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Bernd S. W. Schrödera,∗, Jonathan B. Waltersb, Katie A. Evansb

aLouisiana Tech University, Program of Mathematics and Statistics, P.O. Box 10348,
Ruston, LA 71272, USA, current address: University of Southern Mississippi,

Department of Mathematics, Hattiesburg, MS 39406, USA
bLouisiana Tech University, Program of Mathematics and Statistics, P.O. Box 10348,

Ruston, LA 71272

Abstract

We prove an inequality that resembles Cacciopoli inequalities in that it
bounds the norm of the derivative of a function by using the norm of the func-
tion. Unlike in Cacciopoli inequalities, there is no restriction on the function,
a fact made up for by adding an extra term to the norm of the function. The
inequality arose in the proof that a bilinear form associated with spatial
hysteresis internal damping for an Euler-Bernoulli beam is coercive.

Keywords: Cacciopoli inequality, Gagliardo-Nirenberg inequality, spatial
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1. Introduction

Let L > 0, let p ∈ [1,∞), let W 1,p[0, L] denote the Sobolev space of real-
valued p-integrable weakly differentiable functions with p-integrable weak
derivative and let W 1,p

0 [0, L] be the subspace of W 1,p[0, L]-functions that are
zero on the boundary of the domain. The Poincaré inequality says that there
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is a cP > 0 so that, for all φ ∈ W 1,p[0, L], we have that∫ L

0

|φ(x)− φ|p dx ≤ cP

∫ L

0

|φ′(x)|p dx,

where φ =
1

L

∫ L

0

φ(x) dx.

The Friedrichs inequality says that there is a cF > 0 so that, for all
φ ∈ W 1,p

0 [0, L], we have that∫ L

0

|φ(x)|p dx ≤ cF

∫ L

0

|φ′(x)|p dx.

In a Cacciopoli inequality, the comparability in the Poincaré inequality or
the Friedrichs inequality is reversed. Easy examples show that this reversal
is not possible for all functions in W 1,p[0, L] or W 1,p

0 [0, L], respectively.
In this note, we prove the following Cacciopoli-type inequality. (The

interval [0, L] is chosen for convenience only and can be replaced with any
finite interval [a, b]. Scaling up to multidimensional domains, if possible at
all, is more sophisticated than a simple application of Fubini’s Theorem,
because of the double integral on the left side.)

Theorem 1.1. Let L > 0 and p ≥ 1. There is a constant CL,p > 0 so that,
for all functions φ ∈ W 1,p[0, L], we have that∫ L

0

∫ L

0

|φ′(x)− φ′(ξ)|p dx dξ +

∫ L

0

|φ(x)|p dx ≥ CL,p

∫ L

0

|φ′(x)|p dx.

Unlike for the Cacciopoli inequalities we found in the literature, there are
no restrictions on φ ∈ W 1,p[0, L]. This freedom comes at the price of needing

the extra term

∫ L

0

∫ L

0

|φ′(x)− φ′(ξ)|p dx dξ on the left side. Because the left

side is a sum of two terms, the inequality could also be considered a relative
of the Gagliardo-Nirenberg inequality. However, the Gagliardo-Nirenberg
inequality involves Lp norms with four different values for p, whereas this
inequality stays with one p. Consideration of straight lines φ(x) = ax shows

that, just like the integral

∫ L

0

|φ(x)|p dx, the extra term is not solely respon-

sible for the truth of the inequality in Theorem 1.1.
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The inequality in Theorem 1.1 arose in the modeling of an Euler-Bernoulli
beam. The governing equation for an Euler-Bernoulli beam is a fourth order
partial differential equation in space. There are numerous types of damping
that can reasonably be used in the modeling of different types of beams,
depending on the application. For beams made of composite materials, such
as a fiber material embedded in a matrix, spatial hysteresis internal damping,
introduced by Russell (see [3]), has been shown to be the most appropriate
form of internal damping (see [2]). Two of the authors (Evans, Walters) are
considering this damping in an extension of work related to modeling and
control of flexible wing micro aerial vehicles (see, for example, [4], [5], [6],
[8], [9]). As this new research direction is being pursued, it is important
that the model be well-posed so that existence of a unique solution that
depends continuously on initial data is guaranteed. Otherwise, proceeding
with numerical approximations and simulations, or, beyond that, control and
other objectives, is fraught with peril.

A partial differential equation can be transformed into an ordinary differ-
ential equation involving differential and differential-integro operators, which
are derived from bilinear forms. Some conditions that the bilinear forms must
satisfy for a system to be well-posed are given in [1]. In the construction of
said bilinear forms, for the problem two of the authors consider, the following
terms arise.

Definition 1.2. Let L > 0 and let h ∈ L2[0, L]2 be a kernel function. For
all ψ ∈ L2[0, L], we define

ν[ψ](x) :=

∫ L

0

h(x, ξ) dξ ψ(x) and G[ψ](x) :=

∫ L

0

h(x, ξ)ψ(ξ) dξ.

Clearly, for φ, ψ ∈ L2[0, L], the L2-inner products 〈ν[ψ], φ〉 and 〈G[ψ], φ〉
are bilinear forms and so is their difference. For the bilinear form 〈(ν −
G)[ψ], φ〉 associated with spatial hysteresis internal damping, the kernel func-
tion h in ν and G is so that, for all (x, ξ) ∈ [0, L]2, we have h(x, ξ) = h(ξ, x),
and, there are κ, µ > 0 so that, for all (x, ξ) ∈ [0, L]2, we have κ ≤ h(x, ξ) ≤
µ. To assure that the bilinear form associated with spatial hysteresis internal
damping for an Euler-Bernoulli beam is coercive with respect to the damping
space H1[0, L] and the state space L2[0, L] (see [1] for more details), there
must be a CL,2 > 0 so that, for all functions φ ∈ H1[0, L] = W 1,2[0, L] that
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satisfy φ(0) = 0, we have that∫ L

0

(ν − G)[φ′](x)φ′(x) dx+

∫ L

0

|φ(x)|2 dx ≥ CL,2

∫ L

0

|φ′(x)|2 dx.

The inequality above follows from Theorem 1.1 because Proposition 1.3
below shows that, for symmetric kernels, the first term above can safely be
replaced with the simpler term we use in Theorem 1.1. Hence, the model
under consideration is well-posed. To our knowledge, this is the first time a
formal proof of the above inequality appears in the literature.

Proposition 1.3. Let L > 0 and let h ∈ L2[0, L]2 be a kernel function so
that, for all (x, ξ) ∈ [0, L]2, we have h(x, ξ) = h(ξ, x) and so that there are
κ, µ > 0 so that, for all (x, ξ) ∈ [0, L]2, we have κ ≤ h(x, ξ) ≤ µ. Then, for
all ψ ∈ L2[0, L], we have that

κ

2

∫ L

0

∫ L

0

(ψ(x)− ψ(ξ))2 dx dξ ≤
∫ L

0

(ν − G)[ψ](x)ψ(x) dx

≤ µ

2

∫ L

0

∫ L

0

(ψ(x)− ψ(ξ))2 dx dξ.

Proof. First note the following.∫ L

0

(ν − G)[ψ](x)ψ(x) dx

=

∫ L

0

(∫ L

0

h(x, ξ) dξ ψ(x)−
∫ L

0

h(x, ξ)ψ(ξ) dξ

)
ψ(x) dx

=

∫ L

0

∫ L

0

h(x, ξ)
(
(ψ(x))2 − ψ(ξ)ψ(x)

)
dξ dx

=
1

2

∫ L

0

∫ L

0

h(x, ξ)
(
(ψ(x))2 − ψ(ξ)ψ(x)

)
dξ dx

+
1

2

∫ L

0

∫ L

0

h(ξ, x)
(
(ψ(ξ))2 − ψ(x)ψ(ξ)

)
dx dξ

=
1

2

∫ L

0

∫ L

0

h(x, ξ)
(
(ψ(x))2 − ψ(ξ)ψ(x)

)
dξ dx

+
1

2

∫ L

0

∫ L

0

h(x, ξ)
(
−ψ(ξ)ψ(x) + (ψ(ξ))2

)
dξ dx
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=
1

2

∫ L

0

∫ L

0

h(x, ξ)
(
(ψ(x))2 − 2ψ(ξ)ψ(x) + (ψ(ξ))2

)
dξ dx

=
1

2

∫ L

0

∫ L

0

h(x, ξ) (ψ(x)− ψ(ξ))2 dξ dx

The inequalities now follow from 0 < κ ≤ h ≤ µ.

Note that one, maybe even surprising, consequence of Proposition 1.3 is

that

∫ L

0

(ν − G)[ψ](x)ψ(x) dx is nonnegative. For kernels without the sym-

metry condition h(x, ξ) = h(ξ, x), this need not be the case as the functions

h(x, ξ) :=

{
2; for ξ > x,
1; for ξ ≤ x,

and ψ(x) :=

{
1 for 0 ≤ x < 1

2
,

3
2

for 1
2
≤ x ≤ 1,

show. For these functions, we have∫ 1

0

∫ 1

0

h(x, ξ)ψ(x)(ψ(x)− ψ(ξ)) dξ dx

=

∫ 1

1
2

∫ 1
2

0

h(x, ξ)ψ(x)(ψ(x)− ψ(ξ)) dξ dx+

∫ 1
2

0

∫ 1

1
2

h(x, ξ)ψ(x)(ψ(x)− ψ(ξ)) dξ dx

=

∫ 1

1
2

∫ 1
2

0

1 · 3

2

(
3

2
− 1

)
dξ dx+

∫ 1
2

0

∫ 1

1
2

2 · 1
(

1− 3

2

)
dξ dx

=
1

4
· 3

4
+

1

4
(−1) = − 1

16

Hence, in Proposition 1.3, the symmetry condition h(x, ξ) = h(ξ, x) on the
kernel cannot be omitted. This mathematical insight is mirrored physically
in the fact that (see [3], p. 136) Newton’s second law dictates the symmetry
condition h(x, ξ) = h(ξ, x).

Although we only needed Theorem 1.1 for p = 2 and with the additional
boundary conditions φ(0) = 0 and φ′(0) = 0 (clamped beam) imposed, it is
stated and proved for pth powers and without boundary conditions. Usually,
the generalization from second powers/Hilbert spaces to pth powers/Banach
spaces, if it is possible at all, requires significant extra work. However, in the
case of Theorem 1.1, the generalization of this particular proof from 2 to p
does not require any extra steps, so it is only prudent to provide the more
general version. Similarly, because Lemma 2.3, which substantially shortens
the final argument, does not require boundary conditions, we avoided the
need for boundary conditions.
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2. Lemmas

We will see in Section 3 that, when the first term on the left side of
the inequality in Theorem 1.1 is “small,” most of the values of φ′ can be
constricted to a relatively narrow range. Hence, in this case, in most of
its domain, the function φ will rise with a certain slope. Functions like
φ′(x) :=

∑n
k=1(−1)k1[ k−1

n
, k
n) show that positive and negative parts of a

derivative can be interleaved in such a way that the norm of the deriva-
tive stays large, while the norm of the function φ can be made arbitrarily
small. Although the interleaving for this example leads to a large first term
on the left side of the inequality in Theorem 1.1, for estimates involving
the second term, it is best to avoid such interleaving, which can be done
with a one-dimensional version of the nondecreasing rearrangement of
a function (see, for example, Chapter 10 of [7]). Rearrangements seem to
arise on an “as needed” basis in the literature, so we will at least sketch the
construction and also include the proof of Lemma 2.2. Because we will need
the nondecreasing rearrangement of a derivative φ′, we choose the notation
ψ↑ for the rearrangement instead of the more common ψ∗, and we adopt the
notation φ′↑ = (φ′)↑. As is customary, throughout this presentation, λ will
denote Lebesgue measure.

Lemma 2.1. Let L > 0. For every measurable function ψ : [0, L]→ R, there
is a nondecreasing function ψ↑ : [0, L] → R so that, for all c ∈ R, we have
that λ {x : ψ(x) < c} = λ {x : ψ↑(x) < c} .

Proof. (Sketch.) For simple functions ψ(x) =
n∑
k=1

ak1Ak , this is trivial.

For a measurable function ψ that is bounded above, approximate from above
with a nonincreasing sequence of simple functions and use the limit of their
rearrangements. For a general measurable function ψ, use the limit of the
rearrangements of min{ψ, n}.
Lemma 2.2. Let L > 0 and let φ : [0, L] → R be an absolutely continuous

function with φ(0) = 0. Then, for all x ∈ [0, L], we have φ(x) ≥
∫ x

0

φ′↑(t) dt.

Proof. Let x ∈ [0, L]. For all c ∈ R we have the following.

λ {t ∈ [0, x] : φ′(t) < c} ≤ min {x, λ {t ∈ [0, L] : φ′(t) < c}}
= min

{
x, λ

{
t ∈ [0, L] : φ′↑(t) < c

}}
= λ

{
t ∈ [0, x] : φ′↑(t) < c

}
6



Therefore, for all y ∈ R, we also have the following inequality.

λ {t ∈ [0, x] : φ′(t) > y} = x− λ {t ∈ [0, x] : φ′(t) ≤ y}

= x− lim
n→∞

λ

{
t ∈ [0, x] : φ′(t) < y +

1

n

}
≥ x− lim

n→∞
λ

{
t ∈ [0, x] : φ′↑(t) < y +

1

n

}
= x− λ

{
t ∈ [0, x] : φ′↑(t) ≤ y

}
= λ

{
t ∈ [0, x] : φ′↑(t) > y

}
With these inequalities, we can prove the result.

φ(x) =

∫ x

0

φ′(t) dt =

∫ x

0

(φ′)
+

(t) dt−
∫ x

0

(φ′)
−

(t) dt

=

∫ ∞
0

λ {t ∈ [0, x] : φ′(t) > y} dy −
∫ ∞
0

λ {t ∈ [0, x] : −φ′(t) > y} dy

=

∫ ∞
0

λ {t ∈ [0, x] : φ′(t) > y} dy −
∫ ∞
0

λ {t ∈ [0, x] : φ′(t) < −y} dy

≥
∫ ∞
0

λ
{
t ∈ [0, x] : φ′↑(t) > y

}
dy −

∫ ∞
0

λ
{
t ∈ [0, x] : φ′↑(t) < −y

}
dy

=

∫ ∞
0

λ
{
t ∈ [0, x] : φ′↑(t) > y

}
dy −

∫ ∞
0

λ
{
t ∈ [0, x] : −φ′↑(t) > y

}
dy

=

∫ x

0

φ′↑(t) dt.

The typical proof in Section 3 that uses the second term on the left side
of the inequality in Theorem 1.1 occurs in a situation in which φ has a
“large enough” positive derivative on a “large enough” subset of the interval.
Lemma 2.3 below shows that, in this situation, there is a certain lower bound

for

∫ L

0

|φ(x)|p dx, which we will prove to be large enough in all cases.

Lemma 2.3. Let L > 0, % > 0, τ ∈
(
0, 1

2

)
, let φ : [0, L]→ R be an absolutely

continuous function and let k ∈ {λ{x : φ′(x) ≥ %}, λ{x : φ′(x) > %}} be not

7



equal to zero. If

∫
{x:φ′(x)<0}

|φ′(x)| dx ≤ %τk, then

∫ L

0

|φ(x)|p dx ≥ 1

p+ 1

(
1

2
− τ
)p+1

kp+1%p.

Proof. Without loss of generality, assume that k = λ{x : φ′(x) ≥ %}.
First consider the case that

λ{x : φ′(x) ≥ % ∧ φ(x) ≥ 0} ≥ 1

2
λ{x : φ′(x) ≥ %}.

Let s := inf{x ∈ [0, L] : φ(x) > 0}. Because φ is continuous, we have
φ(s) ≥ 0. For all x ∈ [0, L− s], let ψ(x) := φ(x+ s). Then

λ{x : ψ′(x) ≥ % ∧ ψ(x) ≥ 0} = λ{x ≥ s : φ′(x) ≥ % ∧ φ(x) ≥ 0}
= λ{x : φ′(x) ≥ % ∧ φ(x) ≥ 0}

≥ 1

2
λ{x : φ′(x) ≥ %}

=
1

2
k.

Let a := λ{x : ψ′(x) < %}+ τk. Then∫ a

0

ψ′↑(x) dx ≥
∫ λ{x:ψ′(x)<0}

0

ψ′↑(x) dx+

∫ λ{x:ψ′(x)<%}+τk

λ{x:ψ′(x)<%}
ψ′↑(x) dx

≥ −
∫
{x:ψ′(x)<0}

|ψ′(x)| dx+ %τk

≥ −
∫
{x:φ′(x)<0}

|φ′(x)| dx+ %τk

≥ 0.

Now, with h :=

(
1

2
− τ
)
k, we have a + h ≤ L − s. Moreover, for all

x ∈ [a, a+ h], by Lemma 2.2, because ψ(0) = φ(s) ≥ 0, we have that

ψ(x) ≥
∫ x

0

ψ′↑(t) dt

=

∫ a

0

ψ′↑(t) dt+

∫ x

a

ψ′↑(t) dt

≥ %(x− a)

8



Now ∫ L

0

|φ(x)|p dx ≥
∫ L−s

0

|ψ(x)|p dx

≥
∫ a+h

a

|%(x− a)|p dx

≥ %p
∫ h

0

xp dx

= %p
1

p+ 1
hp+1

=
1

p+ 1
%p
((

1

2
− τ
)
k

)p+1

=
1

p+ 1

(
1

2
− τ
)p+1

kp+1%p

Now consider the case that

λ{x : φ′(x) ≥ % ∧ φ(x) ≥ 0} < 1

2
λ{x : φ′(x) ≥ %}.

Then, with θ(x) := −φ(L− x), we have θ′(x) = φ′(L− x) and hence

λ{x : θ′(x) ≥ % ∧ θ(x) > 0} = λ{x : φ′(x) ≥ % ∧ φ(x) < 0}

>
1

2
λ{x : φ′(x) ≥ %}

=
1

2
λ{x : θ′(x) ≥ %},

which means the result follows from the first case applied to θ.

The proof of Lemma 2.3 highlights the final difficulty we will face in
the proof of Theorem 1.1. To get a lower bound for φ(x), we need to use an
integral of φ′. However, for the inequality in Theorem 1.1, we must ultimately
connect with the (pth power of the) Lp-norm of φ′ and all integral conditions
that arise in the proof will be stated in terms of the Lp-norm of φ′. There
are no overall inequalities that relate L1-norms and Lp-norms, except that
the integral of |ψ| is bounded by the length of the interval plus the integral
of |ψ|p. (Another simple insight that we will use frequently.) To obtain
workable estimates, it will be advantageous to scale the functions so that the

9



value % in Lemma 2.3 is within a certain range. The simple Lemma 2.4 shows
that, as long as all other conditions behave similarly (which will be indicated
explicitly), we are allowed to scale the function φ, which means we can scale
cutoff values for the function, too.

Lemma 2.4. Let L > 0, CL,p > 0 and let φ ∈ W 1,p[0, L]. If there is an
M 6= 0 so that the inequality in Theorem 1.1 holds for Mφ with CL,p as the
constant, then the inequality holds for φ with CL,p as the constant, too.

Proof. This is trivial, because the factor M factors out of all terms as
an |M |p and can thus be canceled.

3. Proof of Theorem 1.1

The idea for the proof of Theorem 1.1 is simple: After identifying situa-
tions in which the first term on the left side of the inequality in Theorem 1.1
suffices to establish the inequality (Cases 1-3 and “early” estimates in the
hierarchy for Case 4), we are left with functions φ so that “many” values of
φ′ are restricted to a reasonably “small” range of positive numbers. (Case 5
handles the restriction to a range of negative numbers via Lemma 2.4.) This
then allows us to use Lemma 2.3.

The constants we use throughout the proof are chosen to assure that the
requisite steps can be established reasonably easily, and not to provide sharp
estimates for CL,p. Let α ∈

(
0, 1

1000·22p
)
, β ∈

(
0, 1

1000000

)
.

Case 1. λ {x : φ′(x) < 0} ≤ αL and λ {x : φ′(x) > 0} ≤ αL.

Because it is not possible that

∫
{ξ:φ′(ξ)<0}

|φ′(ξ)|p dξ ≤ β

∫ L

0

|φ′(ξ)|p dξ

and∫
{ξ:φ′(ξ)>0}

|φ′(ξ)|p dξ ≤ β

∫ L

0

|φ′(ξ)|p dξ, by Lemma 2.4, we can assume

without loss of generality that∫
{ξ:φ′(ξ)>0}

|φ′(ξ)|p dξ > β

∫ L

0

|φ′(ξ)|p dξ.

Hence, in this case, we have∫ L

0

∫ L

0

|φ′(x)− φ′(ξ)|p dx dξ ≥
∫
{ξ:φ′(ξ)=0}

∫
{x:φ′(x)>0}

|φ′(x)− φ′(ξ)|p dx dξ

10



= λ {ξ : φ′(ξ) = 0}
∫
{x:φ′(x)>0}

|φ′(x)|p dx

≥ (1− 2α)Lβ

∫ L

0

|φ′(x)|p dx,

which implies the desired inequality with CL,p;1 := (1− 2α)Lβ.

Case 2. λ {x : φ′(x) < 0} > αL and

∫
{ξ:φ′(ξ)>0}

|φ′(ξ)|p dξ > β

∫ L

0

|φ′(ξ)|p dξ.

In this case we note the following.

∫ L

0

∫ L

0

|φ′(x)− φ′(ξ)|p dx dξ ≥
∫
{ξ:φ′(ξ)>0}

∫
{x:φ′(x)<0}

|φ′(ξ)− φ′(x)|p dx dξ

≥
∫
{ξ:φ′(ξ)>0}

∫
{x:φ′(x)<0}

|φ′(ξ)|p dx dξ

= λ {x : φ′(x) < 0}
∫
{ξ:φ′(ξ)>0}

|φ′(ξ)|p dξ

> αLβ

∫ L

0

|φ′(ξ)|p dξ

Hence the desired inequality holds with CL,p;2 := αLβ.

Case 3. λ {x : φ′(x) > 0} > αL and

∫
{ξ:φ′(ξ)<0}

|φ′(ξ)|p dξ > β

∫ L

0

|φ′(ξ)|p dξ.

By Lemma 2.4 with M = −1, it follows from Case 2 that, in Case 3, the
desired inequality holds with CL,p;3 := αLβ.

The remaining cases. Obviously, the proof will be completed if we can
prove the desired inequality for functions that do not satisfy any of the condi-
tions in Cases 1-3. By negating and then combining the conditions in Cases 2
and 3, we obtain 4 pairs of conditions so that a function does not satisfy the
conditions in Cases 2 and 3 iff it satisfies one of these four pairs of conditions.
The pair of conditions λ {x : φ′(x) < 0} ≤ αL and λ {x : φ′(x) > 0} ≤ αL has
been discussed in Case 1. In the discussion of Case 1, we have also already

noted that the pair of conditions

∫
{ξ:φ′(ξ)<0}

|φ′(ξ)|p dξ ≤ β

∫ L

0

|φ′(ξ)|p dξ

and

∫
{ξ:φ′(ξ)>0}

|φ′(ξ)|p dξ ≤ β

∫ L

0

|φ′(ξ)|p dξ cannot be satisfied. Hence, the

11



proof will be complete once we have established the desired inequality for
functions that satisfy the pairs of conditions in Cases 4 and 5 below. Similar
to Cases 2 and 3, by Lemma 2.4 with M = −1, Case 5 will follow from Case
4. Hence, the bulk of the proof focuses on Case 4.

Case 4. λ {x : φ′(x) < 0} ≤ Lα and

∫
{ξ:φ′(ξ)<0}

|φ′(ξ)|p dξ ≤ β

∫ L

0

|φ′(ξ)|p dξ.

(Note that, if M > 0, the defining conditions hold for φ iff they hold for
Mφ. Hence we will be free to scale φ and use Lemma 2.4 when necessary.)

This case will have numerous subcases. Because the absolutely contin-
uous functions are dense in W 1,p[0, L], we can also assume, without loss of
generality, that φ is absolutely continuous. Hence, we will be free to apply
Lemma 2.3 when needed.

Consider the function

fφ(y) :=

∫
{x:φ′(x)≥y}

|φ′(x)|p dx.

Clearly, the function fφ is nonincreasing. Moreover, for every d ∈ R, we have
the following.

lim
y→d−

fφ(y) = lim
y→d−

∫
{x:φ′(x)≥y}

|φ′(x)|p dx =

∫
⋂
y<d{x:φ′(x)≥y}

|φ′(x)|p dx

=

∫
{x:φ′(x)≥d}

|φ′(x)|p dx = fφ(d),

that is, the function fφ is left continuous. Additionally, for every d ∈ R, we
have ∫

{x:φ′(x)>d}
|φ′(x)|p dx =

∫
⋃
y>d{x:φ′(x)≥y}

|φ′(x)|p dx

= lim
y→d+

∫
{x:φ′(x)≥y}

|φ′(x)|p dx

= lim
y→d+

fφ(y).

Finally,

fφ(0) =

∫
{x:φ′(x)≥0}

|φ′(x)|p dx =

∫ L

0

|φ′(x)|p dx−
∫
{x:φ′(x)<0}

|φ′(x)|p dx

≥ (1− β)

∫ L

0

|φ′(x)|p dx ≥ (1− β)

∫
{x:φ′(x)<0}

|φ′(x)|p dx.

12



Depending on whether fφ does or does not have a “large” discontinuity,
we will be either in Case 4.1 or in Case 4.2 below. For the case distinction,
fix δ := 101β.

Case 4.1. There is no c > 0 so that

∫
{x:φ′(x)≥c}

|φ′(x)|p dx ≥ δ

∫ L

0

|φ′(x)|p dx

and so that

∫
{x:φ′(x)<c}

|φ′(x)|p dx ≥ δ

∫ L

0

|φ′(x)|p dx. That is, for every real

c > 0, exactly one of the conditions

∫
{x:φ′(x)≥c}

|φ′(x)|p dx < δ

∫ L

0

|φ′(x)|p dx
or ∫

{x:φ′(x)<c}
|φ′(x)|p dx < δ

∫ L

0

|φ′(x)|p dx holds.

(Note that, if M > 0, the defining condition holds for φ with c iff it holds
for Mφ with Mc. Hence we will be free to scale φ and c, and use Lemma 2.4
when necessary.)

In this case, the function fφ has a jump discontinuity at some d > 0 so
that, for y ≤ d, we have

fφ(y) =

∫
{x:φ′(x)≥y}

|φ′(x)|p dx

=

∫ L

0

|φ′(x)|p dx−
∫
{x:φ′(x)<y}

|φ′(x)|p dx

> (1− δ)
∫ L

0

|φ′(x)|p dx

and so that, for y > d, we have

fφ(y) =

∫
{x:φ′(x)≥y}

|φ′(x)|p dx < δ

∫ L

0

|φ′(x)|p dx.

Note that, for any M > 0 and any y > 0, we have that

fMφ(y) =

∫
{x:(Mφ)′(x)≥y}

|(Mφ)′(x)|p dx

= Mp

∫
{x:φ′(x)≥ y

M }
|φ′(x)|p dx

= Mpfφ

( y
M

)
.
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Moreover, the condition that defines Case 4 holds for φ iff it holds for Mφ,
and, the condition that defines Case 4.1 holds for φ with c iff it holds for
Mφ with Mc. By Lemma 2.4, establishing the desired inequality for Mφ
establishes it for φ, too. Hence, by replacing φ with an appropriate Mφ, we
can assume, without loss of generality, that d = 1

2
.

Before we get to this point, we continue as follows.

dpλ{x : φ′(x) = d} =

∫
{x:φ′(x)=d}

|φ′(x)|p dx

=

∫
{x:φ′(x)≥d}

|φ′(x)|p dx−
∫
{x:φ′(x)>d}

|φ′(x)|p dx

= fφ(d)− lim
y→d+

fφ(y)

> (1− 2δ)

∫ L

0

|φ′(x)|p dx

Let ω = 8α.
Case 4.1.1. λ{x : φ′(x) = d} < ωL.
In this case, first note that

dpωL > dpλ{x : φ′(x) = d}

> (1− 2δ)

∫ L

0

|φ′(x)|p dx.

Because

∫
{x:φ′(x)>d}

|φ′(x)|p dx = lim
y→d+

f(y) ≤ δ

∫ L

0

|φ′(x)|p dx, we obtain

dpωL > (1− 2δ)

∫ L

0

|φ′(x)|p dx

≥ δ

∫ L

0

|φ′(x)|p dx

≥
∫
{x:φ′(x)>d}

|φ′(x)|p dx

≥ dpλ{x : φ′(x) > d},

that is, λ{x : φ′(x) > d} < ωL, too.
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Moreover,∫
{x: d2<φ′(x)<d}

|φ′(x)|p dx ≤
∫
{x:φ′(x)<d}

|φ′(x)|p dx

=

∫ L

0

|φ′(x)|p dx−
∫
{x:φ′(x)≥d}

|φ′(x)|p dx

<

∫ L

0

|φ′(x)|p dx− (1− δ)
∫ L

0

|φ′(x)|p dx

= δ

∫ L

0

|φ′(x)|p dx

and so, because

dpωL ≥ (1− 2δ)

∫ L

0

|φ′(x)|p dx

≥ δ

∫ L

0

|φ′(x)|p dx

>

∫
{x: d2<φ′(x)<d}

|φ′(x)|p dx

≥ dp

2p
λ

{
x :

d

2
< φ′(x) < d

}
,

we have λ

{
x :

d

2
< φ′(x) < d

}
< 2pωL.

We conclude that λ
{
x : φ′(x) ≤ d

2

}
> (1− 2ω − 2pω)L, which implies

the following.∫ L

0

∫ L

0

|φ′(x)− φ′(ξ)|p dx dξ

≥
∫
{ξ:φ′(ξ)=d}

∫
{x:φ′(x)≤ d2}

|φ′(x)− φ′(ξ)|p dx dξ

≥
∫
{ξ:φ′(ξ)=d}

∫
{x:φ′(x)≤ d2}

(
d

2

)p
dx dξ

= λ

{
x : φ′(x) ≤ d

2

}
1

2p
dpλ {ξ : φ′(ξ) = d}

> (1− 2ω − 2pω)L
1

2p
(1− 2δ)

∫ L

0

|φ′(x)|p dx.
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Hence, in Case 4.1.1, the desired inequality holds with the constant
CL,p;4.1.1 := (1− 2ω − 2pω)L 1

2p
(1− 2δ).

Case 4.1.2. λ{x : φ′(x) = d} ≥ ωL.
In this case, we want to apply Lemma 2.3. We will explicitly use, without

loss of generality, that d = 1
2
, which means that dp ≤ d. Recalling that α = ω

8
,

we obtain the following.∫
{x:φ′(x)<0}

|φ′(x)| dx ≤
∫
{x:φ′(x)<0}

1 + |φ′(x)|p dx

≤ λ{x : φ′(x) < 0}+

∫
{x:φ′(x)<0}

|φ′(x)|p dx

≤ αL+ β

∫ L

0

|φ′(x)|p dx

= αL+
β

1− 2δ
(1− 2δ)

∫ L

0

|φ′(x)|p dx

<
1

4
· 1

2
ωL+

β

1− 2δ
dpλ{x : φ′(x) = d}

≤ 1

4
· dωL+

β

1− 2δ
dλ{x : φ′(x) = d}

≤
(

1

4
+

β

1− 2δ

)
dλ{x : φ′(x) = d}

≤ d

(
1

4
+

β

1− 2δ

)
λ{x : φ′(x) ≥ d}

With % := d, τ := 1
4

+ β
1−2δ <

3
10

and k := λ{x : φ′(x) ≥ d}, we obtain
the following via Lemma 2.3.∫ L

0

|φ(x)|p dx ≥ 1

p+ 1

(
1

2
− τ
)p+1

kp+1%p

≥ 1

p+ 1

(
1

2
− 3

10

)p+1

kpdpλ{x : φ′(x) ≥ d}

≥ 1

p+ 1

(
1

5

)p+1

(ωL)p(1− 2δ)

∫ L

0

|φ′(x)|p dx

=
ωpLp(1− 2δ)

(p+ 1)5p+1

∫ L

0

|φ′(x)|p dx
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Hence, in Case 4.1.2, the desired inequality holds with the constant
CL,p;4.1.2 := ωpLp(1−2δ)

(p+1)5p+1 .

Case 4.2. There is a c > 0 so that

∫
{x:φ′(x)≥c}

|φ′(x)|p dx ≥ δ

∫ L

0

|φ′(x)|p dx

and so that

∫
{x:φ′(x)<c}

|φ′(x)|p dx ≥ δ

∫ L

0

|φ′(x)|p dx.

(Note that, if M > 0, the defining condition holds for φ with c iff it holds
for Mφ with Mc. Hence we will be free to scale φ and c, and use Lemma 2.4
when necessary.)

In this case, let

η :=

(
1

2

) 1
p

∈ (0, 1)

be fixed.∫ L

0

∫ L

0

|φ′(x)− φ′(ξ)|p dx dξ

≥
∫ L

0

∫
{x:φ′(ξ)≤ηφ′(x)∧φ′(x)>0}

|φ′(x)− φ′(ξ)|p dx dξ

≥
∫ L

0

∫
{x:φ′(ξ)≤ηφ′(x)∧φ′(x)>0}

(1− η)p |φ′(x)|p dx dξ

≥
∫
{ξ:φ′(ξ)≤cη}

∫
{
x:φ′(x)≥φ

′(ξ)
η
∧φ′(x)>0

} (1− η)p |φ′(x)|p dx dξ

Now use that c ≥ φ′(ξ)

η

≥
∫
{ξ:φ′(ξ)≤cη}

(1− η)p
∫
{x:φ′(x)≥c}

|φ′(x)|p dx dξ

≥
∫
{ξ:φ′(ξ)≤cη}

(1− η)p δ

∫ L

0

|φ′(x)|p dx dξ

= λ {ξ : φ′(ξ) ≤ cη} (1− η)p δ

∫ L

0

|φ′(x)|p dx

Now we either have λ {ξ : φ′(ξ) ≤ cη} > αL or λ {ξ : φ′(ξ) ≤ cη} ≤ αL.
Case 4.2.1. λ {ξ : φ′(ξ) ≤ cη} > αL.
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In this case, the above derivation shows that∫ L

0

∫ L

0

|φ′(x)− φ′(ξ)|p dx dξ ≥ αL (1− η)p δ

∫ L

0

|φ′(x)|p dx,

which means that, in Case 4.2.1, the desired inequality holds with the
constant CL,p;4.2.1 := αL (1− η)p δ.

Case 4.2.2. λ {ξ : φ′(ξ) ≤ cη} ≤ αL.
(Note that, if M > 0, the defining condition holds for φ with c iff it holds

for Mφ with Mc. Hence we will be free to scale φ and c, and use Lemma 2.4
when necessary.)

First note that we have λ {ξ : φ′(ξ) > cη} ≥ (1− α)L and

cpL ≥
∫
{x:0<φ′(x)<c}

|φ′(x)|p dx

=

∫
{x:φ′(x)<c}

|φ′(x)|p dx−
∫
{x:φ′(x)<0}

|φ′(x)|p dx

≥ δ

∫ L

0

|φ′(x)|p dx− β
∫ L

0

|φ′(x)|p dx

= 100β

∫ L

0

|φ′(x)|p dx

Let M > 0. The condition that defines Case 4 holds for φ iff it holds for
Mφ. The conditions that define Cases 4.2 and 4.2.2 hold for φ with c iff they
hold for Mφ with Mc. Hence, we can assume, without loss of generality, that

c := η =

(
1

2

) 1
p

.

As in Case 4.1.2, we first estimate the integral

∫
{x:φ′(x)<0}

|φ′(x)| dx.

∫
{x:φ′(x)<0}

|φ′(x)| dx ≤
∫
{x:φ′(x)<0}

1 + |φ′(x)|p dx

≤ λ{x : φ′(x) < 0}+

∫
{x:φ′(x)<0}

|φ′(x)|p dx

≤ αL+ β

∫ L

0

|φ′(x)|p dx
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≤ αL+
1

100
cpL

= cη
α + 1

100
cp

cη(1− α)
(1− α)L

≤ cη
α + 1

100
cp

cη(1− α)
λ {ξ : φ′(ξ) > cη}

Now with % := cη, τ :=
α+ 1

100
cp

cη(1−α) <
1
4

and k := λ {ξ : φ′(ξ) > cη}, we obtain
the following via Lemma 2.3.∫ L

0

|φ(x)|p dx ≥ 1

p+ 1

(
1

2
− τ
)p+1

kp+1%p

≥ 1

p+ 1

(
1

2
− 1

4

)p+1

(1− α)p+1Lp+1cpηp

=
1

p+ 1

(
1

4

)p+1

(1− α)p+1LpηpcpL

≥ 1

p+ 1

(
1

4

)p+1

(1− α)p+1Lpηp100β

∫ L

0

|φ′(x)|p dx

=
(1− α)p+1Lpηp100β

(p+ 1)4p+1

∫ L

0

|φ′(x)|p dx

Hence, in Case 4.2.2, the desired inequality holds with the constant

CL,p;4.2.2 := (1−α)p+1Lpηp100β
(p+1)4p+1 .

Case 5. λ {x : φ′(x) > 0} ≤ Lα and

∫
{ξ:φ′(ξ)>0}

|φ′(ξ)|p dξ ≤ β

∫ L

0

|φ′(ξ)|p dξ.

By Lemma 2.4 with M = −1, it follows from Case 4 that, in Case 5, the
desired inequality holds with CL,p;5 := min{CL,p;4.1.1, CL,p;4.1.2, CL,p;4.2.1, CL,p;4.2.2}.

Overall, the inequality holds with
CL,p := min{CL,p;1, CL,p;2, CL,p;3, CL,p;4.1.1, CL,p;4.1.2, CL,p;4.2.1, CL,p;4.2.2}.

[1] H. T. Banks and R. C. Smith and Y. Wang, Smart Material Structures,
Masson and Wiley, Paris, 1996

[2] H. T. Banks and D. J. Inman, On Damping Mechanisms in Beams,
Institute for Computer Applications in Science and Engineering NASA
Langley Research Center, September 1989

19



[3] David L. Russell, On Mathematical Models for the Elastic Beam with
Frequency-Proportional Damping, in: H. T. Banks, Control and Esti-
mation in Distributed Parameter Systems, Frontiers in Applied Mathe-
matics Series, SIAM, 1992, pp. 125–170

[4] A. Chakravarthy and K.A. Evans and J. Evers, Sensitivities and Func-
tional Gains for a Flexible Aircraft-Inspired Model, Proceedings of the
2010 American Control Conference (2010), 4893–4898

[5] A. Chakravarthy and K.A. Evans and J. Evers and L. Kuhn, Target
Tracking Strategies for a Nonlinear, Aircraft-Inspired Model, Proceed-
ings of the 2011 American Control Conference (2011), 1783–1788

[6] A. Chakravarthy and K.A. Evans and J. Evers and L. Kuhn, Nonlinear
Controllers for Wing Morphing Trajectories of a Heave Dynamics Model,
Proceedings of the 2011 Conference on Decision and Control (2011),
2788–2793

[7] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge
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