the last block from each participant was omitted from the mixed model analysis 

since it would not add any useful variability to the statistical computation. The only 

exception to this rule was when a participant reached criterion on the first block, in which 

case the score was included in the analysis. 

2.6.2.2 Survival Analysis 

As mentioned previously, data from 60 participants who completed the 

experiment but failed to reach criterion were not included in previous analyses. However, 

using a Kaplan-Meier survival analysis (Kaplan & Meier, 1958), data from these 

participants was analyzed together with data from participants who successfully reached 

criterion to compare survival rates of conditions. “Survival” denotes the absence of an 

event occurring. In this study, the event was reaching the 100% accuracy learning 

criterion. Participants “survive” until they reach criterion, at which point they were 

removed since they no longer progressed through learning blocks. Participants who never 
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experienced the event (i.e., never reached criterion) were categorized as ‘censored.’ Thus, 

survival analysis examined the pattern of learning using data from all participants who 

completed the study, not just those who reached criterion. Comparing the survival 

distributions of each condition made it possible to determine the influence of each 

independent variable on survival (i.e., learning). Two analyses were conducted, one to 

test the equality of survival distributions for the different levels of Motion (Moving vs. 

Static) and another to test the equality of survival distributions for the different levels of 

View (Side vs. Top). A cumulative survival rate of 1 indicates 100% of participants are 

still in the study (i.e., have not yet reached criterion). A cumulative survival rate of 0 

indicates 0% of participants are still in the study (i.e., have reached criterion). 

2.6.2.3 Response Time 

Response time (RT) was defined as the time between the appearance of the 

response list on the computer screen and participants’ confirmation of a response by 

pressing the ‘Submit’ button. A linear mixed-effects model was used to analyze any 

potential differences in response times across learning blocks within each of the four 

conditions and to compare patterns of response time changes between conditions. Trial 

and Subject were random effects, such that Trials were embedded within Subjects, and all 

other variables were fixed effects: RT ~ View * Motion * NewBlock  + Trial + (Trial | 

Subject). 

2.6.3 Accuracy 

The number of Hits (correctly responding that the target stimulus is present when 

it is present; H), Misses (incorrectly responding that the target stimulus is not present 

when it is present; M), Correct Rejections (correctly responding that the target stimulus is 
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not present when it is not present; CR), and False Alarms (incorrectly responding that the 

target stimulus is present when it is not present; FA) were recorded for each learning 

block. Using the Hits, Misses, and False Alarms, a measure of discrimination (d-prime or 

d′; Macmillan & Kaplan, 1985) was calculated for each learning block. The number of 

learning blocks taken for each participant to reach the established learning criterion 

(100% accuracy; 4 H & 18 CR; 0 M & 0 FA) was also recorded. For the set of objects 

presented in blocks of trials the criterion value of d′ was 3.046.  

When analyzed across absolute blocks, a mixed model revealed a significant main 

effect of Block (β = .343, SE = .0815, p < .001), demonstrating increases in d-prime over 

learning blocks. There was a significant main effect of Motion (β = .985, SE = .3996, p < 

.02), such that overall d-prime was higher when objects were presented statically. There 

was also a significant Motion x Block interaction (β = -.331, SE = .1452, p < .05), which 

was qualified by a significant View x Motion x Block interaction (β = .457, SE = .2137, p 

< .03), indicating that accuracy improved more quickly and showed a more stable pattern 

across blocks when objects were shown from the side while rotating (see Figure 3). A 

complete summary of these results is shown in Table 1. Effect sizes correspond to β 

values in Table 1, as unstandardized regression coefficients are the best estimates of the 

magnitude of effects in mixed models (see Pek & Flora, 2018). When analyzed across 

relative blocks, the same mixed model resulted in no significant effects. 

2.6.4 Blocks to Criterion 

A between-subjects factorial analysis of variance (ANOVA) was conducted using 

the average number of blocks taken to reach criterion in each condition. Results yielded a 

significant main effect of Motion (see Figure 4), indicating that participants reached 
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criterion within fewer blocks in conditions where objects were presented statically 

compared to condition with motion, F(1,171) = 31.864, p < .001, η2p = .157. This effect 

occurred regardless of viewpoint, demonstrating no significant interaction between View 

and Motion. There was no significant main effect of View (F(1,171) = .003, p = .957, 

η2p < .001). 

2.6.5 Survival Analysis 

Log-rank comparisons of survival rates for moving versus static stimuli were 

significant for both the Topview condition (χ2(1, N = 235) = 8.53, p = .004) and the 

Sideview condition (χ2(1, N = 235) = 15.86, p < .001), demonstrating a main effect of 

Motion such that survival rates decreased more rapidly (i.e., participants reached criterion 

sooner) when stimuli were presented statically (see Figure 5). Log-rank tests found no 

significant difference in survival distributions based on Viewpoint, either with moving 

stimuli (χ2(1, N = 235) = .08, p = .785) or static stimuli (χ2(1, N = 235) = .50, p = .479). 

2.6.6 Response Time 

When analyzed across absolute blocks, a mixed model revealed only a significant 

main effect of Block (β = -77.740, SE = 15.680, p < .001), demonstrating decreasing 

response times over blocks. As previously mentioned, analysis across absolute blocks is 

arbitrary because individual differences in rates of learning lead to unequal comparisons 

across blocks. A more appropriate method is to express the data using relative blocks, so 

functionally equivalent stages of learning across participants are represented across 

blocks. Analysis over relative blocks revealed a significant main effect of NewBlock (β = 

-80.871, SE = 15.569, p < .001), indicating decreasing response times over block 

progression. There was also a significant Viewpoint x Motion interaction (β = -666.225, 
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SE = 331.578, p < .05), which was qualified by a significant Viewpoint x Motion x 

NewBlock interaction, demonstrating that response times were fairly constant and stable 

over blocks across Movement conditions when objects were shown from a sideview (see 

first graph in Figure 6). However, when objects were shown from a top view, response 

times were initially quite different, with times in the motion condition being three times 

slower than in the static condition, before converging as participants approached criterion 

(see second graph in Figure 6). 

2.7 Discussion 

Experiment 1 provided partial support for Hypothesis 1 that perceptual learning 

should be faster and more accurate when there are opportunities to explore objects from 

multiple viewpoints. Learning improved more dramatically and showed a less variable 

pattern over absolute blocks when objects were shown from the side while in motion 

(significant View x Motion x Block interaction on d-prime). Although learning was 

generally slower (required more blocks) when objects were presented as moving, a more 

efficient pattern of learning was observed when objects were also shown from the side, 

and trial-by-trial response times in this condition were similar to the condition when 

objects were presented statically from the side. This suggests a speed-accuracy trade-off 

where participants required more practice (i.e., learning blocks) to reach criterion when 

discriminating moving objects, but also demonstrate consistent, high accuracy in their 

responses while taking a similar amount of time on each trial to those who experienced 

objects statically. 

Interestingly, this improvement from multiple viewpoints only emerged when 

information was provided through both a side view and movement, but not from the 



25 

individual contributions of each variable. The hypothesis that presentation from a side 

view would facilitate better learning was not supported when examining Viewpoint in 

isolation: accuracy, response times, and survivability were all similar in direct 

comparisons of a side view and a top view. The presence of rotation alone also did not 

benefit learning, in fact, learning occurred sooner when objects were viewed statically. 

Although this finding directly contrasts with my prediction, one possible explanation is 

that the information provided by movement was simply not necessary for the simple 

object shape discrimination task used. 

The choice to utilize an underspecified task in Experiment 1 was made to examine 

the influence of Movement and View in a controlled manner. However, this type of task 

does not provide a very accurate representation of the context in which learning occurs in 

our everyday lives. Perceptual learning follows the same principle as perception and 

action, our behavior has functional relevance. According to Gibson (1979) perception is a 

process of directly detecting meanings for action and not a matter of assigning meaning 

to objects with certain physical properties. Thus, the motivation underlying learning to 

better discriminate and identify objects should be closely linked to the intention to use 

that object. The absence of functional relevance may explain the lack of significant 

results when using relative blocks for analysis. 

To examine the full effects of learning based on relative blocks (as opposed to 

absolute blocks) and the true benefit of exploration (combination of moving stimulus 

seen from side view), a functional task is necessary. The use of a functional task was also 

essential to testing my second hypothesis, that perceptual learning should be faster and 

most accurate when the task involves thinking about potential uses as opposed to simple 
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discrimination. Therefore, Experiment 2 was designed to test Hypothesis 2 and provide a 

more ecologically valid representation of the process of perceptual learning.



27 

CHAPTER III – Experiment II: Perceptual Learning of Feelies in Functional Tasks 

According to Gibson (1979) the primary goal of perception is to guide future 

actions. In this sense, perception is the act of detecting functional relationships between 

the observer and objects or parts of the environment that are relevant to satisfying a 

particular behavioral task demand. By definition, perception is a functional act. By 

extension, perceptual learning should also be defined by a particular behavioral function 

or skill that is being learned. I tested this idea by priming the target objects used in the 

first experiment with a particular affordance. I expected that providing an affordance 

prime would enhance perceptual learning as compared to the relatively underspecified 

task (shape discrimination) used in Experiment 1. To this end, participants in the 

Provided Affordance (PA) prime condition were presented a short video of a person 

cracking nuts using one of the feelies. Labelling has been shown to improve short-term 

memory retention (Hagen & Kingsley, 1968), but is not beneficial in perceptual learning 

tasks (De Rivera, 1959; Ellis et al., 1962; Pfafflin, 1960; Rasmussen & Archer, 1961). 

Therefore, a condition where participants provide two physical descriptors of the target 

object (Generated Semantic condition) was added to test the hypothesis that affordance 

priming would facilitate learning better than labelling via semantic primes because 

affordances provide functionally meaningful information. 

Additionally, because affordances and semantic associates have both been 

demonstrated to produce reliable priming effects (Surber et al., 2023), a fair comparison 

between the two requires that both primes be equivalent regarding level of processing. 

With deeper levels of processing, stimuli are more attended to and fully analyzed, which 

leads to better encoding and retention (Craik & Tulving, 1975). Generating semantic 
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primes facilitates deeper processing than being provided a single affordance prime by the 

experimenter. To address this, a third condition was added in which participants 

generated two possible uses (affordance primes) for the target object at the start of each 

block. This made it possible to compare affordance priming and semantic priming at a 

level of deep processing. It was hypothesized that affordance priming would result in 

faster learning than semantic priming because affordances are directly perceived and 

require no additional processing steps like semantic associates. Evidence from 

neuroscience is consistent with this prediction. Norman (2002) suggested that visual 

object recognition (a putatively semantic process served by the ventral visual pathway in 

the cortex) is relatively slower than planning of future actions (affordance processing 

served by the dorsal visual pathway in the cortex). This means that people detect how and 

for what purpose they can use an object before they can consciously recognize the object. 

Additionally, we expected that the condition in which the affordance label was given by 

the experimenter (Provided Affordance) would be inferior to both deep processing 

conditions because it operates on a shallower level of processing. This is similar to the 

generation effect in memory where simply reading words produces inferior performance 

compared to having participants generate words (Slamecka & Graf, 1978). It was 

expected that the context resulting in optimal learning would be in the condition where 

the participant is asked to think of at least two potential uses (Generated Affordance 

prime) of an object that is rotating and presented from the side viewpoint. 

3.1 Participants 

There was a total of 426 participants in Experiment 2. 255 participants were USM 

undergraduates who were at least 18 years old and had not participated in Experiment 1. 
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The remaining 171 participants were recruited from Prolific.co. Individuals who 

participated via Prolific were screened to closely match individuals from the USM 

student sample (i.e., age 18-31, U.S. resident, fluent in English, normal or corrected to 

normal eyesight). Prolific participants received an average of $8.00 as compensation for 

their time spent completing the experiment. Data from 97 participants was excluded due 

to incompleteness (did not complete the full experiment). 64 participants completed the 

study but failed to reach the learning criterion during that time. As in Experiment 1, data 

from these participants was not analyzed for accuracy and reaction time together with the 

265 participants who successfully reached criterion but were included in survival 

analyses. 

3.1.1 Demographics 

Participants were primarily young adults (M = 22.51, SD = 4.74). The majority of 

participants identified as female (N = 215), with a smaller portion identifying as male (N 

= 103) or another gender (N = 11). Self-report data of participants’ racial identities shows 

that most participants were White (N = 210), but the sample also included Black (N = 

72), Asian (N = 26), American Indian (N = 3), and Other (N = 18) individuals. 

3.2 Design 

The experimental design and variables were identical to those used in Experiment 

1 with the addition of Priming as an independent variable. Motion and Viewpoint 

remained between-subjects independent variables with two levels each. Priming was a 

between-subjects variable with three levels: Provided Affordance (PA); Generated 

Semantic (GS); Generated Affordance (GA). This resulted in a total of 12 conditions, to 

which participants were randomly assigned (Top-Motion-PA: n = 22; Top-Motion-GS: n 
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= 23; Top-Motion-GA: n = 23; Top-Static-PA: n = 22; Top-Static-GS: n = 22; Top-

Static-GA: n = 22; Side-Motion-PA: n = 22; Side-Motion-GS: n = 22; Side-Motion-GA: 

n = 22; Side-Static-PA: n = 22; Side-Static-GS: n = 21; Side-Static-GA: n = 22) 

3.3 Procedures 

The general procedure was identical to Experiment 1 (same-different 

discrimination task, learning blocks of 23 trials, 3-second target presentations, 2-second 

presentations for test objects) with the important addition of the three priming conditions. 

In the Provided Affordance condition, once the target object was displayed for study at 

the start of each block, participants were shown the message: “Now imagine that the 

target object is being used to crack open nuts. Like so:” followed by a short soundless 

video in which the object is grabbed by the hand and is used to crack open a peanut (see 

Figure 7). These prompts were designed to serve as affordance primes that provide a 

behavioral context for perceptual learning. In the Generated Semantic condition, semantic 

priming was facilitated by having participants describe the target object in terms of its 

physical appearance using at least two words (e.g., round, smooth, grey) immediately 

after it was presented for study. Participants typed their responses into a text box on the 

screen. The Generated Affordance condition was similar to the Generated Semantic 

condition, but participants were asked to describe two possible uses for the target object 

using action words/verbs (affordances, e.g., throw, squeeze) instead of physical 

appearance. This condition served as an affordance prime by providing a behavioral 

context for learning similar to the Generated Semantic condition but can be directly 

compared to the Generated Semantic condition because both conditions required more 
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effort or deeper processing (by having participants generate primes) than the Provided 

Affordance condition. 

3.4 Results 

3.4.1 Data Processing 

All data processing procedures in Experiment 2 including exclusion criteria, 

outlier identification, and corrections to measures were identical to those used in 

Experiment 1. 

3.4.2 Data Analysis 

3.4.2.1 Accuracy and Blocks to Criterion 

As in Experiment 1, accuracy was examined using absolute blocks (sequentially 

from Block 1 to Block 7) and relative blocks (with the block in which criterion was 

reached labeled as Block 8, and all previous blocks assigned values 7, 6, 5, etc. in reverse 

order). Thus, with the addition of the Prime variable, linear mixed-model analyses 

included a model using absolute blocks: d′ ~ View x Motion x Prime x Block + (1 | 

Subject) and relative blocks: d′ ~ View x Motion x Prime x newBlock + (1 | Subject). As 

in Experiment 1, the last block of the experiment was always excluded from analyses 

(unless it is the only block to analyze) due to a lack of variability. 

Blocks to Criterion was used as a dependent measure in a 2 (View) x 2 (Motion) x 

3 (Prime) between-subjects ANOVA analysis. 

3.4.2.2 Survival Analysis 

As in Experiment 1, data from participants who completed the experiment but 

failed to reach criterion were not included in analyses of accuracy and response time. 

However, data from these 64 participants was analyzed along with data from participants 
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who successfully reached criterion using a Kaplan-Meier survival analysis method 

(Kaplan & Meier, 1958). Survival distributions of each condition were compared, 

including how motion, viewpoint, and priming affected patterns of learning. Because 

there was no main effect of View in the ANOVA on blocks needed to reach criterion and 

because viewpoint was shown to have no significant influence on survival rates in 

Experiment 1, survival rates were collapsed across viewpoints. The analysis compared 

survival distributions between moving and static stimuli within each of the three priming 

conditions. 

3.4.2.3 Response Time 

RT was analyzed using the same type of mixed model (employing the lmer 

function in R) as in Experiment 1 with the addition of Prime as a fixed factor: RT ~ View 

x Motion x Prime x Block + Trial + (Trial | Subject). 

3.4.3 Accuracy 

When analyzed across absolute blocks the mixed model using d′ as the dependent 

variable resulted in no significant effects. The same analysis over relative blocks (see 

Table 2) yielded a significant main effect of Motion (β = -5.12, SE = 1.56, p < .001), such 

that the average d′ for the Motion condition was smaller (M = 1.79, SD = 0.96) than the 

Static condition (M = 2.04, SD = 0.82). The Motion x Prime interaction was also 

significant when comparing the GS to the GA condition (β = 6.21, SE = 2.01, p < .003), 

and when comparing the PA to the GA condition (β = 6.85, SE = 2.14, p < .002), such 

that there were greater differences in average discriminability between static and moving 

stimuli in the GS and PA conditions than in the GA condition (see Figure 8). 
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There was a significant Motion x NewBlock interaction (β = .77, SE = .18, p < 

.002), wherein presenting rotating objects resulted in more stable increases in d′ over 

blocks compared to statically presented stimuli which varied more from one block to the 

next (see Figure 9). 

The significant Motion x Prime x NewBlock interaction when comparing the GS 

and GA prime conditions (β = -.85, SE = .31, p < .01), and when comparing the PA and 

GA prime conditions (β = -1.04, SE = .33, p < .01) indicated that patterns of learning 

(changes in d′ over blocks) between rotating and static stimuli converged more quickly in 

the GS and PA conditions than in the GA condition, where motion facilitated a more 

accurate and more stable pattern compared to the static condition (see Figure 10). 

The significant View x Motion x Prime interaction in the context of comparing 

the PA to the GA condition (β = -6.75, SE = 2.81, p < .02)  was qualified by a significant 

View x Motion x Prime x NewBlock interaction (β = 1.11, SE = .43, p < .02), wherein the 

presence of motion produced a pattern of learning over blocks that was more stable and 

was overall closer to criterion from the start compared to the static condition, but only in 

the GA condition where objects were viewed from the side (see Figure 11). No other 

main effects or interactions were significant. 

3.4.4 Blocks to Criterion 

A between-subjects factorial ANOVA was conducted using the average number 

of blocks taken to reach criterion in each condition. There was a significant main effect of 

Motion, F(1,253) = 8.45, p < .01, η2p=.032, indicating that participants reached criterion 

in fewer blocks in conditions where objects were presented statically compared to the 
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condition in which the stimulus was rotating. No other main effects or interactions were 

significant. 

3.4.5 Survival Analysis 

The results of a log-rank test found that survival rates between motion and static 

condition were only significantly different in the GA condition, where learning was 

slower in the motion condition than the static condition, χ2(1, N = 329) = 8.25, p = .004 

(see top panel in Figure 12). In the GS and PA prime conditions survival rates were not 

significantly different between static and rotating stimuli. Viewpoint did not have an 

impact in any of the prime conditions on survival rates. 

3.4.6 Response Time 

The main effect of Prime was significant. Specifically, RT was faster in the GA 

prime condition (M = 2311.1ms, SD = 691.9ms) than in the PA prime condition (M = 

2274.6ms, SD = 665ms), β = -404.8, SE = 193.1, p < .04. The comparison between the 

GS (M = 2396.2ms, SD = 989ms) and PA prime was also significant (p<.05). This was 

qualified by several higher order effects. Motion x Prime was significant via the 

comparison between PA and GA prime conditions, β = 703.96, SE = 291.2, p < .02. This 

was further qualified by the View x Motion x Prime interaction via the comparison 

between the GS and GA primes, β = 848.1, SE = 414.2, p < .05. The Motion x Prime x 

Block interaction varied over absolute blocks in two ways: 1) between GS and GA (β = 

217.6, SE = 90.7, p < .02), and 2) between PA and GA (β = -220.4, SE = 93.4, p < .02). 

Finally, analysis over absolute blocks yielded a significant View x Motion x Prime x 

Block interaction (β = 254.20, SE = 125.58, p < .05), indicating that average response 

times over blocks were shorter in the motion condition compared to the static condition 
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and this varied by view and between primes (see Figure 13). As previously noted, 

analysis across absolute blocks is arbitrary because it fails to adequately capture 

functionally equivalent stages of learning due to individual differences in the number of 

blocks taken to reach criterion. Some participants reach criterion in fewer blocks than 

others and, consequently, are not included in averages of subsequent blocks. Therefore, I 

have chosen to focus on the results of the mixed model that utilized relative, rather than 

absolute, blocks. 

Analysis over relative blocks resulted in no significant main effects. There was a 

significant Motion x Prime interaction carried by the comparison between the PA and GA 

prime conditions, β = 1742.13, SE = 759.24, p < .03; a significant View x Motion x Prime 

interaction, also carried by differences between the PA versus GA primes, β = -2156.41, 

SE = 1024.81, p < .04; a significant Motion x Prime x NewBlock interaction carried by 

differences between the PA and GA primes, β = -227.50, SE = 97.76, p < .02). All these 

interactions were qualified by a significant View x Motion x Prime x NewBlock 

interaction in the context of differences between the PA and GA primes, β = 289.64, SE = 

131.34, p < .03. This four-way interaction demonstrated that differences in response 

times between static and motion conditions were greatest at the beginning of the study, 

with responses generally being faster in conditions where motion was present. Response 

times converged as participants approached criterion, with this convergence being most 

pronounced in the GA prime condition when objects were shown from the side. Although 

response times converged in all priming conditions and in both View conditions, the 

patterns of response times in the GA Sideview condition became remarkably consistent 

very quickly (see first graph panel in Figure 14). 
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3.5 Discussion 

In Experiment 2, I hypothesized that perceptual learning would be faster and most 

accurate when paired with a task that involves thinking about potential uses as opposed to 

simple discrimination, because perceptual learning (similar to perception) is best defined 

by actionable uses, i.e., affordances (H2). More specifically, I hypothesized that viewing 

a rotating object (H1A) from a side view (H1B) while actively thinking about what it can 

be used for (H2) should be the optimal combination of factors leading to fastest and most 

accurate learning because this circumstance would portray objects in a manner that most 

closely represents how we encounter objects in the real world: in motion, from a slightly 

angled side view, with the intention to utilize observed objects in a meaningful way. 

The results of d′ analyses over absolute blocks did not support Hypothesis 2. 

There were no significant effects on accuracy (d′), and analysis over average response 

times by absolute blocks was functionally arbitrary because comparisons between 

participants are not equivalent across blocks. The lack of significant results using 

absolute blocks was consistent with Hypothesis 2. As discussed previously, a functional 

task is necessary to examine the full effects of learning based on exploration (Motion and 

View) on perceptual learning. Unequal comparisons over absolute blocks would likely 

not be able to detect any effects that emerged within a more functional task. Given that 

the addition of priming conditions led to a more functional task in Experiment 2 

compared to Experiment 1, this outcome is not surprising especially when considering 

the results yielded from analysis over relative blocks. 

Analysis over relative blocks provided support for Hypothesis 2 in several ways. 

The significant interaction between movement and priming demonstrated more consistent 
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accuracy between static and moving stimuli in the most functional (Generated 

Affordance) condition. This similarity in accuracy persisted despite participants requiring 

more blocks to reach criterion in the GA condition, as indicated by the results of the 

survival analysis and the ANOVA on blocks to criterion. Furthermore, the presence of 

motion produced a steeper and more stable learning pattern over relative blocks 

compared to the static condition, but this only occurred when participants engaged in the 

most functional task, actively generating possible uses for target objects. Motion 

provided some benefit to learning compared to static presentation, as evidenced by less 

variable increases in d-prime over relative blocks compared to static presentation. 

However, the influence from motion was only able to fully emerge in the context of a 

functional task. Additionally, the benefit of motion (compared to static) in the same 

functional task was most pronounced when objects were shown from the side, which was 

designed to resemble the viewing angle we are most likely to encounter objects in our 

everyday lives. The cumulative effect of motion, side view, and affordance priming on 

perceptual learning supports the hypothesis that a combination of motion and a side view 

would lead to improved learning due to active sampling through exploration (Hypothesis 

1) and that these factors would become most beneficial when paired with a task that 

required participants to perform active generation of potential uses of objects because 

perceptual learning is functional in nature (Hypothesis 2).  

The convergence of response time patterns across viewpoints, movement, and 

primes also supports Hypothesis 2. Although initially there were larger differences 

between response times for moving and static stimuli, these differences dissipated as 

participants neared the end of the experiment. This convergence was particularly quick 
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and consistent when participants performed the most functional priming task (GA) and 

viewed rotating objects from the side. This underscores the finding that information from 

active sampling through rotation, and a side view can most effectively be utilized when 

applied to a functional task. 

The addition of functional tasks in Experiment 2 also permitted better 

examination of the influence of movement and viewpoint on perceptual learning, 

specifically, how the active sampling provided by motion and seeing objects from a side 

view should produce the most effective pattern of learning (Hypothesis 1). The 

hypothesis that motion would lead to better learning (H1A) was not supported by the 

finding that criterion was reached sooner (fewer blocks) when objects were presented 

statically. However, averaging performance over conditions fails to capture changes in 

accuracy over blocks. Given that learning is a gradual process of change, this result is not 

as meaningful as one from an analysis that examines performance as changes over 

learning blocks. When analyzed over relative blocks, I did find support for better 

performance from motion. Presenting stimuli as moving produced more stable increases 

in performance over blocks compared to static presentation. Active sampling of a rotating 

stimulus resulting from presentation from the side (as opposed to the top) was also 

expected to improve learning (H1B). This was supported by the finding that while motion 

was beneficial in a functional task (GA condition), it provided the greatest benefit when 

combined with exposure to multiple viewpoints. (i.e., when objects were viewed from the 

side). 
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CHAPTER IV – General Discussion 

The current study examined the nature of visual perceptual learning and factors 

that may influence it using ecologically valid, novel objects known as “feelies.” 

Participants performed a same-different discrimination task over learning blocks until 

they could discriminate a target object (one of the feelies) from all other objects (the nine 

other feelies) without making any mistakes. This study took inspiration from an 

influential Gibson and Gibson (1955) study on perceptual learning of scribbles, but with 

the goal of investigating perceptual learning using more ecologically valid objects and 

functional tasks.  

Learning occurred in all viewing conditions, as evidenced by increases in d′ over 

learning blocks and shorter response times across blocks. I hypothesized that perceptual 

learning would be faster and more accurate when there are opportunities to explore 

objects from multiple viewpoints (H1). This hypothesis was tested in two ways: by 

having the stimulus either move or be static, and by viewing the stimulus from the side or 

from the top. Specifically, it was predicted that perceptual learning should be faster and 

more accurate when the stimulus is viewed from the side as opposed to from the top, and 

when the stimulus is rotating around a vertical axis as opposed to being static. The results 

supported Hypothesis 1. Learning improved more quickly and showed a less variable 

pattern of accuracy over blocks when objects were shown from the side with motion, and 

although learning was generally slower when objects were presented as moving, the 

pattern of response times over the course of learning produced by moving objects shown 

from the side was the most consistent. Remarkably, improved performance only resulted 

from the interaction between both sources of viewpoint information. The presence of 
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motion alone did not benefit learning, in fact, learning occurred sooner when objects 

were viewed statically, and there was no effect of viewpoint on performance. One 

possible explanation for the seemingly contradictory results of movement is that the 

information provided by movement was simply not necessary for the simple object shape 

discrimination task. Overall, these findings were consistent with previous research that 

motion is beneficial to visual perception of 3D shape (Norman, Bartholomew et al., 2008; 

Norman et al., 2000, Norman & Raines, 2002, Norman et al., 1995) but not always 

optimally utilized (Todd, 2004; Todd & Norman, 2003), and that presentation of multiple 

viewpoints (i.e., perspectives) is a rich source of information for visual perception by 

revealing multiple surface regions of objects that contain information about unique 

depths and orientations of visible surface points (Hayward, 2003; Todd, 2004). 

 I also hypothesized that perceptual learning would be faster and more accurate 

when the task involves thinking about potential uses as opposed to simple discrimination 

without a meaningful behavioral task at hand (H2). Specifically, perceptual learning 

should be the fastest and most accurate when participants are required to think of 

potential uses for the objects as opposed to when they are primed to think about a specific 

use provided by the experimenter, or when they are simply asked to describe the object’s 

physical appearance. Combining this with Hypothesis 1 leads to the conclusion that 

viewing a rotating object from a side view while actively thinking about what it can be 

used for should be the optimal combination of factors leading to fastest and most accurate 

learning. I found support for this hypothesis, the most efficient and stable pattern of 

learning over blocks was produced when participants actively generated uses for moving 

objects that were shown from the side. Response times over blocks also converged most 
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quickly in this condition, demonstrating that the information provided by the culmination 

of these variables was able to be detected and utilized effectively by participants to 

inform their perceptions and decisions. 

In summary, participants learned to perfectly discriminate novel objects through 

repeated exposure to available information despite receiving no feedback during the 

experiment. The presence of motion and a side view perspective were expected to 

improve learning. Although each source of information did not benefit learning 

individually, the combination of moving stimuli shown from a side view produced a 

patten of learning that demonstrated consistently high accuracy in regard to shape 

discrimination. This synergistic effect was even more pronounced in the context of a 

functionally relevant task (i.e., generating potential uses for target stimuli). Response 

times indicated that participants’ trial-by-trial response rates were similar in all 

conditions, with response times being slower at the start of the study and decreasing as 

participants approached criterion. Responses were initially slower in conditions with 

motion, but response times converged with those in the static conditions as accuracy 

improved, suggesting greater efficiency utilizing information provided by movement. 

The advantage to learning observed with the moving stimuli viewed from the side 

could potentially be attributed to this condition providing the greatest exposure of object 

surface area compared to other conditions. Compared to a static image, motion provides 

more information by uncovering multiple views of an object’s surface as it rotates. When 

an object is shown from a side view perspective, previously occluded surface points 

become visible through rotation, so each new display is unique and reveals more of an 

object’s 3D shape. However, from a top view perspective, the surfaces on an object’s 
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sides and bottom are occluded and never revealed by rotation about a vertical axis (as 

used in this study). Thus, it is possible that the nature of the benefit from motion and a 

side view is the result of more total surface information being available in that condition 

compared to other conditions. Future studies should investigate this possibility by 

quantifying and controlling the amount of exposed visible surface area of objects during 

perceptual learning tasks. 

Despite this alternative interpretation, the findings of this study support the 

conclusion that perceptual learning requires active sampling through exploration, but a 

functionally meaningful task (i.e., affordance) is necessary to create the appropriate 

circumstance to most effectively utilize these sources of information. Furthermore, the 

influence of these factors can only be revealed when data is expressed using relative 

blocks (that represent functionally equivalent stages of learning across participants) rather 

than absolute blocks. 

4.1 Perceptual Constancy 

For traditional theories of visual perception, the fact that objects project a 

multitude of different images on the retina depending on the egocentric viewpoints the 

observer occupies, or due to the motion of the stimulus (rotation, translation, partial 

occlusion, etc.) poses an insurmountable problem: how can the brain identify the same 

object from multiple retinal images that contain very different light patterns? The current 

study demonstrated that it is possible to identify the same object from multiple 

viewpoints and during rotations which effectively show multiple facets of the same object 

to the naked eye. How do we detect the same information across these very different 

retinal images? Gibson’s (1966) solution is simple: The information is invariant across 
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multiple views and is available in many samples during continuous visual exploratory 

activity. The invariant pattern is discoverable by the sheer power of being exposed to rich 

information in every successive sample. Perceptual constancy is not a problem for the 

visual system if we assume that perception is not based on a two-dimensional projection 

of the stimulus on the retina. Instead, ecological approaches assume that perception (and 

by extension, perceptual learning) is a matter of active sampling of the ambient energy 

arrays and detecting invariant patterns of information that remain the same across 

viewpoints and motion. Some configurations (e.g., side view) are more useful and 

provide easier access to information that specifies an object, especially if the object is 

viewed with a particular use in mind. 

4.2 Applications 

These findings could prove useful in educational settings and situations involving 

training skillful behaviors, such as sports, medical diagnostics, and military maneuvers. 

For example, improvements in anticipatory ability and precise timing of attention have 

been linked to better performance in sports such as soccer, basketball, tennis, badminton, 

and darts. Research indicates that, through perceptual learning (via training), athletes 

acquire greater expertise in identifying important sources of information as well as 

determining the moment at which that information becomes available and most useful 

(Abernathy et al., 1999; Hagemann et al., 2006; Oudejans et al., 2005; Savelsbergh et al., 

2010; Smeeton et al., 2005; Vickers et al., 2000). Like athletes, those in the military often 

experience situations that require advanced situational awareness and the ability to make 

fast, accurate decisions. Several researchers have investigated how we can best train these 

types of skills (Endsley & Robertson, 2000; Klein, 1997). These military trainings tend to 
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be more cognitively focused than perceptual. Skills that benefit from perceptual learning 

training in sports could potentially generalize to a related domain (i.e., military). 

Therefore, more research into perceptual learning is needed in this area. Finally, 

perceptual learning can be used to improve the speed and accuracy with which medical 

professionals make certain diagnoses, such as screening for melanomas on patient’s skin 

(Guégan et al., 2021) and detecting lung tumors on chest radiographs (Sha et al., 2020). 

Ultimately, understanding factors that influence perceptual learning could inform the 

development of training plans and strategies that produce stable patterns of perceptual 

learning more quickly. 

4.3 Limitations 

The current study was conducted online. This limits experimental control and 

generalizability but also resulted in considerable loss of data from technical difficulties 

and a higher rate of attrition than is typically encountered in lab studies. This study also 

used a limited sample, as most participants were younger adults (mean age of 

approximately 22) and were primary white females. Consequently, the generalizability of 

findings from this study may be limited. 

Future studies that could advance this research include exploring perceptual 

learning of other objects that vary in complexity and shape, conducting future studies in a 

controlled, laboratory setting (as opposed to online), expanding the scope of perceptual 

learning to include other perceptual modalities, such as haptics, and including 

populations beyond younger adults, such as older and middle adults, and patient 

populations (e.g., the visually impaired, stroke victims, individuals with Parkinson’s 

disease). 
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4.4 Connections Between Perceptual Learning and Motor Learning 

In all the above-mentioned contexts the crucial component that was hypothesized 

to drive learning has been active exploration (Hacques et al., 2021). Active exploration 

enables the discovery of information that specifies future actions, and actions 

subsequently provide more opportunities for additional exploration. Information can be 

acquired from active exploration through performatory actions (such as using a tool) or 

exploratory activity, which involves actively seeking out information that specifies the 

properties and affordances of an event, object, or layout (Gibson, 1962; 1963; 1979). 

Although regarded as separate processes, the two operate in conjunction to inform the 

perception-action cycle. Organisms act to perceive just as they perceive to act, all so that 

they may be better suited to perform goal-oriented actions within their environment. 

Acquisition of skillful behaviors often involves a degree of motor learning as well. 

Everything from playing sports to walking on sloped surfaces requires careful 

coordination of movement. Emphasis is typically placed on the motor aspect of these 

behaviors, given the intrinsic connection between perception and action. Therefore, it is 

reasonable to assume that perceptual learning also plays a role in the development of 

these skills, and nowhere are perceptual and motor learning more connected than through 

haptics. Through haptics, we explore and perceive by movements of the hands, fingers, 

arms, body while being in direct physical contact with objects. Haptics involves the use 

of a variety of exploratory procedures (EPs), which are stereotyped movement patterns 

that possess certain characteristics that are invariant and are often highly typical 

(Lederman & Klatzky, 1987). EPs can be used to reliably detect information about 

various properties of objects. For example, one type of EP (lateral motion) presents as 
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sideways movement between the skin and the surface of an object (i.e., rubbing), and is 

most often used to detect information about texture. Depending on the nature of the 

information being sought, different EPs are employed to achieve optimal (i.e., most 

accurate or efficient) haptic perception. Compared to vision alone, haptics offers the 

chance to investigate the role of motor learning in skill development and the opportunity 

to compare the involvement of perceptual learning and motor learning on development of 

skilled actions. Therefore, haptic perceptual learning stands out as a particularly 

worthwhile direction for future research that complements visual perceptual learning. 

Future research should reveal whether perceptual and motor learning are subject to some 

of the same influences that facilitate the maintenance of perceptual constancy not just for 

the sake of identifying and discriminating among objects, but also in the context of goal-

directed, intentional behaviors that are accomplished by learning and perceiving specific 

uses (affordances) for objects. 

4.5 Conclusion 

The current study demonstrated that perceptual learning is an active process 

requiring exploration and a functionally meaningful task to create the optimal context for 

utilizing available information most effectively. These findings have implications for 

informing educational and training practices in various settings ranging from academics 

to sports, medicine, and military operations. Additional research is needed to further 

explore factors that influence perceptual learning and improve the generalizability of the 

current findings. 
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APPENDIX A – Tables 

Table A.1 Statistical output of the mixed model using the lmer function in R 

 β SE df t p 

Intercept  0.487 0.278 350.80  1.754 0.0804 

View (Top)  0.095 0.391 342.57  0.244 0.8076 

Motion (Absent)  0.985 0.400 380.86  2.465 0.0141* 

Block  0.343 0.082 335.07  4.209 <0.001*** 

View (Top) x Motion (Absent) -0.903 0.575 381.53 -1.57 0.1169 

View (Top) x Block -0.015 0.113 339.06 -0.14 0.8925 

Motion (Absent) x Block -0.33 0.145 378.59 -2.278 0.0233* 

View (Top) x Motion (Absent) x 
Block 

 0.456 0.214 381.59  2.136 0.0333* 

Significance codes: ***<0.001; **<0.01; *<0.05 
The effects in bold font are statistically significant. 
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Table A.2 The mixed model with d′ as the dependent variable across relative blocks 

 β SE df t p 

Intercept  0.619 0.759 579.01  0.815 0.4153 

View (Top)  -.715 0.968 580.77 -0.738 0.4606 

Motion (Absent)  -5.119 1.563 582.00 -3.276 0.0011** 

Prime (GS)  -1.936 1.166 582.00 -1.661 0.0973 

Prime (PA) -1.167 1.101 574.77 -1.060 0.2895 

NewBlock 0.147 0.119 545.24 1.234 0.2179 

View (Top) x Motion (Absent) 3.014 2.038 581.83 1.479 0.1396 

View (Top) x Prime (GS) 1.394 1.759 580.97 0.792 0.4286 

View (Top) x Prime (PA) 0.308 1.482 578.440 0.208 0.83543 

Motion (Absent) x Prime (GS) 6.208 2.016 581.7 3.080 0.0022** 

Motion (Absent) x Prime (PA) 6.846 2.137 581.97 3.204 0.0014** 

View (Top) x NewBlock 0.135 0.154 527.84 0.879 0.3800 

Motion (Absent) x NewBlock 0.768 0.238 561.17 3.223 0.0013** 

Prime (GS) x NewBlock 0.235 0.183 538.00 1.288 0.1982 

Prime (PA) x NewBlock 0.234 0.170 555.58 1.375 0.1697 

View (Top) x Motion (Absent) 
x Prime (GS) 

-5.395 2.944 579.33 -1.833 0.0674 

View (Top) x Motion (Absent) 
x Prime (PA) 

-6.749 2.812 581.88 -2.401 0.0167** 

View (Top) x Motion (Absent) 
x NewBlock 

 -0.464 0.312 560.97 -1.489 0.1371 

View (Top) x Prime (GS) x 
NewBlock 

-0.123 0.271 555.58 -0.453 0.6504 
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Table A.2 (continued). 

 β SE df t p 

View (Top) x Prime (PA) x 
NewBlock 

-0.160 0.2317 545.2812 -0.692 0.48935 

Motion (Absent) x Prime (GS) 
x NewBlock 

-0.853 0.3084 559.3996 -2.765 0.00588** 

Motion (Absent) x Prime (PA) 
x NewBlock 

-1.039 0.3270 558.2321 -3.176 0.00158** 

View (Top) x Motion (Absent) 
x Prime (GS) x NewBlock 

0.729 0.4455
4 

569.6433 1.636 0.10231 

View (Top) x Motion (Absent) 
x Prime (PA) x NewBlock 

1.113 0.4311 558.6274 2.581 0.01011* 

Intercept  0.487 0.278 350.80  1.754 0.0804 
View (Top)  0.095 0.391 342.57  0.244 0.8076 
Motion (Absent)  0.985 0.400 380.86  2.465 0.0141* 
Block  0.343 0.082 335.07  4.209 <0.001*** 
View (Top) x Motion (Absent) -0.903 0.575 381.53 -1.57 0.1169 
View (Top) x Block -0.015 0.113 339.06 -0.14 0.8925 
Motion (Absent) x Block -0.33 0.145 378.59 -2.278 0.0233* 
View (Top) x Motion (Absent) 
x Block 

 0.456 0.214 381.59  2.136 0.0333* 

Significance codes: **<0.01; *<0.05 
Effects in bold font are statistically significant. 
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APPENDIX B – Figures 

Figure B.1 Three-Dimensional-Printed Versions of the Original 10 Feelies.  

All feelies were a homogenous dark gray and were topologically similar. 
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Figure B.2 General Trial Sequence.  

Participants were presented with a target object to study, followed by several test objects 

for comparison, with the task of determining if each object is the same as or different 

than the target.
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Figure B.3 d′ as a function of Motion and Viewpoint across absolute blocks.  

Error bars indicate 95% confidence intervals.
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Figure B.4 d′ as a function of Motion and Viewpoint across absolute blocks.  

Error bars indicate 95% confidence intervals.
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Figure B.5 The rate of learning for rotating (full line) and static (dashed line) stimuli 

split by Viewpoint.  
Proportion of participants who did not reach criterion (i.e., did not achieve 100% 

accuracy) by Block 8 are indicated by the circle markers. 
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Figure B.6 Response times as a function of Motion and Viewpoint over relative blocks.  

Response time differences in learning occurred at the start of the experiment and 

converged at the end of the learning process, especially in the Topview condition. Error 

bars indicate 95% confidence intervals.
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Figure B.7 Instructions to Participants in the Priming Conditions.  

In the Provided Affordance condition participants were shown a video of the target object 

being used to crack open a peanut, as shown in the above still frame image.
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Figure B.8 d′ as a function of Prime and Motion.  

The significant interaction is carried by differences between GA and GS, and GA and PA 

primes, respectively. Error bars indicate 95% confidence intervals.
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Figure B.9 d′ as a function of Motion versus Static stimuli across relative blocks.  

Error bars indicate 95% confidence intervals.
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Figure B.10 d′ as a function of Prime and Motion conditions across relative blocks.  

Error bars indicate 95% confidence intervals.
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Figure B.11 The View x Motion x Prime x NewBlock interaction.  

As predicted, rotating stimuli facilitated optimal learning when presented from the side 

after being exposed to the GA prime. Error bars indicate 95% confidence intervals.
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Figure B.12 The rate of learning for rotating (full line) and static (dashed line) stimuli 

split by Prime type.  

Proportion of participants who did not reach criterion (i.e., did not achieve 100% 

accuracy) by Block 8 are indicated by the circle markers.
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Figure B.13 The View x Motion x Prime x Block interaction over absolute blocks on 

response time.  

Error bars indicate 95% confidence intervals.
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Figure B.14 The View x Motion x Prime x NewBlock interaction for response times.  
Error bars indicate 95% confidence intervals. 
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