Relaxation to Native Conformation of a Bond-Fluctuating Protein Chain With Hydrophobic and Polar Nodes

Johan Bjursell
George Mason University

Ras B. Pandey
University of Southern Mississippi, ras.pandey@usm.edu

Follow this and additional works at: http://aquila.usm.edu/fac_pubs

Recommended Citation
Relaxation to native conformation of a bond-fluctuating protein chain with hydrophobic and polar nodes

Johan Bjursell
George Mason University, MS 5C3, Fairfax, Virginia 22030-4444, USA

R. B. Pandey
Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5046, USA

(Received 3 October 2003; revised manuscript received 10 September 2004; published 30 November 2004)

The conformation and dynamics of a protein chain with hydrophobic and polar nodes are examined by the bond-fluctuation model using Monte Carlo simulations on a cubic lattice. The minimal (nearest neighbor) interaction leads to standard (self-avoiding walk) conformation, i.e., the scaling of the radius of gyration R_g with the molecular weight $N R_g \propto N^{3/5}$ with $\gamma = 3/5$. Specific interactions with longer range and higher strength are needed to approach the native globular conformations with $\gamma < 3/5$. Relaxation into the globular ground state shows a weak power-law decay, i.e., $R_g \propto t^{-\alpha}$, $\alpha \sim 0.06 - 0.12$.

DOI: 10.1103/PhysRevE.70.052904 PACS number(s): 87.14.Ee, 36.20.Ey, 87.15.Aa, 87.15.He

The structural stability of protein [1–4] chains has been studied extensively in recent years [5–19], primarily by computational methods. How the protein chain relaxes to its native conformations is one of the main questions addressed by many researchers [5–19]. A native structure evolves into a stable configuration (in steady state or equilibrium) as the chain explores its conformational phase space and is expected to be globular in appropriate solvent conditions. A protein is a large polymer consisting of 20 amino acids in a specific sequence. These amino acid groups are similar except for their side chains that distinguish their characteristics. They are roughly divided into three categories: hydrophobic (H), polar (P), and charged (C) groups. Hydrophobic and polar groups are considered to be the main constituents in most coarse-grained models [20] and as the main constituents to describe the general characteristics of the protein.

In a coarse-grained model, a polymer chain is described by nodes consecutively connected by bonds in a linear fashion. Primary chain models [21,22] are (i) constant bond (CB) chains with consecutive nodes connected by a constant bond length on lattice, (ii) bond-fluctuating (BF) chains with fluctuating bond lengths on lattice, and (iii) bead-spring (BS) chains (and variants) off lattice. While the CB methods (i) are efficient in probing the equilibrium properties such as conformation of polymer chains, some microscopic details are usually missed in many simulations due to limited degrees of freedom with fast but somewhat artificial segmental dynamics. The off-lattice approaches (iii), on the other hand, are excellent in probing the microscopic details but generally too slow to reach equilibrium due to the long relaxation time in many complex systems, primarily because of large (practically infinite) degrees of freedom. In order to examine the approach to asymptotic global properties, resorting to simplifications [20] is almost unavoidable with either method unless one develops hybrid simulation approaches that incorporate the efficiency, effectiveness, and accuracy of both methods [23–25]. The BF model (ii) lies in between (i) and (iii) as it captures more microscopic details with a considerably larger number of degrees of freedom than the CB model (i) without significantly compromising the efficiency of a discrete lattice. A chain node in the BF model occupies an elementary cube, i.e., a node is represented by eight lattice nodes in contrast to a single node in the CB model on a cubic lattice [21]. Due to excluded volume constraints of the node (cube) the bond length fluctuates between 2 and $\sqrt{10}$ with the exception of $\sqrt{8}$ and involves as many as 108 vectors [21] to access it. Banavar and co-workers [8,9] have recently argued that the thickness of the bonds that tether the nodes are very important to correctly take into account structural features of the protein. The bonds are usually very thin (negligibly small) in both CB (i) and BS (iii) models but they possess fluctuating length and thickness in the BF model (ii) which is our choice here to study the conformation and dynamics of a protein chain model.

Despite the limited degrees of freedom, the constant bond lattice model has the advantages of simplicity and computational efficiency, which are useful for exploring issues such as the energy landscape for stable structures of proteins. Using the CB description of the HP protein chain, Dill and co-workers [10,11] have successfully described the core assembly and protein folding into native structure via funnel pathways [12]. Lattice models provide useful insight into some of the basic characteristics of proteins [13,14]. The dynamics of the HP chain and its relaxation to the native structure is severely limited due to relatively few choices (degrees of freedom) for the node to move. In addition, it is not clear which combination of local segmental moves (i.e., kink-jump, crankshaft, reptation, etc.) [21] should be used to capture appropriate dynamical modes [23–25]. Off-lattice methods have contributed considerably in understanding the evolution of α helices and β sheets [15–18] where microscopic details are crucial. Incorporation of local interactions with large numbers of degrees of freedom is very important in such analysis around stable structures even with crude approximations [20]. The large-scale dynamics involving relaxation from one structure to another is, however, severely restricted due to the long time needed with small movement of nodes in off-lattice simulations [23–25].
Very recently, Chen and Chen [19] have used the bond-fluctuation model to study the folding and native structures of a specific protein, sensory rhodopsin I. They have used interactions between nodes, empty sites (to represent the host medium, i.e., a membrane between the water planes at the opposite sides of the lattice), the bending energy for the chain bonds, and the interaction energy with the water planes. The simulations seem to be performed in three stages with appropriate interactions to avoid the long relaxation time and to capture desired segmental packing. This may appear somewhat ad hoc or arbitrary, but necessary to overcome the energy barriers and technical difficulties. We would like to investigate the conformational relaxation and segmental mobility of proteins in a single domain (keeping the same interaction throughout) in detail with a somewhat simpler set of interactions without imposing the constraints of a specific protein. We focus on the general features of a simplified bond-fluctuating protein chain model by a large-scale computer simulation study: we encounter major technical problem in reaching the native globular structure even with large-scale simulations but we are able to show how the radius of gyration relaxes \((R_g \propto t^{-\gamma})\) with a revealing conversion of conformational populations into their native state.

We consider a cubic lattice of size \(L^3\) with \(L=30-200\). The protein chains of length \(N=50-400\) are considered with hydrophobic \((H)\) and polar \((P)\) nodes connected by fluctuating bonds. A node occupies a cube (eight lattice sites) and the bond length \(l\) in units of the lattice constant can vary, \(l^2=4, 5, 6, 9, 10\) with 108 vectors connecting consecutive monomers [21]. Initially, a chain of length \(N\) is randomly placed in the lattice. Apart from the excluded volume effect, we consider a short-range interaction \((U)\) among nodes and between nodes and empty sites which represent the effective solvent \((S)\) components,

\[
U = \sum_{i} \sum_{k} J(i,k),
\]

where the index \(i\) runs over all constituents \((H,P,S)\) and \(k\) over all their neighboring sites within a range \(r_i\) of site \(i\). The interaction energy between the constituents \((A,B)\) at these sites

\[
J(A,B) = \epsilon_{AB}.
\]

The range of interaction is varied, i.e., \(r_i^2 = l^2\), where \(r_i^2 = 4, 5, 10\) represent nearest neighbor, next nearest neighbor sites, etc. The set of interaction matrix elements

\[
\epsilon_{HS} = -\epsilon_{PS} = \epsilon_1, \quad \epsilon_{HP} = \epsilon_2, \quad \epsilon_{HH} = \epsilon_{PP} = \epsilon_3,
\]

with a range of interaction strengths \(\epsilon_i\), i.e., \(\epsilon_1=\epsilon_2=0, 1, 2, 3, \ldots; \epsilon_3=0\). The energy is measured in units of \(k_BT\).

The chain nodes are moved randomly to their neighboring sites (i.e., cubes) with the METROPOLIS algorithm and an attempt to move each node once defines one Monte Carlo step (MCS) as the time unit [21]. The simulation is performed for a long time with a number of independent runs for averaging the radius of gyration \(R_g\) and mean square displacements of each node \((\langle R_g^2 \rangle)\) and of their center of mass \((\langle R_c^2 \rangle)\).

A variety of random and ordered sequences including diblock copolymers of \(H\) and \(P\) sequences. Nearest neighbor interaction \((r_i^2=4)\) with interaction strengths \(\epsilon_1=1\) \((i1), 5\) \((i5)\) are used. Simulations are performed for up to \(10^7\) time steps, each with 100 independent runs. Inset figures show the variation of \(R_g^2\) \((N=50-300)\) and energy \(E\) for \(N=300\) with the time steps.

![Graph showing variation of \(R_g^2\) versus chain length \(N\) on 200³ samples for random \(H\) and \(P\) sequences. Nearest neighbor interaction \((r_i^2=4)\) with interaction strengths \(\epsilon_1=1\) \((i1), 5\) \((i5)\) are used. Simulations are performed for up to \(10^7\) time steps, each with 100 independent runs. Inset figures show the variation of \(R_g^2\) \((N=50-300)\) and energy \(E\) for \(N=300\) with the time steps.](052904-2)
conformation and see that for a relatively low interaction strength a globular conformation. Figure 3 shows such a variation. We see the segmental mobility as the protein chains relax into their square displacements with the time steps in order to probe globular structures. The decay of energy with the time steps is also consistent with the relaxation of protein chains into their ground state. Such a crude sampling of the one has to selectively use those configurations which have reached their ground state. Such a large amount of data, it is desirable to dig further into the conformational relaxation. In Fig. 4, we present the histogram of the radius of gyration. At a relatively short time \(t = 10^7 \) from the beginning of simulation, we see a rather large spread in the magnitude of \(R^2 \) from one sample to another \((r_i^2 = 5, \epsilon_i = 2) \). Toward the end of the simulation \((t = 10^9) \), on the other hand, values of \(R^2 \) in most samples have fallen to a very low value \((R_{g^2} \approx 30–40) \). Such a trend in population inversion from extended conformation into a globular form is also seen with higher interaction strengths \((\epsilon_i = 2, 3, 5) \). In summary, the conformation of the protein chain depends on the interaction (i.e., nature of the solvent) and the sequence. We are not able to distinguish differences in data with different random sequences due to large fluctuations. However, we have verified the changes by examining blocked sequences. While the appropriate interac-
tions are necessary to reach the native structures, the relaxation depends on the quality of the solvent. Despite a major problem with a very long relaxation time, our simulation reveals a clear population conversion ("funneling") of HP protein chains into their globular ground state. Relaxation of the radius of gyration shows a slow power-law decay [Eq. (5)] with a nonuniversal power-law exponent (α) into a native structure with $R_g \propto N^\gamma$, $\gamma \approx 3/5$.

This work was supported in part by NSF-EPSCoR Grant No. EPS-0312618 and a basic research grant from the University of Southern Mississippi. Participation in the National Science Foundation MRSEC program under the Grant No. DMR-0213883 was helpful. We thank Dietrich Stauffer for valuable comments and corrections. The visualization is performed by an animation program ANIMP developed by Dr. Ray Seyfarth; we thank him for his help.