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Abstract
To study the impact of the Deepwater Horizon oil spill on photosynthesis of coastal salt marsh
plants in Mississippi, we developed a hierarchical Bayesian (HB) model based on field
measurements collected from July 2010 to November 2011. We sampled three locations in
Davis Bayou, Mississippi (30.375◦N, 88.790◦W) representative of a range of oil spill impacts.
Measured photosynthesis was negative (respiration only) at the heavily oiled location in July
2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiling
location was lower than at the control location in July 2010 and it continued to decrease in
September 2010. During winter 2010–2011, the contrast between the control and the two
impacted locations was not as obvious as in the growing season of 2010. Photosynthesis
increased through spring 2011 at the three locations and decreased starting with October at the
control location and a month earlier (September) at the impacted locations.

Using the field data, we developed an HB model. The model simulations agreed well with
the measured photosynthesis, capturing most of the variability of the measured data. On the
basis of the posteriors of the parameters, we found that air temperature and photosynthetic
active radiation positively influenced photosynthesis whereas the leaf stress level negatively
affected photosynthesis. The photosynthesis rates at the heavily impacted location had
recovered to the status of the control location about 140 days after the initial impact, while the
impact at the medium impact location was never severe enough to make photosynthesis
significantly lower than that at the control location over the study period. The uncertainty in
modeling photosynthesis rates mainly came from the individual and micro-site scales, and to a
lesser extent from the leaf scale.

Keywords: Deepwater Horizon oil spill, photosynthesis, salt marsh, hierarchical Bayesian
models, multi-scale
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Content from this work may be used under the terms
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ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction

Coastal wetlands are among the most productive ecosystems
in the world, providing benefits such as carbon sequestration,
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storm protection, flood control, habitat, improved water
quality, and recreational and aesthetic opportunities (Engle
2011, Jordan and Peterson 2012). However, coastal wetlands
and their ecosystem services are not only threatened by upland
stressors (Peterson and Lowe 2009), but they are also at risk
from ocean-side stressors, in particular accelerated sea-level
rise, erosion and anthropogenic pollutants like occasional oil
spills.

The Deepwater Horizon (DWH) oil spill in the northern
Gulf of Mexico (GOM), from 20 April to 15 July 2010, was
the largest marine oil spill in the history of the petroleum
industry (available at http://en.wikipedia.org, accessed on 16
March 2012). This accident released about 4.4 × 106

± 20%
barrels (7.0 × 106 m3) of crude oil into the ocean from the
well at 1500 m depth (Crone and Tolstoy 2010). Crude oil
degrades in water via evaporation, dissolution, emulsification,
sedimentation, biodegradation (microbial oxidation) and
photooxidation (e.g., Hunt 1996, Fingas 1999, Plata et al
2008, Mendelssohn et al 2012, Liu et al 2012) before
coming ashore. On the Mississippi Gulf Coast, small oil slicks
(<100 m2) arrived sporadically from early June 2010 through
2011 but slicks arrived onshore more frequently and as larger
patches during active tropical systems (e.g., Hurricane Alex,
TS Bonnie and TD #5; http://www.nhc.noaa.gov/2010atlan.
shtml, accessed on 16 March 2012).

The response of vegetation in coastal wetlands to
weathered crude oil is complex and variable, ranging from
short-term reductions in photosynthesis and rapid subsequent
recovery, to complete mortality and long-term wetland loss
(Pezeshki et al 2000, 2001, Roth and Baltz 2009, Engle
2011). Oil can affect plants directly by coating the leaves and
blocking stomata, it’s chemical toxicity disrupts plant–water
relations or directly impacts the living cells, and it reduces
oxygen exchange between the atmosphere and the soil
with negative consequences for root health (Baker 1970,
Pezeshki et al 2000, Ko and Day 2004). Spilled oil can also
increase temperature stress, which combined with reduced
photosynthetic gas exchange, will cause acute impacts (Baker
1970, Lin and Mendelssohn 1996, Ko and Day 2004). The
acute impacts vary depending on the amount and type of
oil, oiling frequency, the weather and hydrologic conditions,
the species of plant, the spatial extent of oil coverage,
season, soil composition and cleanup activity (Lin and
Mendelssohn 1996, Hester and Mendelssohn 2000, Pezeshki
et al 2000, Mendelssohn et al 2012). Spartina alterniflora
(smooth cordgrass) was more sensitive to partial oil coating
than Juncus roemerianus (black needlerush; Pezeshki and
DeLaune 1993), both plant species are important on the
US Gulf Coast. In contrast, moderate oiling from the DWH
oil spill had no significant effect on Spartina although it
significantly lowered live above-ground biomass and stem
density of Juncus in the Bay Jimmy, northern Barataria
Bay, Louisiana (Lin and Mendelssohn 2012). Furthermore, S.
alterniflora and Sagittaria lancifolia (bulltongue arrowhead)
were shown to be more sensitive to oiling during the
spring/summer growing season than during the pre-dormancy
or dormant season in winter (Pezeshki et al 2000, Mishra
et al 2012). This notwithstanding, salt marshes in the northern

GOM region can recover rapidly (Pezeshki and DeLaune
1993, Pezeshki et al 2000).

However, oil spills can cause adverse chronic conse-
quences on coastal wetlands and adjacent aquatic habitats
due to oil penetration into the sediment and persistence
in it (Krebs and Tanner 1981, Alexander and Webb 1987,
Lin and Mendelssohn 1998, Mendelssohn et al 2012). The
severity of chronic impacts is influenced by the volume
and chemical nature of the oil, the oil’s amount of contact
with and penetration of the soil, the physical nature of the
coastline (high or low energy) and the composition of the
plant community (Dicks and Hartley 1982, Ko and Day
2004, Mendelssohn et al 2012). Once oil penetrates the
sediment, the recovery to reference conditions may take
3–4 years (Alexander and Webb 1987, Mendelssohn et al
1993, Hester and Mendelssohn 2000) or longer (Bergen et al
2000, Michel et al 2009, Mendelssohn et al 2012). Under
extreme circumstances, recovery may never occur due to
sediment removal (Baca et al 1987, Gilfillan et al 1995) or
accelerated erosion after vegetation morality (Mendelssohn
et al 2012). Even after plants resume growth, oil may continue
to adversely affect soil microbial functions in coastal wetlands
(Burns and Teal 1979, Pezeshki et al 2001). Understanding
the acute and chronic impacts of oil on coastal wetlands is
important to be able to assess their resilience.

Net primary productivity is an aggregate measure of
energy available to support ecosystem structure and function
(Cardoch et al 2002); therefore, photosynthesis can be
used to assess the impact of oil on ecosystem health.
However, inferring how photosynthesis is affected by chronic
and indirect exposure to oil can be difficult because of
spatial and temporal complexity. On the one hand, factors
at multiple spatial scales (from cm to km) will influence
photosynthesis, from individual-plant level traits (cm), to
site-specific variation (m), to the broader landscape level
(km). On the other hand, photosynthesis changes over time
as a response to seasonal patterns, with more photosynthesis
during the growing season and less in the dormant season. The
difficulty inherent in relating the change in photosynthesis
rates directly to a specific oil spill will increase with the
scale and complexity of the ecosystem as well as additional
disturbance/stress factors such as sea-level rise (Fabricius and
De’Ath 2004) unrelated to the oil spill event. A coherent way
to link these various processes occurring simultaneously at
multiple spatial and temporal scales is therefore necessary
to better elucidate the oil-related impacts on photosynthesis
during the chronic stress phase of recovery.

Recent advances in computational statistics have pro-
duced new tools for inference and prediction, such as
the hierarchical Bayesian (HB) modeling approach. This
approach has the capacity to exploit diverse sources of
information, can accommodate uncertainties, and has the
ability to draw inferences on large numbers of latent
(inferred) variables and parameters that describe complex
relationships (Clark 2005). The approach accommodates
complex systems by decomposing their high-dimensional
relationships into levels of conditional distribution within
a consistent framework: data level, process model level
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Figure 1. Multiple-scale images of the study area. (A) Marsh Point’s (MP) general location at the southern border of Davis Bayou, Ocean
Springs, MS (digital orthophoto quadrangle, November 2010, courtesy of MARIS1). The inset shows the location of MP relative to the
Deepwater Horizon (DWH) and early oil slick (MODIS Aqua image, 25 April 2010). (B) The three locations we sampled at MP: control
(CO), medium oiled (MO) and heavily oiled (HO), with photos of the vegetation status on July 2010, 13 days after the first oiling. Note the
north arrow on (B) does not apply to orientation of the three vegetation photos.

and parameter level (Clark et al 2001). In particular, the
process model is made stochastic, consistent with the system
complexity, and our limited understanding of the processes
(e.g., photosynthesis in our study). The stochasticity allows
us to impose conditional independence at the data level
and assimilate the relationships among state variables at
the process level (Wu et al 2010). Finally, the simulation
results are rich (e.g., posterior distributions instead of
point estimates) and the interpretation is simplified because
uncertainty can be readily quantified using credible intervals
from the resulting posteriors.

In this study, we aim to

(1) Develop an HB statistical model to simulate photo-
synthesis of S. alterniflora plants at three locations
representative of a range of oil spill impacts based on field
measurements.

(2) Apply the model to infer when photosynthesis of S.
alterniflora at the oil impacted locations recovered to the
status of the control location with inherent leaf, individual,
micro-site and seasonal variability accounted for, and
which spatial scale contributed the most to variability in
the photosynthesis simulations.

2. Methodology

2.1. Study area

We sampled three locations, about 300 m2 each, at
Marsh Point in Davis Bayou, along the southern edge

1 Mississippi Automated Resource Information System.

of the peninsula that forms the southern border of Davis
Bayou, on the Mississippi Gulf Coast (30.375◦N, 88.790◦W,
figure 1(A)). One location was not impacted by crude
oil (control location, figure 1(B)), the second location
experienced medium impact by crude oil (some oil observed
on the sediment and plants, figure 1(B)) and the third location
was heavily impacted by oil (plants covered by crude oil
extensively, figure 1(B)). The spatial extent of the heavy
impact area was not larger than about 10 m× 5 m (50 m2).

Mississippi Gulf Coast’s climate is subtropical maritime
(Eleuterius 1998), with mean spring, summer, fall and winter
temperatures being 19.4 ◦C, 27.4 ◦C, 20.4 ◦C and 11.1 ◦C,
respectively (Reuscher 1998). The area receives an average
of 1488 mm of rainfall per year (Eleuterius 1998) with the
Hurricane season being from June through November.

The lower, mesohaline area of Davis Bayou is composed
of zones of salt marsh vegetation, including mid-marsh
J. roemerianus and low-marsh water-fringing S. alterniflora
zones (http://www.dmr.ms.gov/mississippi-gems/210-davis-
bayou, accessed on 19 September 2012). Salt-meadow grass
(Spartina patens) forms narrow bands adjacent to dunes or
uplands, and Olneyi bulrush (Schoenoplectus americanus)
and salt marsh bulrush (Schoenoplectus robustus) can be
found interspersed with saltgrass (Distichlis spicata).

2.2. Field monitoring

We randomly chose 10–15 individuals of S. alterniflora
at each of the three locations monthly between July 2010
and November 2011 and measured the photosynthesis rate
on the middle portion of the second leaf from the tip of
each individual using an LI-6400 XT portable photosynthetic
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Figure 2. The conceptual model to illustrate the hierarchical structure with complexity decomposed into stages of data, process and
parameters (vertical direction) and the association of different spatial scales (horizontal direction). (Adapted from Clark and LaDeau (2006)
and McMahon and Diez (2007).)

gas exchange and chlorophyll fluorescence system. The
photosynthetic rates for each of the leaves were measured by
CO2 exchange under five identical photosynthetically active
radiation (PAR) intensities: ∼400 µmol photon m−2 s−1,
800µmol m−2 s−1, 1200µmol m−2 s−1, 1600µmol m−2 s−1

and 2000 µmol m−2 s−1 to standardize the photosynthesis
rate under saturating light intensities. For each leaf we also
measured chlorophyll fluorescence (Fv/Fm) after at least
30 min dark adaption and used this as an indicator of leaf
and individual stress or health (Naumann et al 2007). Air
temperature was recorded by the LI-6400 system at the time
of measurement.

No summer photosynthesis data was collected at any
locations in 2011 because of an instrument exposure to
salt-water that required extensive repairs. Data were not
collected at the control location in August and September
2010 since we assume that photosynthesis and its variability
are similar to those in July, as the daily average air temperature
for the three months were similar (28.3 ◦C in July, 28.9 ◦C
in August and 26.7 ◦C in September). In order to assess
the recovery of photosynthesis at the impacted locations
(medium, heavy), we assume that their close proximity to the
control location provided similar environmental conditions.

2.3. Developing the spatio-temporal hierarchical Bayesian
model

In order to model photosynthesis, we started with a saturation
function to simulate the response of photosynthesis to PAR
intensity, the photosynthesis–irradiance (P–I) curve. We
made the model stochastic to reflect the fact that there

is inherent natural variability in the saturation function
that describes photosynthesis versus PAR. Furthermore, we
acknowledged that the variability among individual plants,
micro-site variability and temporal variability can all affect
photosynthesis in unpredictable ways.

The recognition of these multiple sources of natural
spatial and temporal variability guided the development of the
process and parameter levels in our HB model (figure 2 and
table 1). The goal of the model was to estimate photosynthesis
rates as a function of (1) the covariate at the leaf scale: PAR,
(2) the covariates at the individual scale: air temperature and
stress/health level, (3) the covariate at the micro-site scale: the
level of crude oil contamination, and (4) the covariate at the
temporal scale: the number of days after the beginning of the
crude oil impact (8 July 2010).

To represent these functions, let i represent month, j
represent location, k represent an individual, l represent PAR
intensity (unit: µmol photon m−2 s−1), Pijkl represent the
photosynthesis rate (µmol C m−2 s−1) at PAR intensity l for
individual k at location j at month i (as we have photosynthesis
measurements for each month). Let Pijkl.µ represent the mean
of Pijkl, σ

2
L represent the variance of the photosynthesis rates

among the 5 different PAR values (∼400, 800, 1200, 1600,
2000 µmol photon m−2 s−1) at the leaf scale. N represent a
normal distribution, ∼ represent ‘is distributed as’, so Pijkl is
modeled using equation (1):

Pijkl ∼ N(Pijkl.µ, σ
2
L). (1)

(Note: photosynthesis can be negative when the leaves were
covered by crude oil.)
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Table 1. Summary of the parameters and state variables in the model (note the symbol does not include the subscripts (note: subscripts:
i = month; j = micro-site (location); k = individual; l = PAR level) in the equations).

Scales
Symbols representing the
parameters or state variables Meaning

Global scale θ0 Global intercept
Micro-site
scale (fMS)

Time Days after the initial impact (8 July 2010) (unit: days)

Locm Dummy variable to represent whether the location is medium impacted
location (1) or not (0)

Loch Dummy variable to represent whether the location is heavily impacted
location (1) or not (0)

α0, α0.µ Intercept at the micro-site scale, mean of the intercept
θ1 Coefficient for Time
θ2 Coefficient for Locm
θ3 Coefficient for Loch

σ 2
MS(τMS = 1/σ 2

MS) Variance (precision = inverse of variance) at the micro-scale process
Individual
scale (fK)

T Air temperature (unit: ◦C)

S Stress/health status represented by Fv/Fm
a

β0, β0.µ Intercept at the individual scale, mean of the intercept
α1 Coefficient for T
α2 Coefficient for S
σ 2

K(τK) Variance (precision) at the individual-scale process
Leaf scale
(fL)

PAR Photosynthetically active radiation (unit: µmol photon m−2 s−1)

P Photosynthesis rate (unit: µmol C m−2 s−1)
P.µ Mean of the photosynthesis rate (unit: µmol C m−2 s−1)
ω Half-saturation irradiance (assuming PAR0 = 0) (unit:

µmol photon m−2 s−1)
z Transformed variable: z = PAR/(ω + PAR)
PAR0 Compensation irradiance (unit: µmol photon m−2 s−1)
Pmax Maximum photosynthesis rate
β1 Coefficient for z
σ 2

L(τL) Variance (precision) at the leaf scale process

a Fv = Fm − Fo,Fo is the minimum fluorescence in dark adapted leaves, and Fm is the maximum fluorescence in dark
adapted leaves. For healthy plants, Fv/Fm is between 0.75 and 0.85. The lower the Fv/Fm, the more stressed the leaf
(LI-COR Inc. 2003).

We applied a Michaelis–Menten equation to model
Pijkl.µ as a function (fL) of available PAR at the leaf scale
(equation (2)):

Pijkl.µ = fL(Pmaxijk,PAR0ijk, ω)

= Pmaxijk
PARijkl − PAR0ijk

ω + PARijkl
(2)

where Pmaxijk (µmol C m−2 s−1), PAR0ijk
(µmol photon m−2 s−1), and ω (µmol photon m−2 s−1) are
the three parameters that need estimation. Pmaxijk represents
the maximum net photosynthesis rate, PAR0ijk represents the
PAR intensity where net photosynthesis becomes positive
(called the compensation irradiance), and ω represents the
PAR intensity when the photosynthesis is half of the Pmaxijk
(assuming PAR0ijk is 0; called half-saturation irradiance).

We reparameterized the nonlinear Michaelis–Menten
equation to make it linear so we could derive the posteriors
more efficiently (Clark et al 2003, Clark 2007). To do this,
the new variable that replaces PARijkl is zijkl =

PARijkl
ω+PARijkl

, so
that Pijkl.µ can now be modeled as a linear function of zijkl
(equation (3)):

Pijkl.µ = fL(β0ijk, β1) = β0ijk + β1zijkl. (3)

The new parameters β0ijk and β1 represent the intercept
modeled from the individual scale and the coefficient for the
transformed variable zijkl, respectively, and they are related to
the original parameters through equations (4) and (5):

Pmaxijk = β0ijk + β1 (4)

PAR0ijk = −β0ijkω(β0ijk + β1)
−1. (5)

Therefore, P (photosynthesis rates) for n1 PAR intensities per
individual, n2 individuals per location at n3 locations over n4
months is modeled as in equation (6):

p(P|β0, β1, σ
2
L) ∝

n4∏
i=1

n3∏
j=1

n2∏
k=1

n1∏
l=1

N(Pijkl|fL(β0ijk, β1), σ
2
L) (6)

where ∝ denotes ‘is proportional to’.
At the individual scale,

β0ijk ∼ N(β0ijk.µ, σ
2
K) (7)

where β0ijk.µ is the mean of β0ijk, and σ 2
K is the variance

at the individual scale. In equation (7) β0ijk.µ is a function
of air temperature (Tijk) and stress level (Sijk) (measured as
Fv/Fm) for individual k at location j at month i, as defined by

5
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equation (8):

β0ijk.µ = fK(α0ij, α1, α2) = α0ij + α1Tijk + α2Sijk

(8)

where α0ij is the intercept modeled from the micro-site scale
(among the 3 locations), α1 and α2 are the coefficients for Tijk
and Sijk respectively,

Therefore, β0 is modeled as equation (9):

p(β0 | α0, α1, α2,σ
2
K)

∝

n4∏
i=1

n3∏
j=1

n2∏
k=1

N(β0ijk | fK(α0ij, α1, α2), σ
2
K). (9)

At the micro-site scale, α0ij is modeled using equation (10):

α0ij ∼ N(α0ij.µ, σ
2
MS) (10)

where α0ij.µ is the mean of α0ij, σ
2
MS is the variance at the

micro-site scale. In equation (10), α0ij.µ is modeled as a
function of the days after the initial oil impact (Timei), and
two dummy variables representing the locations that have
medium (Locm) and heavy impact (Loch) from crude oil
contamination as defined in equation (11):

α0ij.µ = fMS(θ0, θ1,θ2, θ3)

= θ0 + θ1[Loc] × Timei + θ2

× Locm + θ3 × Loch (11)

where θ0 is the global intercept, θ1 is a vector of coefficients
for the days after the initial impact (Time) at each location
(Loc), θ2 is the coefficient for the dummy variable of medium
location Locm, and θ3 is the coefficient for the dummy
variable of heavy location Loch. The dummy variables Locm
and Loch will only take the values of 0 or 1. If Locm is 1, then
α0ij.µ represents the mean of α0ij for the medium impacted
location; if Loch is 1, then α0ij.µ represents the mean of α0ij
for the heavily impacted location; if both Locm and Loch are
0s, then α0ij.µ represents the mean of α0ij for the control
location; at no time can Locm and Locm be 1 at the same time.

Therefore, α0 is modeled as equation (12):

p(α0 | θ0, θ1, θ2,θ3, σ
2
MS)

∝

n4∏
i=1

n3∏
j=1

N(α0ij|fMS(θ0, θ1, θ2, θ3), σ
2
MS). (12)

To complete the Bayesian model, we require prior
distributions for unknown parameters (αs, βs, θs and σ s)
described above. We used priors that were conjugate with
the likelihood for computation efficiency (Calder et al 2003),
meaning that prior and posterior distributions had the same
form. For instance, the variance parameters σ 2

L, σ
2
K, σ

2
MS

had inverse gamma (IG) priors, which is conjugate for the
normal likelihood distribution. For the other parameters,
we used normal distributions as priors. The priors are
‘non-informative’, meaning that the prior distributions were
rather flat and only weakly influenced the parameter estimates
since we knew little about the unknown parameters (Hartigan
1998, Clark and Bjornstad 2004).

By combining the parameter, process, and data models
as defined above in equations (1)–(12), we derived the joint
posterior (equation (13)):

p(β0, β1, α0, α1, α2, θ0, θ1, θ2, θ3, σ
2
L, σ

2
K, σ

2
MS | P,

PAR,T, S,Time,Locm,Loch, priors)

∝ p(P|β0, β1, σ
2
L)

× p(β0 | α0, α1, α2,σ
2
K)× p(α0 | θ0,θ1, θ2, θ3, σ

2
MS)

× p(θ0)× p(θ1)× p(θ2)× p(θ3)

× p(α1)× p(α2)× p(β1)

× p(σ 2
L)× p(σ 2

K)× p(σ 2
MS) (13)

From the model just described, we could infer (1)
the impact of the PAR intensity (β1, ω), air temperature
(α1) and stress level (α2) on photosynthesis rates, (2) the
temporal trend of photosynthesis at each location (θ1), (3)
how photosynthesis at the impacted locations compared to the
control location over time (α0), and (4) which spatial scale
contributed most to variability in photosynthesis rates (τ ). In
particular, we are interested in using the model to infer when
the photosynthesis at the impacted locations started to recover
to similar rates as the control location, and which spatial
scale contributes the most to variability in the photosynthesis
simulations.

2.4. Implementing the hierarchical Bayesian model

We implemented the model described in equation (13) using
Markov Chain Monte Carlo (MCMC) simulations (Gelfand
and Smith 1990) in the software OpenBugs 3.2.1 (Rev.
781). We evaluated convergence of the parameters (αs, βs,
θs and σ s) by simulating three MCMC chains from three
different sets of initial values (figure S1 available at stacks.
iop.org/ERL/7/045302/mmedia). The chains converged based
on Gelman and Rubin’s convergence statistics (Brooks and
Gelman 1998) and convergence required 90 000 iterations
of MCMC. These pre-convergence ‘burn-in’ iterations were
discarded and an additional 90 000 iterations were saved for
the subsequent analysis. The upper 95% confidence limit of
the convergence statistics for the parameters, latent variables
and variances based on the post-burn-in iterations are all less
than 1.2, indicating that the chains converged to the stable
posterior distribution (Clark 2007).

We used an index of agreement (IoA) to assess the
match between simulated medians of photosynthesis and
the measured photosynthesis (equation (14): Willmott et al
1985, 2012):

IoA = 1−

∑n
i=1 |Pri − Oi|∑n

i=1(|Pri − Ō| + |Oi − Ō|)
(14)

where Pri is the model predictions, Oi is the observed (or
measured) data, Ō is the average of observed (measured)
data, and n is the number of data points. IoA measures
the agreement between predictions and observations on a
one-by-one basis. This dimensionless index ranges from
0.0 (indicating no agreement) to 1.0 (perfect agreement). It
approaches 1.0 slowly as Pr approaches O, and therefore,
provides a reliable tool to assess the model’s performance.
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Figure 3. Plots of medians with 95% confidence intervals for the measured photosynthesis rate (µmol C m−2 s−1
− y axis) at different

photosynthetic active radiation (PAR) (x-axis) at the locations of (A) control, (B) medium impact, and (C) heavy impact in each month from
July 2010 to November 2011. At the x-axis, 1 = the PAR around 400 µmol C m−2 s−1, 2 = the PAR around 800 µmol C m−2 s−1, 3 = the
PAR around 1200 µmol C m−2 s−1, 4 = the PAR around 1600 µmol C m−2 s−1, and 5 = the PAR around 2000 µmol C m−2 s−1. Note: (1)
we do not have measurements of June to August 2011 due to the equipment breakdown; (2) we do not have measurements of photosynthesis
in August and September 2010 at the control location and we assume they were similar to the photosynthesis at the same location in July
2010; (3) we do not have measurements of photosynthesis in October 2010 and February 2010 at the medium location; and (4) we have only
one individual’s measurements in October 2010 at the heavy location after removal of the questionable data.

2.5. Modifying the hierarchical Bayesian model

We also explored possible improvements to the model by
modifying equation (11) to include Julian days as a covariate
to represent seasonality (equation (15)):

α0ij.µ = fMS(θ0, θ1,θ2, θ3, θ4, θ4) = θ0 + θ1[Loc]

× Timei + θ2 × Locm + θ3 × Loch + θ4

× JulianDay− θ5 × JulianDay2. (15)

For the effect of Julian day, we wanted a model that
would have a single peak value to represent the highest
photosynthesis rates in the late spring or summer (between
Julian days 120 and 240), so θ5 should be positive in
equation (15).

We also considered other modifications to the initial
model (equation (13)) to improve the photosynthesis
simulation: (a) possible nonlinear effect of temperature
(equation (16)), and (b) possible interaction between air
temperature and stress status of the plants (equation (17)) at
the individual scale, so we modified equation (8) to:

β0ijk.µ = fK(α0ij, α1,α2)

= α0ij + α1Tijk + α2Sijk − α3T2
ijk (16)

and

β0ijk.µ = fK(α0ij, α1,α2)

= α0ij + α1Tijk + α2Sijk + α4TijkSijk. (17)

In particular, we assessed the significance of the coefficients
for the added covariates and how the added covariates affect
the coefficient estimates for the other covariates.

3. Results

3.1. Measured photosynthesis rates

Not all field measurements obtained were used in the model;
17.7% of the data were removed from our data analysis and
model development. Some examples of data that were exclude
are: too small a leaf area in the leaf chamber, negative values
which could not be explained by health status of the leaves
(as indicated by the field notes and Fv/Fm measurements),
or the response of photosynthetic rates being much smaller
under high PAR levels compared to low PAR levels but do not
represent photoinhibition.

At the control location, measured photosynthesis
rates were high (41.29 ± 13.17 (standard deviation)
µmol C m−2 s−1) compared to medium (26.27 ±
10.71 µmol C m−2 s−1) and heavy impact locations (−1.53±
0.783 µmol C m−2 s−1) in July 2010 (figure 3). Late fall
and winter (Nov 2010–Feb 2011) photosynthesis rates were
low (15.84 ± 6.33 µmol C m−2 s−1), and began to increase
in March 2011 at the onset of the growing season of S.
alterniflora (figure 3).

Photosynthesis at the medium oiled location was lower
than at the control location in July 2010 and the mean rate
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Table 2. Summary of the quantiles and the means of selected parameters simulated from the HB model.

Parameters
2.5%
quantile Median Mean

97.5%
quantile

θ0 (global intercept) −42.359 −24.761 −25.045 −9.275
θ1 (temporal trend) Control −0.0596 −0.0407 −0.0407 −0.0219

Heavy −0.0102 0.008 41 0.008 42 0.0272
Medium −0.0276 −0.008 25 −0.008 27 0.0110

θ2 (medium location) −19.024 −11.180 −11.170 −3.266
θ3 (heavy location) −28.681 −21.089 −21.106 −13.617
α1 (air temperature) 0.0331 0.281 0.280 0.515
α2 (leaf stress, Fv/Fm) 3.992 11.291 11.255 18.508
β1 (transformed PAR) 42.058 52.803 53.161 66.543
ω (µmol photon m−2 s−1)
(half-saturation PAR intensity)

138.667 201.837 209.258 315.020

τMS (precision at micro-site
scale)

0.0250 0.0451 0.0471 0.0806

τK (precision at individual
scale)

0.0233 0.0285 0.0286 0.0346

τL (precision at the leaf scale) 0.0472 0.0513 0.0514 0.0557

decreased in September 2010. As for the control location,
mean photosynthesis rates declined during the winter before
increasing during the spring 2011 growing season (figure 3).
Measured photosynthesis was negative (i.e., respiration only)
at the heavily oiled location in July 2010 and photosynthesis
rates at this location started to increase in August and
September 2010. At that time, new leaves were observed
to grow back from the roots unaffected by oil toxicity
and replace dead leaves coated by crude oil. During the
winter months of 2010–2011, the contrast between the
photosynthesis rate at the control location and the two
impacted locations was not as obvious as just after the oil
impact in the summer of 2010 (figure 3). S. alterniflora
undergoes senescence of above-ground tissues in winter as it
is not an evergreen (Edwards and Mills 2005). Photosynthesis
increased through spring 2011 at all three locations during
the period of active new growth, no summer data were
available due to instrument malfunction, and photosynthesis
decreased again starting in October at the control location, and
September at the medium and heavily impacted locations.

3.2. Simulated photosynthesis

3.2.1. Model comparison. The simulation results showed
that the coefficients for the quadratic term of Julian day
θ5 in equation (15) was significant larger than 0 (95%
credible interval, 2.5% quantile to 97.5% quantile: 1.7555 ×
10−6– 5.5201 × 10−4), meaning that seasonality represented
by Julian day significantly affected simulated photosynthesis
rates. Meanwhile the coefficient for air temperature α1
was not significantly different from 0 (95% credible
interval: −0.4977– 0.1150), meaning that air temperature
did not significantly affect simulated photosynthesis once
the seasonality has been accounted for by Julian day.
When the original equation (11) was applied, the 95%
credible interval of the coefficient for air temperature α1 was
positive (table 2) meaning that air temperature significantly
affected simulated photosynthesis. These indicated that air

temperature accounted for seasonality in the original model
while Julian day accounted seasonality in the revised model.
However, the penalty due to the inclusion of more parameters
related to Julian day made the revised model have a
larger Bayesian deviance information criterion (DIC = 8452)
compared to the original model (DIC = 8430), suggesting
that Julian day was not a better explanatory covariate for
seasonal photosynthesis response than air temperature alone.
The posteriors of the coefficient for the quadratic term of
air temperature (α3) in equation (16) (95% credible interval:
−0.04351– 0.01788), and the coefficient for the interaction
of air temperature and stress level (α4) in equation (17)
(95% credible interval: −1.2685– 0.9009), ranged from
negative to positive. This indicated there were no significant
nonlinear effects of air temperature, or the interaction of air
temperature with health/stress level. Therefore, we believe the
air temperature in the original model effectively accounted for
temperature variability in the simulated photosynthesis rates
over the different seasons. Since no modification improved the
original model, the following simulation results were based on
the original model (equation (13)).

3.2.2. Model performance. The density distributions of the
medians of simulated photosynthesis rates from the HB model
matched those of the measured photosynthesis well across
the three locations, especially at the heavy impact location
(figure 4). The good match between the simulated medians
and the measured data was also shown in the IoA, which was
0.835 at the control and medium oiled locations, and 0.842
at the heavily oiled location. The posteriors of the simulated
photosynthesis captured most of the variability of measured
photosynthesis (figure 5). These all suggested the HB model
performed well in simulating the observed photosynthesis.

3.2.3. Simulation posteriors. The photosynthesis rate at
the control location showed a decreasing trend from July
2010 to November 2011 as the 95% credible interval of the
parameter (θ1[control]) was negative (table 2 and figure S2
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Figure 4. Density distributions of measured photosynthesis rates (solid lines) and medians of simulated photosynthesis posteriors (dashed
lines) at the locations of (A) control, (B) medium impact and (C) heavy impact. (IoA: index of agreement.)

Figure 5. Simulated photosynthesis rates with 95% credible intervals (red points: medians; red lines: 95% credible intervals) each month
(starting with July ‘J’) at the locations of (A) control, (B) medium impact and (C) heavy impact. Boxplots contrast these values with the
measured photosynthesis rates (black) starting with July 2010.

(available at stacks.iop.org/ERL/7/045302/mmedia); note,
missing measurements August and September 2010 and
June–August 2011). At the two impacted locations, there was
not an apparent trend of the simulated photosynthesis rates
over the same time period, though the medians of the change
rates were positive at the heavy and negative at the medium
locations. The 95% credible intervals for θ1[control] and
θ1[heavy] did not overlap, showing a significantly different
temporal trend (table 2) at the control and heavy locations.
The overlapping of the 95% credible intervals between the
medium and control locations was small, and there did not
show a significant difference in temporal trend between the
medium and control locations or the medium and heavy
locations.

PAR and air temperature positively affected photosynthe-
sis since the 95% credible intervals of β1 (transformed PAR)
and α1 (air temperature) were positive (table 2, figures S3
and S4 available at stacks.iop.org/ERL/7/045302/mmedia).
The positive 95% credible interval of α2 (leaf stress) indicated
that the higher the Fv/Fm (less stress), the higher the

photosynthesis (table 2 and figure S3 available at stacks.
iop.org/ERL/7/045302/mmedia). The 95% credible interval
for omega was 138.667–315.020 µmol photon m−2 s−1

(table 2 and figure S4 available at stacks.iop.org/ERL/7/
045302/mmedia) suggesting that this species can reach half of
the maximum photosynthesis rate at that range of irradiance.

The medians for photosynthesis rate at the leaf scale
(P) and the intercept at the individual scale (β0) were of a
similar magnitude (20.70 and 22.62), and the median of the
intercept from the micro-site scale (α0) was about twice as
large as those at finer scales (39.38). In terms of variability,
the individual scale (τK) showed lower precision (inverse of
variance, see table 1) and precision/median ratio (normalized
precision) compared to the leaf scale (τL), which indicates
that individual variability contributes more to the simulated
photosynthesis rates than does leaf scale variance (table 2 and
figure S5 available at stacks.iop.org/ERL/7/045302/mmedia).
At the micro-scale (τMS), which includes both spatial and
temporal variability, the precision and the precision/median
ratio ranged from low to high (table 2). The 97.5% quantile
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Figure 6. The intercept of the micro-site scale (α0) which indicates temporal trend of photosynthesis (starting with July ‘J’) at the locations
of (A) control, (B) medium impact and (C) heavy impact for each month starting with July 2010. The dots represent the medians of α0 and
the black lines represent the 95% credible intervals.

of precision/median at the micro-site scale (τMS) is lower
than 2.5% quantile of precision/median at the leaf scale
(τL) (table 2), showing the normalized precision at the leaf
scale is significantly higher than that at the micro-site scale.
These indicate the uncertainties in modeling photosynthesis
rates mainly came from the variability at the individual and
micro-site scales, less from the leaf scale.

3.2.4. The monthly trend of the difference between the
impacted locations and the control location. The monthly
trend of photosynthesis modeled by the HB at each location
can be summarized using the intercept at the micro-scale,
α0 (figure 6 and equations (10)–(12)). The value of α0 was
different from the actual photosynthesis as it was standardized
for the covariates of PAR intensity, air temperature and
Fv/Fm. At the beginning of the study (after the acute oil
impact in July 2010), the 95% credible intervals of α0 for
the control (−37.893, −4.839) and heavy impact locations
(−72.532, −40.283) did not overlap. This indicates that
there existed significant differences in photosynthesis between
these locations. The medians at the heavy (−55.415) and
medium (−32.540) locations were smaller than at the control
location (−20.265) in July 2010, indicating that median
photosynthesis was lower at the two oil impacted locations
than the adjacent control location. Over the course of the
study, the amount of overlap of the 95% credible intervals
among the three locations increased through time, and the
medians of the photosynthesis rates at the two impacted
locations approached the control location suggesting recovery
by the plants. By the end of the study in November 2011, the
simulated α0 had medians of−44.143,−43.826 and−40.924
at the control, medium and heavy locations, respectively,
with 95% credible intervals (−60.915, −39.577), (−60.358,
−29.851) and (−57.507, −26.677) (figure 6). This indicated
photosynthesis at the impacted locations had recovered to the
status of the control location after 16 months.

4. Discussion

Studies of the impact of oil spills on salt marsh plants have
been focused on Louisiana due to more frequent oil spill
events and large marsh areas there (Pezeshki and DeLaune
1993, Pezeshki et al 2000, Hester and Mendelssohn 2000, Ko
and Day 2004, Mishra et al 2012, Mendelssohn et al 2012).
During the DWH oil spill, marsh shorelines and not the marsh
interior were exposed to the weathered oil (Mendelssohn
et al 2012). Limited quantitative data are yet available on
the impact of DWH oil spill on salt marsh vegetation. Mishra
et al (2012) assessed the ecological impact on the salt marshes
along the southeastern Louisiana coast using photosynthetic
capacity and physiological status through satellite and ground
truth data, and found extensive reduction in photosynthetic
activity during the peak of the growing season in 2010.
Lin and Mendelssohn (2012) documented variable impacts
depending on oiling intensity in the Bay Jimmy, northern
Barataria Bay, Louisiana. As of the fall of 2011, many of
the most heavily oiled shorelines had minimal to no recovery
(Mendelssohn et al 2012). In Mississippi, some salt marshes
experienced crude oil impact, such as in Davis Bayou,
Grand Bay, Garden Pond at Horn Island and in Waveland,
but the impact and recovery have not attracted enough
attention or been documented well. This paper enhances
our understanding of the impacts of the DWH oil spill on
photosynthesis of the dominant marsh plant, S. alterniflora,
from Mississippi.

To improve our understanding of oil’s impact on coastal
salt marsh plants, we used an HB modeling approach because
it can assimilate data and account for variability at multiple
spatial and temporal scales in a coherent framework (e.g.,
McMahon and Diez 2007, Clark et al 2011, Wilson et al
2011). An HB model has been applied to monitor long-term
harbor seal abundance changes in Prince William Sound,
Alaska impacted by the 1989 Exxon Valdez oil spill (ver Hoef
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Figure 7. Photosynthesis difference between the impacted locations ((A) heavy location; (B) medium location) and the control location
over time. The thin lines represent 2.5% and 97.5% quantiles, and the think lines represent medians of the difference. The vertical space
between 2.5% and 97.5% quantiles shows the 95% predictive intervals. The gray line represents the horizontal line at 0 and vertical line at
day 140 when photosynthesis at the heavy oiled location stated to recover to the level at the control location.

and Frost 2003). However, HB models have not been applied
to assess the impact of oil spill’s on coastal salt marsh.

Other types of saturation curves and mechanistic models
are available to model photosynthesis (e.g., Jassby and
Platt 1976, Chalker 1981, Thornley and Johnson 1990,
Farquhar et al 1980, Farquhar and von Gaemmerer 1982,
Farquhar et al 2001, Marino et al 2010). The application
of the Michaelis–Menten function adequately accounted
for the relation between photosynthesis and PAR intensity,
and facilitated the inference on the temporal trend of
photosynthesis and its contrast between the impacted and the
control locations, as the leaf scale contributed the least to the
variability in the photosynthesis simulations.

During the winter months in 2010, the contrast between
the control and the two impacted locations in the field data
was not as obvious as during the growing season earlier in
2010. This could be explained either by complete recovery
of photosynthesis from oil impacts, or it could be due to
seasonally lower air temperature being a limiting factor
keeping photosynthesis uniformly low. Due to the uncertainty
surrounding the interpretation of the field data, we relied
on the HB model to derive a temporal pattern of simulated
photosynthesis at the three study locations standardized for
seasonality, PAR intensity, and individual variability. The
linear coefficient θ1 in the model may oversimplify the
temporal trend at each location. However, it captured the
general trend of photosynthesis change, although smoothing
over small fluctuations (Ver Hoef and Frost 2003).

In particular, we used the HB model to predict the time
course of photosynthetic recovery at the impacted locations
to values similar to the control location. In order to derive
when photosynthesis had recovered to the status of the control
location, a finer temporal resolution than month would be
required. We applied the posteriors of θ0 − θ3 and τMS
in equations (10)–(12) from our HB model to generate the
predictive α0 at each day after the initial impact at each
location. Then, the difference of α0 between heavy and

control locations and between medium and control locations
were calculated. The 2.5% and 97.5% quantiles and medians
of the differences of each day were derived (figure 7).
The generally increasing trend over time in the differences
between the impacted and control locations was largely due
to the decreasing trend at the control location. If the 95%
credible intervals of the difference included 0, then the
photosynthesis rates between the impacted and the control
locations did not show a significant difference. Based on
this, we could derive the photosynthesis rates at the heavy
location recovered to the status of the control location about
140 days (4.7 months) after the initial impact, which was in
early December 2010 (figure 7(A)). On the other hand, the oil
impact was never severe enough to make the photosynthesis
rates at the medium location significant lower than that at the
control location (figure 7(B)).

There are two possible reasons photosynthesis recovered
so quickly. First, the small concentration and very patchy
distribution of crude oil associated with salt marsh plants
(Biber et al in review) showed the roots were possibly free
of contamination, which led to quick regrowth of leaves at
the heavily oiled location. At the beginning of the crude oil
impact (July 2010), the concentration of oil range organics
(C19–C36) ranged from 37 000 to 48 900 mg kg−1 (ppm)
on the plants and 32.4–44.2 ppm in the sediment at the
heavy impacted location. The detailed chemical analysis
of saturated hydrocarbons on the oil collected confirmed
that it most likely came from the BP DWH spill as the
GC-FID chromatograms showed a similar distribution pattern
of resolved peaks and unresolved complex mixture compared
to the MC252 reference oil source from BP (Liu et al 2012).
The concentration dropped to 686–1070 ppm on the plants
and <50 ppm in the sediment at the impacted location
by October 2010. Second, quick natural degradation and
possible physical removal by waves and tides at the study
area reduced the amount of crude oil that washed ashore in
the salt marsh. In particular, areas exposed to the predominant
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southeasterly winds, common during the summer in our
study area, experienced substantial tidal ‘cleaning’ with oil
being removed during high tides and periods of strong
wave action corresponding to tropical storms in the GOM.
Warm temperatures, often exceeding 35 ◦C during the day are
also common in the region from June through September,
promoting rapid volatilization of lighter carbon fractions
which correlates to reduced toxicity (Irwin et al 1997).

5. Synthesis

Our study demonstrated a relatively new approach to assess
ecological recovery—the HB modeling approach. It shows a
promising tool to assess wetland’s resilience to disturbance by
accounting for uncertainties from different sources at different
spatial and temporal scales in a coherent framework. The
application of our HB model facilitated a better understanding
of oil impacts to S. alterniflora and generated inference we
could not have obtained from the empirical data alone. For
example, (1) air temperature and PAR positively influenced
photosynthesis, whereas the leaf stress level negatively
affected photosynthesis, (2) the overall temporal changes in
photosynthesis rates with standardized covariates over 17
months had a negative trend at the control location, and
ranging from negative to positive trend at the impacted
locations, (3) the photosynthesis rates at the heavily impacted
location recovered to the control location about 140 days
after the initial impact whereas the impact at the medium
location was never large enough to make photosynthesis
significantly lower than that at the control location, and (4) the
uncertainties in modeling photosynthesis rates mainly came
from the variability at the individual and micro-site scales, less
from the leaf scale. However, even though photosynthesis had
recovered to the status of the control location, we recommend
continuous monitoring of photosynthesis rates as (1) longer
data will help determine if the decreasing trend at the control
location persists and help to explain it, (2) the oil residual
buried in the sediment at the fine scale may affect the plant
root zone chronically and pose a long-term threat, and (3)
accumulating baseline data for assessing the next possible
disturbance. Thus, our model approach and results can guide
our future sampling efforts in photosynthesis of oil impacted
salt marsh plants.
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