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Covariance Localization with the Diffusion-Based Correlation Models

MAX YAREMCHUK

Naval Research Laboratory, Stennis Space Center, Mississippi

DMITRY NECHAEV

Department of Marine Science, University of Southern Mississippi, Hattiesburg, Mississippi

(Manuscript received 21 March 2012, in final form 16 August 2012)

ABSTRACT

Improving the performance of ensemble filters applied to models with many state variables requires reg-

ularization of the covariance estimates by localizing the impact of observations on state variables. A co-

variance localization technique based on modeling of the sample covariance with polynomial functions of the

diffusion operator (DL method) is presented. Performance of the technique is compared with the non-

adaptive (NAL) and adaptive (AL) ensemble localization schemes in the framework of numerical experi-

ments with synthetic covariance matrices in a realistically inhomogeneous setting. It is shown that the DL

approach is comparable in accuracy with the ALmethod when the ensemble size is less than 100. With larger

ensembles, the accuracy of the DL approach is limited by the local homogeneity assumption underlying the

technique. Computationally, the DL method is comparable with the NAL technique if the ratio of the local

decorrelation scale to the grid step is not too large.

1. Introduction

The problem of estimating the background error sta-

tistics is an important issue in the ensemble filtering and

hybrid data assimilation algorithms that employ en-

sembles for error analysis and propagation. Increasing

the accuracy in estimating the background error statis-

tics remains a scientific and technical challenge, because

the (co)variance estimates have to be drawn from a rel-

atively small number of samples contaminated by the

noise of diverse origin.

A particular type of background error covariance (BEC)

estimation technique employs an ensemble of assimila-

tions (e.g., Fisher 2003; Berre et al. 2006) to assess the

covariance structure from the ensemble average. Because

of computational limitations, ensemble size rarely ex-

ceeds 100members in practice, thus limiting the accuracy

of the straightforward averaging approach because of

the significant level of sampling noise. The impact of

sampling noise on the accuracy of the BEC estimates has

been addressed by Houtekamer and Mitchell (1998) and

Hamill et al. (2001) and led to the development of the

filtering techniques based on the Schur product of the

sample correlations with the heuristic filters (localization

operators). This approach tends to localize covariances in

physical space and suppresses long-range correlations,

whose accuracy is most affected by the sampling noise

(e.g., Houtekamer and Mitchell 2001; Buehner 2005).

In the last decade, the localization techniques have

been under rapid development in several directions with

the major objective to relax the spatial homogeneity

assumption underlying the original scheme. In particu-

lar, Fisher (2003), Deckmyn and Berre (2005), and

Pannekoucke et al. (2007) utilized a wavelet approach to

account for inhomogeneities in the covariance structure;

Wu et al. (2002) and Purser et al. (2003) employed re-

cursive filters to localize the covariances; Weaver and

Courtier (2001), Pannekoucke and Massart (2008), and

Weaver and Mirouze (2012) used a closely related dif-

fusion operator approach; and Pannekoucke (2009) ex-

plored a hybrid scheme, featuring wavelet technique in

combination with the diffusion method, while Anderson

(2007) employed a sampling error approach to derive

localization from multiple ensembles in the framework

of the hierarchical ensemble filter technique. In the oil

and gas exploration industry, anisotropic localization
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functions were derived by combining the regions of sen-

sitivity of the well data with prior geological models (e.g.,

Emerick and Reynolds 2011; Chen and Oliver 2010).

Another direction in the localization techniques was

pioneered by Bishop and Hodyss (2007) who proposed

to augment the original ensemble by including Schur

cross products of the spatially smoothed ensemble mem-

bers. Further development of this approach (Bishop and

Hodyss 2009a,b; Bishop et al. 2011; Bishop and Hodyss

2011) demonstrated its flexibility in adapting the co-

variances to the 4Dbackground flow structures, especially

in the case of strongly inhomogeneous statistics. A certain

disadvantage of the adaptive localization (AL) technique

is a relatively high computational cost, associated with the

necessity to operate with the expanded ensemble. A good

review of the filtering/localization techniques was recently

given by Berre and Desroziers (2010).

In this study we employ the numerical experimenta-

tion approach ofWeaver andMirouze (2012) who tested

various approximations of the ensemble-generated co-

variance matrix by the exponent of the diffusion oper-

ator in an idealized configuration. The presented work

considers four localization techniques applied to three

different covariance models in a realistically inhomoge-

neous 2D setting. Our major focus is on comparing non-

adaptive and adaptive localization methods with the

techniques based on modeling sample covariance by

polynomial functions of the diffusion operator. To make

the comparison, we construct inhomogeneous covariance

matrices B, generate the respective ensembles, and re-

trieve B from a limited number of ensemble members

by the means of considered localization techniques. In

the next section the four localization methods used are

briefly overviewed. Methodology of the numerical ex-

periments is described in section 3. In section 4, the lo-

calization methods are compared in terms of accuracy

in approximating B for various ensemble sizes and their

computational efficiency. The results are summarized

and discussed in section 5.

2. Methods of covariance localization

a. Traditional scheme

Given an ensemble fxkg/
ffiffiffiffiffiffiffiffiffiffiffiffi
K2 1

p 2 R
N of K normal-

ized error perturbations about the ensemble mean listed

as columns of the K 3 N matrix X, their sample co-

variance B is estimated by

B[ covfxkg5XXT . (1)

In practice, the dimension of the model stateN is much

larger than K, and the sample estimate (1) always

contains spurious correlations at large distances. To

increase the accuracy in approximation of the BEC ma-

trix B, Houtekamer and Mitchell (1998) proposed to as-

sign zero correlations to the components of x separated

by distances larger than a certain prescribed value d (lo-

calization scale). Technically, such a ‘‘localized’’ co-

variancematrixB‘ is obtained as the elementwise (Schur)

product+of the raw sample covariance B and the locali-

zation matrixWd, whose off-diagonal elements are set to

zero if the distance between correlated points exceeds d:

B‘ 5B+Wd . (2)

This method simultaneously suppresses spurious ensem-

ble correlations located far from the diagonal and shrinks

the null space ofB, whose ‘‘raw’’ dimensionN2K1 1 is

very large, and thus likely inconsistent with the rank of the

true BECmatrix. A disadvantage of the technique is that

it relies on a heuristic matrixWd, which does not explicitly

take into account inhomogeneity and anisotropy of the

background flow which affects the BEC evolution.

b. Adaptive methods

Recently, Bishop and Hodyss (2007, 2009a,b, 2011)

developed a family of AL schemes. The idea is to compute

W as the sample correlation matrix generated by Schur

cross products x̂ik of the spatially smoothed (modulated)

members of the original ensemble (e.g., Bishop andHodyss

2009a, 2011):

x̂ij 5 (Sxi)+(Sxj); i5 1, . . . ,K; j5 i, . . . ,K, (3)

where S is a suitably chosen smoothing operator while

J 5 K(K 1 1)/2 is the size of the modulated ensemble.

Assuming that the columns of the J 3 N matrix X̂ list

perturbations fx̂ijg of the modulated ensemble about

their mean that are normalized to have unit variance

and divided by
ffiffiffiffiffiffiffiffiffiffiffi
J2 1

p
, the adaptively localized BEC

matrix is

~B‘
*5B+W*[B+(X̂X̂T

). (4)

To further increase stability and computational effi-

ciency of the AL technique, Bishop and Hodyss (2011)

supplemented the method with additional multiplica-

tion by Wd:

B‘
*5B+W*+Wd . (5)

Recent experiments with this improved AL scheme

have shown its good localization properties and rea-

sonable numerical performance (Bishop andHodyss 2011).

A certain disadvantage of themethod is the numerical cost:
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apart from the necessity to smooth ensemble members,

multiplication by B‘* requires computing a convolution

with a KJN 3 N matrix, whose columns are xk+x̂ij+wn,

where wn are the columns of the square root of Wd.

c. Modeling sample covariance

Another way of estimating the true covariance is to

create its full-rank covariance model using the low-rank

ensemble approximation (1). In recent years this ap-

proach, fueled by the developments in covariance model-

ing with the diffusion operator (e.g., Weaver and Courtier

2001; Xu 2005; Yaremchuk and Smith 2011; Yaremchuk

and Sentchev 2012), has been studied by many authors

(e.g., Belo Pereira and Berre 2006; Pannekoucke and

Massart 2008; Pannekoucke 2009; Sato et al. 2009;

Weaver and Mirouze 2012).

The idea of the approach is to parameterize the

structure of the true BEC matrix by the diffusion tensor

field Dab(x), which defines the positive-definite diffu-

sion operator D 5 2$aD
ab$b.

To avoid confusion with notations, vectors and ma-

trices in state space R
N are denoted by the boldface

roman and boldface san serif fonts, respectively. In the

2D physical space R
2 we adopt tensor notation, where

vectors and matrices are boldface and italicized, Greek

indices enumerate coordinates, take the values 1 and 2,

and summation is assumed over repeating indices.

The operatorD is used to construct theB-approximating

covariance model that is specified by a positive func-

tion F of D in order to meet the positive-definiteness

property of B. Furthermore, for computational reasons

it is desirable that F could be computed recursively and

at the same time it should invert the spectrum of D (i.e.,

the largest eigenvalues of FfDg should correspond to the
smallest eigenvalues of D). The latter requirement en-

sures the smoothing property of the BEC model, which

is important in applications.

Among the functions satisfying these requirements

are the exponent and its nth-order binomial (spline)

approximations:

FefDg5 exp

�
2
D

2

�
, (6)

FnfDg5
�
I1

D

2n

�2n

. (7)

The functional forms in (6)–(7) are used to define the

correlation matrix C, which can be easily transformed

into B by the renormalization formula B5VCV, where

V 5 diag(v), and v 2 R
N is the vector of rms error var-

iances (square roots of the diagonal of B). The elements

y(x) of v are relatively well known from the ensemble

statistics as they suffer less from sampling errors than

ensemble estimates of the correlations. In its turn, the

correlation matrix C can be obtained from FfDg by

setting its diagonal elements to unity:

C5 diag(f)21/2FfDgdiag(f)21/2, (8)

if a good approximation to the diagonal elements f of

FfDg is available (Purser et al. 2003; Yaremchuk and

Carrier 2012).

This study employs functions Fe and Fn for approxi-

mating the BECmatrix by selectingDab(x) in a way that

the matrix B5VCV given by (6)–(8) fits the structure of

the sample covariance (1) for small distances and pro-

duces negligible correlations at large distances. The

latter property is satisfied by the functions (6)–(7).

A standard method of finding D for the functional

forms (6)–(7) is to use analytic relationships between the

derivatives of FfDg in the vicinity of the diagonal (i.e., at
small separations between correlated points) and the

diffusion tensor (e.g., Belo Pereira and Berre 2006; Sato

et al. 2009; Weaver and Mirouze 2012). These relation-

ships are derived under the assumption that local de-

correlation scales aremuch smaller than the typical scale

of spatial variability of D. In that case, the correlation

matrix elements C(x, y) are locally homogeneous (LH);

that is, they depend only on the relative position r5 x2 y

of the correlated points x, y, and can be written down

explicitly (e.g., Yaremchuk and Smith 2011):

Ce(r)5 exp

�
2
r2

2

�
, (9)

Cn(r)5
(

ffiffiffiffiffiffi
2n

p
r)

n21Kn21(
ffiffiffiffiffiffi
2n

p
r)

2n22(n2 2)!
, (10)

where

r25 raD21
ab r

b (11)

is the squared distance measured in terms of the local

decorrelation scales defined by the eigenvalues ofD and

K is the Bessel function of the second kind. Dependence

of the correlationmatrix elements on the distance r from

the diagonal is shown in Fig. 1.

Direct differentiation of (9)–(10) at zero distance

(r 5 0), yields the following relationships, useful for

estimation of the diffusion tensor for the models (9)–(10),

respectively:

D21
ab (x)52[$a$bCe] , (12)

D21
ab (x)52

n2 2

n
[$a$bCn] . (13)
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Here square brackets denote extracting the diagonal

values from a matrix. This approach requires C to be

twice differentiable at the diagonal, which is not the case

for splinemodels with n, 3. Expressions (12)–(13) were

obtained in the 2D Cartesian coordinates by Weaver

and Mirouze (2012). Similar relationships hold for an

arbitrary correlation model satisfying the conditions of

local homogeneity and appropriate differentiability of

the correlation function at r 5 0 (appendix A).

Taking into account the commutativity of the ensem-

ble averaging and h i differentiation operators renders

the rhs of (12)–(13) in the form involving correlations

of the first derivatives of the ensemble members (see

Belo Pereira and Berre 2006; Weaver andMirouze 2012;

appendix B):

[$a$bC]5
h($ax)+($bx)i2 ($av)+($bv)

v+v
. (14)

This expression together with relationships (12)–(13) is

more convenient for numerical estimation of D via

sample correlations because it is formulated in terms of

the ensemble perturbations and does not involve second

derivatives. Weaver and Mirouze (2012) have shown re-

cently that the method is capable of delivering rms ac-

curacies of 20%–80% in reconstructing D21 in idealized

2D setting. The approach has a few drawbacks. First, the

gradient computation tends to amplify sampling noise

in the estimate ofD21. The inversion ofD21 is also prone

to error amplification. For these reasons, the technique is

often supplemented by additional smoothing (Raynaud

et al. 2009; Berre and Desroziers 2010; Weaver and

Mirouze 2012). Second, the relationship (14) cannot be

applied to the BEC models that are not differentiable

at the diagonal, such as the second-order (n5 2) spline

model (7) in 3D, which is characterized by the expo-

nential correlation function.

An alternative approach is to estimate the diffusion

tensor directly by minimizing the difference between

the ensemble estimate of the correlations in the vicinity

of the diagonal and its local analytic approximations

(9)–(10). This approach is likely to be more robust, as it

does not involve differentiation and matrix inversion

and can be formulated as a least squares problem in the

space of the unknown elements of D.

In the following sections we compare efficiency of the

four localization methods: nonadaptive (section 2a),

adaptive (section 2b), and the two described above

methods of retrieving the diffusion tensor from the en-

semble covariances. For brevity, we will refer to the

latter two methods as ‘‘differential’’ and ‘‘integral’’

diffusion localization (DL) schemes.

To explore the efficiency, we adopt the following ex-

perimentation strategy: after specifying the ‘‘true’’ co-

variance matrices B, the respective ensembles are

generated and then the obtained ensemble members are

used to retrieve the approximate structure of B by a

given localization method.

3. Methodology

a. Experimental setting

Numerical experimentswith simulated ensembles were

performed as follows. First, the true BEC matrix was

specified together with the ensemble by selecting a vari-

ance distribution v(x) and a correlation model (6)–(7) in

a real oceanic domain shown in Fig. 2. The variance dis-

tribution was chosen to simulate surface temperature

variations in the northern Gulf of Mexico near the mouth

of Mississippi. The true distribution of D (Fig. 2) was

specified to mimic the background error dynamics driven

by near-coastal topographically controlled circulation.

We assumed that the corresponding background currents

followed the depth contours and the larger eigenvector

ofD was oriented in that direction and was proportional

to the magnitude of the local bathymetry gradient. In the

regions where bottom slope was less than 20% of its rms

value over the domain, the diffusion was set to be iso-

tropic with the decorrelation scale of 15 km (see appen-

dix C for more details).

Two BEC models used in the experiments were the

Gaussian (6) and the second-order splinemodel (7). The

corresponding true correlation matrices Ce and C2 were

computed explicitly: first, all the columns of F(D) were

FIG. 1. Correlation functions of the Gaussian and second-order

spline models described by (9)–(10).
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computed as convolutions of the operators (9)–(10) with

the d functions located in every grid point of the domain.

The resulting matrices were then renormalized by their

diagonal elements using (8), and the true BEC matrices

were then obtained by

Be 5VCeV; B25VC2V . (15)

Sums of eight columns of Ce and C2 are shown in Fig. 3.

The maximum anisotropy is observed in the southeast

corner of the domain characterized by the steepest to-

pography. The total number of matrix elements was

46032 ’ 2 3 107.

The simulated ensembles Xe and Xm were generated

by

Xe5VC1/2
e R; X25VC1/2

2 R , (16)

where R is the K 3 N matrix, whose columns are the

random vectors withN5 4603 d-correlated components

evenly distributed with unit variance and the square root

is defined byC5C1/2(C1/2)T. The value ofKwas 20 000.

The ensembles Xe and Xm were then used to estimate

the true covariances Be and B2 with the four localization

techniques described in the previous section. The only

exception is the differential method, which was not used

with the spline model (7) because the corresponding cor-

relation function (10) is not differentiable at the origin.

In all the experiments the localization matrix Wd was

Gaussian (9) with the isotropic diffusion tensor D5 d2I,

where I is the 2 3 2 identity matrix and d is a tuning

parameter defined in the next section.

Numerically, the action of FefDg on a state vector x

was approximated by the recursive scheme:

exp

�
2
D

2

�
x ’

�
I2

D

2n

�n

x , (17)

which can be interpreted as ‘‘time integration’’ of the

diffusion equation with the integration period defined

by the maximum eigenvalue l of D/2 over the domain

and the ‘‘time step’’ of l/n. Similarly, F2fDgx was com-

puted by iteratively solving the system of equations,

�
I1

D

4

�2

y5 x , (18)

with the minimum residual algorithm (Paige et al. 1995).

Computing the action of the operators C1/2
e and C1/2

2 ,

which appear in the relationships in (16) requires an

algorithm for FfDg1/2, which was obtained by halving

the number of time steps n in (17) and removing the

square in the lhs of (18).

FIG. 2. True distribution of the longer principal axis of the diffusion

tensor (km). Labeled contours show depth in meters.

FIG. 3. True correlations for the (a)Ce and (b)C2 models plotted

for eight different points. Locations of the points are shown by

white circles.
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With the simulated ensembles in (16) at hand, the

sample covariance matrices ~Bk were computed via (1)

by varying the number of samples xk randomly picked

from these ensembles. Using the same samples, rms

error variance fields ~v(x) and the correlation matrices ~C

were also computed.

Given these ensemble statistics, the localized esti-

mates of the true covariance matrix were computed with

four localization techniques described in the previous

section [(2), (5), and (9)–(14) for the DL estimates].

Technically, theDL estimates were obtained by fitting

the diffusion tensor field to the structure of ~C with two

techniques: the first one utilizes the approach based on

differentiating the ensemblemembers [(12)–(14)], whereas

the second one extracts D(x) from sample correlations ~C

by minimization of the cost functions:

J(x)5

ð
v
[C(x2 y)2 ~C(x, y)]2 dy/ min

D(x)
, (19)

where C is given by (9)–(10) and v is a small vicinity of x.

Similar approach was tested in a less general formulation

by Pannekoucke and Massart (2008) for the 2D Gaussian

correlations. To minimize (19) we used the M1QN3 al-

gorithm of Gilbert and Lemarechal (1989) that reduced

theL2 normof the cost function gradient by three orders of

magnitude in 3–6 iterations.

To distinguish between the two DL schemes, the

corresponding estimates will be labeled by the super-

scripts 0 and 8 for the differential [(12)–(14)] and integral

[(9)–(11), (19)] approaches, respectively.

After the diffusion tensor estimates were obtained using

either the first or the secondmethod, the localized estimates

C0 and C8 of C were computed using (6)–(8). Equation (8)

contains the diagonal elements of FfDg, whose direct

computation is numerically prohibitive in practice. For that

reason, approximate formulas were used:

f5 (2p)21FfgDgd , (20)

where d5 (detD)21/2 and ge5 0.33; g25 0.28 for the Fe

and F2 models, respectively (Yaremchuk and Carrier

2012).

Performance of the four localization techniques was

measured in terms of the distance between the ensemble-

estimated localized covariances B‘,B‘*,B
0
‘,B‘8 and the

true covariance B:

r(B‘,B)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jB‘2Bj

jBj

s
, (21)

where j j denotes the Frobenius norm. Relative dis-

tances between the respective correlation matrices

were measured by the following relationship (Herdin

et al. 2005):

r1(C‘,C)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

Tr(C‘C)

jC‘jjCj

s
. (22)

b. Numerical implementation

In addition to comparing the skills of the localization

methods, their computational efficiencies are also com-

pared. In practical applications, B‘ and B‘* are never

computed directly, but represented in the ‘‘square root’’

form B‘ 5B1/2
‘ (B1/2

‘ )T to speed up computations. By vir-

tue of the ‘‘square root theorem’’ (Bishop et al. 2011),

B1/2
‘ and B‘*

1/2 are the KN 3 N and KJN 3 N matrices,

whose columns are xk+wn and xk+x̂ij+wn, respectively

(section 2b). The elements of localizationmatrixWdwere

computed explicitly with the analytic equation (9). At

distances exceeding several localization scales the ele-

ments were set to zero to avoid senseless multiplications

by the tails of the Gaussian exponent. In the numerical

experiments this ‘‘cutoff’’ distance was set to 3d. The

nonzero elements of the columns wn of W1/2
d were com-

puted by reducing
ffiffiffi
2

p
times the localization scale in (11).

To explore the impact of the ensemble size on accu-

racy of the localization schemes, experiments were

performed with five ensemble sizes: k 5 4, 10, 50, 200,

and 1000. The respective modulated ensembles (section

2b) were computed in a different manner for various k.

For k 5 4 and 10 both double and triple Schur products

of the raw ensemble members were used, thus creating

J4 5 (43 5)/21 (43 43 5)/25 50 and J10 5 (103 11)/

21 (103 103 11)/25 605members. For k5 50 and 200

only the double products were used. The respective

ensemble sizes were 1275 and 20 100. With k 5 1000

only 20 000 randomly selected pairs were used to create

fxjg. The smoothing operator S [(3)] was also isotropic

Gaussian, but its scale ds was different from d. Both

d and ds were optimized in every experiment to mini-

mize the distance (21) from the true covariance.

The DL algorithms had additional specific features.

Estimates of D0 obtained from (12)–(14) were first

smoothed with the scale of l5 30 km, then symmetrized

and checked for the positive definiteness. In the case of

a negative eigenvalue (a common situation for k 5 4,

10), the tensor was discarded. The resulting gaps were

filled with horizontal interpolation and smoothed again

with the same scale.

When computingD8, the lengths of principal axes and
orientation of the larger axis were chosen as control

parameters. This approach eliminated violation of posi-

tive definiteness and improved stability of the algorithm.

FEBRUARY 2013 YAREMCHUK AND NECHAEV 853



The fitting domain v was a square four grid steps in size.

Tensor parameters were smoothed with the same scale as

has been used in the computations of D0.

4. Results

a. Skill comparison

Figure 4 compares skills [(21)] of the four localization

techniques for the Gaussian covariance model as a func-

tion of the number of ensemble members k. The straight

dashed lines provide errors for the raw variance and co-

variance estimates without localization. As expected,

both r(B) and r([B]) closely follow the law 1/
ffiffiffi
k

p
with the

variance estimate r([B]) being approximately 20 times

more accurate than the estimate of the covariance.

For k 5 4, the difference between r(B‘) and r(B‘*)

appears negligible because of the extremely large sam-

pling errors, which cannot be reduced by updating the

ensemble with modulated members. In the ‘‘practical’’

range of 10, k, 500, the adaptive scheme delivers a 2–

3 times better estimate than the nonadaptive localiza-

tion (NAL) technique, but this advantage disappears at

k . 500 because of the increase of raw ensemble skill.

This type of behavior has been also observed in the

experiments where we kept both localization scale d and

the smoothing scale ds constant and equal to 100 km

(i.e., did not optimize their values for a given k). In that

case the error curves converged at slightly larger k ;
1200–1500.

The DL schemes demonstrate a significantly better

performance at k , 20, although r(B0
‘) is 20%–30%

larger than r(B‘8) starting from n5 10. Flattening of the

curves for B0
‘,B‘8 at large k can be explained by two

factors. The first one is a certain inconsistency of the true

covariance structure with the LH assumption used in the

derivation of (9)–(14): Fig. 2 shows that the typical scale

of variability of the diffusion tensor’s axes is compatible

with theirmagnitude throughout the domain, and in some

places (e.g., steep bottom regions in the southwest) it

is even smaller than the local decorrelation scales. The

second factor is associated with the violation of the LH

assumption in computing the normalization factors with

(20). Although (20) is capable of approximating the di-

agonal elements at the error level of 5%–10%, its con-

tribution to the asymptotic error of 0.4 (Fig. 4) is not

negligible. Similar observations are reported in the ide-

alized experiments of Weaver and Mirouze (2012).

Figure 5 shows the absolute difference between the

eight columns of C0
‘, C‘8 and the respective columns of

the true correlation matrix for the Gaussian model

shown in Fig. 2a. It is seen that the difference is not zero

even in the diagonal points (shown by black circles)

where both correlation estimates are supposed to be

equal to one by definition. This difference can be vir-

tually embedded as an additional error in the variance

estimate V, which is primarily defined by the size of the

ensemble. In the reported experiments this diagonal

approximation error ranged within 5%–8%, and started

to contribute significantly at k . 30 (i.e., when the var-

iance estimation error falls below 10%; lower dashed

line in Fig. 4). The impact of the diagonal approximation

error is less visible when comparing covariance matrices

in terms of (22), which is more sensitive to the errors in

the off-diagonal elements (Fig. 6).

The degree of inhomogeneity of the true covariance

can, in principle, be assessed from asymmetry of the

local correlations derived from the ensemble when k is

large enough to suppress sampling noise. When the LH

assumption is satisfied with high accuracy, the correla-

tion matrix elements satisfy (9)–(10), and therefore

should be nearly invariant under the mirror transfor-

mations r / 2r in the vicinity of the diagonal. We

checked this property for the true correlation matrices

and found relatively high degrees of asymmetry (0.24 and

0.28 for Ce and C2, respectively). In combination with

5%–8% diagonal errors, these figures may explain the

asymptotic error level in approximating the true co-

variances by the DL schemes (Fig. 4).

Another feature observed in the experiments, is a

persistently better performance of the DL methods at

FIG. 4. Relative errors between the true covariance matrix

(Gaussian model) and its ensemble estimates for various localiza-

tion techniques as a function of the ensemble size k. Thick dashed

line shows the error of the nonlocalized estimate B [(1)]. Thin

dashed line is the error of the variance estimate. Errors of the NAL

B‘ (thin line) and AL B‘* (thick line) methods are shown in gray.

Solid black lines correspond to the differential B0
‘ (thin line) and

integral B‘8 (thick line) DL methods.
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small ensemble sizes k (Figs. 4 and 6). One may assume

that this property could be attributed to the fact that

the DL schemes have an a priori advantage because the

structure of the true covariances is already embedded

into the underlying diffusion models used for approxi-

mation. To check this, we generated an alternative true

covariance matrix Bn, which was far enough from both

Be and B2 to eliminate this advantage (Fig. 7).

To do this, we randomly picked 1000 members from

each of the ensembles Xe and X2, and then generated

additional 20 000members using the adaptive technique

described in section 2b. Pairs for Schur cross products

were composed by randomly picking members from the

two ensembles and never from one. The resulting

22 000-member ensemble was used to compute Bn with

(1). After that the columns of Bn were additionally

smoothed and renormalized to have the same varianceV

as the original models Be and B2.

Figure 8 demonstrates that in the case of Bn model

the approximation errors of the DL schemes are still

below the errors of the AL scheme when n , 30–40.

Furthermore, the DL schemes keep being competitive

in the entire range of the practical ensemble sizes (up to

FIG. 5. Absolute difference between eight columns of the

true correlation matrix for the Gaussian model (Fig. 3a) and its

DL approximations (a) C0
‘ and (b) C+

‘ obtained with 50 en-

semble members. Filled circles show locations of the diagonal

elements.

FIG. 6. Relative errors r1 between the true covariance matrix

(spline model, Fig. 2b) and its ensemble estimates for various

localization techniques as a function of the ensemble size k. Thick

dashed line shows the error of the nonlocalized estimate B [(1)].

Thin dashed line is the error of the variance estimate. Errors of

the NAL B‘ (thin line) and AL B‘* (thick line) methods are shown

in gray. Solid black line gives the error of the integral B+
‘ DL

method.

FIG. 7. Difference between the 300 largest eigenvalues of B2 and

Be (gray line) and of Bn and Be. (top right) Distances between the

corresponding matrices are shown.
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n 5 150–200). We therefore may assume that better

performance at small ensemble sizes in an intrinsic

property of the DL method, which could possibly be

explained by its enhanced ability to better capture near-

diagonal structure of the correlations. However, only

experiments with real assimilation systems can confirm

this hypothesis.

One can notice a relatively weak performance of the

AL scheme (thick gray line in Fig. 8) as compared to

the case of true covariance described by the Be model

(Fig. 4). Such a behavior can be explained by the fact

that the smoothing scale ds was the same as was used

for generation of the modulated ensembles in the ex-

periments with Be. In general, adjustment of the locali-

zation scales significantly improved the approximation

accuracy of B‘ and B‘*, especially at low k for the stan-

dard localization scheme whose optimal values of d(k)

changed in a wide range from d(4) 5 30 to d(1000) 5
500 km. For the adaptive scheme variations of d were

significantly smaller: d(4) 5 100 to d(4) 5 500 km.

These figures shed some light on the role near-diagonal

elements play in the overall structure of the considered

covariance matrices. It appears that accurate estimation

of these elements eliminates a larger portion of the error

in approximation of the true covariance. To support this

idea, we computed distances between the three consid-

ered covariancesBe,B2, andBn and their approximations

obtained by setting to zero all the off-diagonal elements,

located farther than a certain distance r (measured in

physical space) from the diagonal.As expected, themajor

portion of the error is eliminated when elements within

the mean decorrelation scale are accounted for. This

feature of the considered covariances partly explains the

better skill of theDL schemes that are ‘‘more focused’’ on

accurate representation of the near-diagonal structure of

the covariance matrices. In addition, DL models are ca-

pable to deliver better smoothness away from the di-

agonal, which is essential for elimination the imbalance

problems thatmay arise when predictionmodels are used

with the resulting analysis (e.g., Kepert 2011).

b. Computational efficiency

In the previous sectionwe have shown thatDL schemes

appear to be competitive in accuracy with bothNAL and

AL techniques when the number of ensemble members

k is relatively small. When k. 702 100, the AL scheme

provides better accuracy (Figs. 4–8), but the DL method

may still remain competitive up to k; 100. On the other

hand, it is much less computationally expensive, because

it does not require generation of the costly modulated

ensemble.

The cost of localization is defined by the multiplica-

tion of the square root of the localized covariancematrix

by a state vector. In the case of the NAL scheme, this

product involves M ; kNnd multiplications, where nd is

the number of nonzero elements in the column of W1/2
d .

For the AL scheme [(5)] this number is J times larger

and may require significant computational resources.

The cost of implementing the DL schemes consists of

two components: estimation of the diffusion tensor and

multiplication by the square root of the localization

matrix. The number of multiplications required to com-

pute D0 at a grid point is approximately proportional

to 9k, because local correlations have to be computed

only in the nearest neighborhood of the diagonal and

each computation involves k products of the ensem-

ble members. Differentiation, inversion [(12)–(13)], and

smoothing adds approximately 50 operations for a grid

point thus giving the estimate ofM0 ’ (9k1 50)N for the

overall cost of computing D0. The cost of multiplication

by the square root of B0
‘ is proportional to Nn

*
m, where

n
*
5 9 is the number of elements in the (2D) stencil of

D0, and m ; 102 is the number of either ‘‘time steps’’ in

case of Ce or the number of iterations in solving the re-

spective linear system in the case of C2 localization

model. This brings the estimate of the total number of

operations to M0 ; 9(k 1 m 1 5)N.

Computing D8 is somewhat more expensive than D0

because it involves solving a minimization problem at

every grid point. In the 2D case considered, estimation

of D8 required approximately 25(k 1 20no) operations

per grid point where no 5 5 is the average number of

iterations required for convergence of the minimization

FIG. 8. As in Fig. 4, but for the true covariance Bn.
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routine and 25 is the number of grid points occupied by

the optimization subdomain v [(19)].

Taking the typical value of nd 5 49 for the number of

grid points in the localization stencil, the following es-

timates can be obtained:

M ’ 50kN ,

M* ’ 50kN J ,

M0 ’ 50kN

�
0:21

1

k
1

m

5k

�
,

M8 ’ 50kN

�
0:51

2

k
1

m

5k

�
.

Assuming that k� 1 and taking the NAL costM5 50kN

as a benchmark, the following estimates of the (normal-

ized by M) localization costs M can be obtained:

M*5 J; M0 5 0:2
�
11

m

k

�
; M85 0:2

�
2:51

m

k

�
.

(23)

In the reported experiments the typical value ofm ranged

between 120–180 for the Gaussian model and 150–300 for

the spline model. Thus, for the ensemble size of k 5 50

bothDLmodels appear to be computationally competitive

with theNAL technique (M0
e; 0:72 0:9,  Me8; 1:02 1:2).

Similar CPU time ratios were observed in the reported

experiments. As is seen from (23) the computational

advantage of the DL schemes improves with the growth

of the ensemble size k, although their accuracy tends to

stagnate (Figs. 4, 6, and 8).

5. Conclusions

Numerical experiments with the DL schemes in a re-

alistically inhomogeneous 2D setting have shown their

competitiveness with the NAL and AL methods in

terms of accuracy within the range of ensemble sizes k;
20–100 used in the data assimilation practice. For larger

ensemble sizes the DL method does not give any error

improvement as it reaches the limits imposed by the

assumption of local homogeneity.

From the computational point of view, the DL

method appears to be compatible with the NAL tech-

nique, which is in turn less expensive than the adaptive

algorithms proposed by Bishop and Hodyss (2007,

2009a,b). Conducted experiments also indicate that the

AL method is significantly more accurate than NAL in

the case of strongly inhomogeneous covariances when

the ensemble size is less than several hundred.

Comparison of the differential and integral DL schemes

have shown that the differential method is 20%–50% less

computationally expensive, although it appears to be

somewhat less robust and accurate when applied in re-

alistically inhomogeneous environment. An advantage of

the integral approach is that it can be utilized with cor-

relation models that are not differential at the origin.

It should be also noted that the computational efficiency

of the DL schemes strongly depends on the number of

iterations m needed to compute the action of the locali-

zation operator on a state vector. This number is con-

trolled by the ratio of the local decorrelation scale (length

of the largest principal axis of D) to the grid step, which

never exceeded 7 in the reported experiments. Therefore,

the DLmethods may lose computational efficiency when

the model is capable to describe motions at scales well

below those resolved by observations. This restriction

can be bypassed if the covariances are localized on a

grid compatible with the decorrelation scale, a technique

suggested by Bishop et al. (2011) to speed up the locali-

zation algorithms.

The DL algorithms have enough room for further

development along several directions. In particular, the

degree of local inhomogeneity of the target covariance

could possibly be assessed by monitoring dependence of

spatial asymmetry of the local correlations on the

number of ensemble members used for their evaluation.

This information could then be blended in the cost

function (19) to prevent overfitting sample correlations

by the analytic model. Efficient higher-order approxi-

mations to the diagonal elements of FfDg could also be

thought out to improve the accuracy in estimating the

DL correlation matrix. Finally, the overall accuracy of

the DL covariance estimates could also be improved

through their renormalization by the optimally filtered

(e.g., Raynaud et al. 2009; Berre and Desroziers 2010)

diagonal elements of f+v. This approach can simulta-

neously reduce sampling errors in the variance field v

estimates and errors associated with the LH assumption

in computing the diagonal elements of FfDg.
One should also keep in mind that ensembles en-

countered in large geophysical DA problems are likely

to have more complicated structure than the simulated

ensembles described by (16). In particular, real-life en-

sembles are often biased and they do not normally

demonstrate k21/2 error scaling for realistic ensemble

sizes. On the other hand, the ‘‘true’’ covariance matrices

are never known and can hardly be computed for real

applications in the nearest future. As a consequence, the

only way to compare localization techniques is to esti-

mate their forecast skill and computational efficiency

within the real DAproblems. Presented results give only

an indication that further studies of the DL methods are

worth pursuing as they seem to be competitive with

other localization techniques. A definite answer could
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be given only by the aforementioned experiments with

real ensembles, which will be the subject of our future

research.
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APPENDIX A

Differentiation of the Correlation Functions

To simplify the notations, denote derivatives of a cor-

relation function C(r) by the subscript r and the inverse

of the diffusion tensor by Rab. The second derivative of

a correlation function C(r) is

$a$bC(r)5Crr($ar)($br)1Cr$a$br . (A1)

Taking the first and second derivatives of (11) under the

assumption of local homogeneity yields

$ar5
1

r
Rabr

b; $a$br5
1

r
[Rab2Gab] , (A2)

where

Gab 5
1

r2
Ramr

mRbnr
n

is bounded at r / 0.

After substituting (A2) into (A1) and rearranging the

terms, (A1) takes the form:

$a$bC5
Cr

r
Rab 1

�
Crr 2

Cr

r

�
Gab . (A3)

Substitution of the expression in the rhs of (9) into (A3)

and taking the limit r/ 0 yields (12). Similar operation

with the rhs of (10) shows that the second term in the rhs

of (A3) is zero if n. 2, whereas the first term is equal to

n/(2 2 n). Note that constraint n . 2 is imposed by the

condition of differentiability of the correlation function

(10) at r 5 0.

More generally, by using Fourier representation of

the covariance function [e.g., Eq. (11) in Yaremchuk

and Smith (2011)] it is easy to show that the relationship

lim
r/0

�
Crr 2

Cr

r

�
5 0 (A4)

holds for arbitrary correlation functions twice differen-

tiable at r 5 0 and satisfying the local homogeneity

condition. Therefore, the differential method that is based

on the relationship

Rab5

�
lim
r/0

Cr/r

�21

$a$bC (A5)

could be applied to a much broader class of correlation

models than those described by (6)–(7).

APPENDIX B

Estimating Second Derivatives of the Correlation
Function from Ensemble Perturbations

By definition, the tensor of second derivatives of the

BEC matrix B(x, y) [ Bxy can be represented in two

ways:

=x
a=

y
bBxy5 h(=x

axx)(=
y
bxy)i5=x

a=
y
b(VxCxyVy) , (B1)

where bold italicized superscripts denote the variables of

differentiation and the subscripts enumerate the corre-

sponding coordinates in physical space. The rhs of (B1)

can be rewritten as

=x
a=

y
b(VxCxyVy)5 (=x

aVx)(=
y
bVy)Cxy

1Vy(=
x
aVx) � =y

bCxy

1Vx(=
y
bVy)=

x
aCxy1VxVy=

x
a=

y
bCxy

(B2)

Taking the value of (B2) at the diagonal (x 5 y) under

the assumption of local homogeneity Cxy 5 Cx2y im-

plies that y 5 x in all the expressions involving V and

its derivatives and =x
a=

y
bCx2y 52=r

a=
r
bCr 52[$a$bC].

Assuming that the correlation function is differentiable

at r 5 0 also implies that its gradients at r 5 0 are zero

and, therefore, two middle terms in the rhs of (B2)

vanish. After taking into account the right equality in

(B1) and the definition Cxx 5 1, (B2) transforms into

h($ax)+($bx)i5 ($av)+($bv)2 v+v+[$a$bC] , (B3)

which yields (14) after rearrangement of the terms.

APPENDIX C

Diffusion Tensor Model

Numerically, the diffusion operator is defined by

D5 (n~$)T(n~$) ,
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where ~$ is the first-order finite-difference representa-

tion of the gradient in 2D and n is the square root of the

local diffusion tensor (nTn 5 D) represented by

n5

�
a 0

0 1

��
cosg sing

2sing cosg

�
a0 . (C1)

Here a0 5 15 km is the background decorrelation scale,

aa0 is the square root of the larger eigenvalue of D,

and g is the direction of the eigenvector, corre-

sponding to this eigenvalue. The larger principal axis

of D is aligned along the depth h(x, y) contours and

its magnitude is proportional to the bottom slope

s5 (h2x 1 h2y)
1/2. Specifically, the parameters a and g

are defined by

a5 u(s2 sc)
� ffiffiffiffiffiffiffi

s/sc

q
2 1

�
1 1, (C2)

g5 u(s2 sc) tan
21(2hx/hy) , (C3)

where u stands for the step function.With this definition,

the diffusion is isotropic (n 5 a0I) when the slope is

below the critical value sc, which is chosen to be s 5
0.0003. In this case, only 20% of points in the domain

were characterized by isotropic diffusion.
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