Reverse Recruitment: Activation of Yeast Genes at the Nuclear Periphery

Terry Marvin Haley

University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

Part of the Biology Commons, and the Genetics and Genomics Commons

Recommended Citation
https://aquila.usm.edu/dissertations/1184

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
REVERSE RECRUITMENT: ACTIVATION OF YEAST GENES
AT THE NUCLEAR PERIPHERY

by

Terry Marvin Haley

A Dissertation
Submitted to the Graduate Studies Office
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Approved:

May 2008
REVERSE RECRUITMENT: ACTIVATION OF YEAST GENES
AT THE NUCLEAR PERIPHERY

by

Terry Marvin Haley

Abstract of a Dissertation
Submitted to the Graduate Studies Office
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

May 2008
ABSTRACT

REVERSE RECRUITMENT: ACTIVATION OF YEAST GENES
AT THE NUCLEAR PERIPHERY

by Terry Marvin Haley

May 2008

The regulation of genes at the nuclear periphery is an evolutionarily conserved phenomenon in eukaryotes. The reverse recruitment model of transcriptional activation postulates that genes are activated by moving to and contacting transcription machinery located at subnuclear structures. In *Saccharomyces cerevisiae* it has been reported that this platform for gene regulation may reside at the nuclear periphery. To test this hypothesis, I utilized a GFP-gene tagging technique, which uses LacI-GFP to visualize a tandem array of its DNA-binding sequence, to monitor localization of *SUC2* and *GAL1*. I found that both genes preferentially localized to the nuclear periphery when transcriptionally active. By developing an *in vivo* single cell reporter assay, I simultaneously monitored gene location and expression of a GFP-Ras2 reporter and found that, when induced, cells with perinuclear *GAL* genes activated transcription 10 minutes before cells with genes localized to the nucleoplasm. Thus, interaction with the nuclear periphery correlates with more rapid initiation. Further, the *GAL1* gene can anchor in response to galactose, even when transcription is blocked, suggesting that genes move to the nuclear periphery prior to transcriptional initiation. I also show that gene localization to the nuclear periphery correlates with defects in regulation caused by the removal of *SUC2* and *GAL1* regulatory factors. Strikingly, these factors can be
biochemically purified with the perinuclear compartment. Further, I report here that components of the transcriptional pre-initiation complex are localized to the nuclear periphery in the presence or absence of transcription. This suggests that there is a highly organized subnuclear architecture that facilitates gene regulation at the nuclear periphery.

Interestingly, I saw that the archetypal transcriptional activator Gal4 exhibits a quantifiable difference in its subnuclear mobility that correlates with its function. For example, induced Gal4 shifts to a more slowly mobile form. I hypothesize that this shift may be the result of interaction with perinuclear transcription factories and that the well characterized dimerization and activation domains of Gal4 play a role in this tethering. Finally, I propose a model by which chromatin structure can influence gene movement to the nuclear periphery through the dynamic conversion between heterochromatin and euchromatin.
ACKNOWLEDGEMENTS

I would like to acknowledge several exceptional individuals that have helped me throughout my doctoral work. First and foremost, I’d like to thank my advisor, Dr. George Santangelo for his commitment of time and patience in teaching a former computer scientist the intricacies, and challenges, of biomedical research. I would like to also thank the members of my dissertation committee, Dr. Kelly Tatchell, Dr. Robert Bateman, Dr. Mohamed Elasri and Dr. Youping Deng, for their excellent guidance and suggestions regarding my research. I’m especially grateful to Dr. Kristine Willis who has graciously donated her time and effort in assisting in manuscript preparations and experimental suggestions. I’d like to also thank the current and past members of the Santangelo lab, in particular Dr. David Buford for his biochemical expertise shown here in Figures 6B, 11, 12, 13 and 16C, Dr. Nayan Sarma for his expertise in ChIP and invertase assays shown here in Figure 5C and Table 3. Again, I’d like to thank Dr. George Santangelo specifically for helping to quantitate the data shown in Figures 10 & 16B, which was done while I was in the Caribbean on my honeymoon. For their support and unending encouragement, I’d like to thank my friends and family. Lastly, I owe a great deal of thanks to my love and companion, Kellie Barbara Haley.
TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES .. ix

CHAPTER

I. BACKGROUND AND SIGNIFICANCE .. 1

 Nuclear Substructure and Chromatin Dynamics
 Gene Regulation in *S. cerevisiae*
 Galactose Activator Gal4
 Fluorescent Proteins in Cell Biology

II. MATERIALS AND METHODS ... 19

 Yeast Strains and Plasmids
 Live Cell, Fluorescent Imaging
 GFP Fluorescent Recovery After Photobleaching (FRAP)
 GFP inverse Fluorescent Recovery After Photobleaching (iFRAP)
 Gal4 Variant Cloning
 Chromatin Immunoprecipitation (ChIP)
 Cell Fractionation and Quantitative Fluorescent Protein Detection (QFPD)
 Co-immunoprecipitation and Western Blots

III. iFRAP ANALYSIS OF YEAST NUCLEAR FACTORS .. 38

 Nuclear Pore Complex Components Form Stable Structures
 Acetyl Exchange Factors Quickly Dissociate From Their Canonical
 Nucleosomal Target, Histone 2B
 Components of the Polymerase II Holoenzyme Show Distinct Kinetic
 Differences
 Transcriptional Regulators Vary Greatly in Their Dissociation Kinetics

IV. CHROMOSOME DYNAMICS OF *SUC2* ... 46

 Reverse Recruitment of *SUC2* to the Nuclear Periphery
 Mig1 repression occurs in the perinuclear compartment

V. CHROMOSOME DYNAMICS OF *GAL1* ... 52
Peripheral Anchoring of \textit{GAL1} is Induction Dependent
Movement of \textit{GAL1} to the Periphery Precedes Expression
Anchoring of \textit{GAL1} is Independent of Transcription
Components of the Pre-initiation Complex (PIC) Co-fractionate with NPC Components

VI. MODULAR GAL4 DOMAIN ANALYSIS ...61

VII. DISCUSSION ..69

Glucose Regulation of \textit{SUC2} Occurs at the Nuclear Periphery
\textit{GAL} Genes Move to the Nuclear Periphery Prior to Expression
Components of the Pre-initiation Complex at the Nuclear Periphery
Gal4 Contacts its Target Genes and NPCs When Active
Gene Movement by Chromatin Remodeling

REFERENCES ..85
LIST OF ILLUSTRATIONS

Figure

1. Two models for transcriptional activation .. 6
2. The modular structure of Gal4 .. 12
3. Fluorescent recovery after photobleaching ... 16
4. Inverse fluorescent recovery after photobleaching .. 17
5. Gene tracking using LacI-GFP .. 18
6. iFRAP can distinguish slow- vs fast-dissociating nuclear factors in yeast 39
7. Decay kinetics of nuclear factors .. 42
8. SUC2 exhibits carbon-source-dependence motility and associates with NPC’s .. 47
9. Perinuclear localization is required for repression by Mig1 51
10. In vivo localization of GFP-tagged GAL1 .. 53
11. Galactose induction drives the cellular membrane fluorescent reporter GFP-RAS2 ... 53
12. GFP-tagged GAL1 promoter drives galactose-induced expression of the GFP-RAS2 product, which is tightly localized to the plasma membrane 54
13. Analysis of timing of GAL1 promoter induction and movement to the nuclear periphery ... 56
14. Perinuclear anchoring of GAL1 in the absence of transcription 58
15. Components of the Pol II pre-initiation complex (PIC) co-fractionate with NPC’s .. 60
16. Gal4 co-fractionation with perinuclear factors ... 61
17. In vivo association of Gal4 with nuclear structures ... 63
18. Gal4 derivatives missing one or more key domains 64
19. Interaction between Gal4 and perinuclear factors ... 65
20. GAL gene expression occurs via a reverse recruitment mechanism 80
21. Conceptual model of active gene remodeling.................................81

22. The difference in density between active and inactive chromatin could be an organizational feature of gene expression..83
LIST OF TABLES

Table

1. Yeast strains and plasmids ... 35
2. Dissociation kinetics of nuclear proteins .. 40
3. Increased \textit{SUC2} expression correlates with increased localization of the gene to the nuclear periphery ... 50
CHAPTER I

BACKGROUND AND SIGNIFICANCE

Regulation of gene transcription is a key feature of developmental, homeostatic and oncogenic processes; misregulated genes are often responsible for developmental diseases and cancer. The unicellular yeast *Saccharomyces cerevisiae* continues to be a valuable model organism with which to study eukaryotic gene regulation, in particular because it allows integration of a variety of independent approaches (e.g. biochemistry, cell biology and genetics). Numerous features of transcriptional regulation are strongly conserved in yeast and human cells. For example, human TFTC (TBP-free TAF-containing histone acetyltransferase) and yeast SAGA (Spt-Ada-Gcn5 histone acetyltransferase) are conserved with respect to function, overall structure and subunit composition. This is particularly striking because each of these complexes contains twenty or more different polypeptides. These human and yeast co-activators are therefore likely to regulate transcription via a common mechanism (Brand *et al.* 1999). Thus, the easily manipulated yeast model system has great relevance to understanding homologous systems in higher eukaryotes.

The eukaryotic nucleus is highly organized with respect to gene regulation and RNA processing. Nuclear substructures seem to be particularly important in facilitating or regulating gene expression. In mammalian cells, RNA polymerase II assembles and localizes to lumenal Cajal bodies as active sites of transcription (Platani *et al.* 2002). Additionally, promyelocytic leukemia (PML) bodies regulate apoptosis in response to DNA damage (Boe *et al.* 2006). Lacking these lumenal structures, yeast gene expression appears to occur via movement of active genes to the nuclear periphery soon after
induction (Brown and Silver 2007). While a functional role for nuclear organization is changing the way in which we view the regulation of gene expression, much remains to be elucidated for the development of a clear and accurate model of transcription in three-dimensional space.

It is becoming clear, with the growing body of evidence correlating gene localization with transcription state, that the nuclear lumen is comprised of an ordered collection of spatial relationships. A model to describe gene regulation by relocation to a specific subnuclear compartment for activation was reported as early as 1985 with the concept of gene gating (Blobel 1985). This model postulated that remodeled genes targeted for activation localized to the nuclear pore complexes. Interestingly, the first report linking transcriptional activation with the nuclear periphery was published that same year (Hutchison and Weintraub 1985). However, because of limitations in technology, at the time it was difficult to rationalize this proposed hypothesis. Conversely, three years later, the recruitment model of transcription was published, which postulates that Brownian motion acts upon regulatory elements that then come into contact with their target genes for activation. Since this model complemented what was currently being elucidated of gene regulation using the then modern techniques, recruitment became the accepted paradigm for gene activation (Ptashne 1988). However, work by several eukaryotic labs has recently called the recruitment model of gene activation into question.

Only recently gene localization to the periphery in the context of activation has become center stage as a rapidly growing list of yeast genes has been shown to exhibit this behavior: these include INO1 (Brickner and Walter 2004), GAL1-10 (this work;
Casolari et al. 2004), GAL2 (Dieppois et al. 2006), HSP104 (Dieppois et al. 2006), HXX1 (Taddei et al. 2006) and SUC2 (this work; Sarma et al. 2007) to name a few. The information provided by these recent observations was made possible with the modern advances in cell biology techniques (see below). These findings have provided significant new insights into gene regulation in the context of a three dimensional, organized nucleus vs. a mixed ‘soup’ of complexes and chromatin.

A number of models have been developed in an attempt to explain this aspect to gene activation in yeast. Mentioned above, the gene gating model postulates that the nuclear pore complexes are a likely site of gene regulation based on the relationship between NPC distribution within the nuclear membrane and chromatin organization (Blobel 1985). More recently, models such as nucleoporin promoter interaction (Nup-PI; Schmid et al. 2006), gene recruitment (Brickner and Walter 2004) and reverse recruitment (Menon et al. 2005) have placed the key component of gene localization to the periphery with the NPC as well. However, they differ in the mechanistic details of How, Why and When gene relocalization occurs. The Gasser and Silver labs have reported that gene movement to the periphery follows the initial round of transcription of a target gene and that the first mRNA product facilitates this motion (reviewed in (Akhtar and Gasser 2007; Drubin et al. 2006; Taddei et al. 2006), though they test this indirectly. Conversely, our lab and the Brickner lab report that gene movement to the periphery occurs in the absence of transcription for GAL1 and INO1, postulating that initiation occurs at the nuclear periphery (this work; Brickner et al. 2007). These distinct hypotheses describing gene localization in the context of regulation will need to be
answered through more direct observations. Specifically, the field needs to address the initial round of transcription and the mechanism of gene movement.

To better understand the relationship between transcriptional activation and the subnuclear localization of genes and their regulators, I have undertaken a largely cell biological approach to address several questions of interest: A) Do yeast nucleoporins associate tightly within the NPC and how does that relate to other nuclear factors? B) How do environmental signals (i.e. for repression or activation) affect subnuclear localization of regulators and their target genes? To address this, I have utilized the well characterized glucose-repressed gene \(SUC2 \) and the galactose-induced gene \(GAL1 \). C) How do mutations in the well-characterized modular domains of a transcriptional activator (i.e. the activation domain or DNA-binding domain) affect its localization, mobility and ability to function? For this analysis I examine targeted deletions in the prototypical Gal4 activator.

In the remainder of this chapter I will review the current literature for topics pertinent to the understanding of this work.

Nuclear Substructure and Chromatin Dynamics

It is well established that the eukaryotic nucleus has an ordered substructure that facilitates gene regulation (see above; reviewed in O'Brien et al. 2003)). For example, in mammalian cells, it has been known a long time that chromosomes reside within distinct regions of the nucleus called territories (Lichter et al. 1988; Pinkel et al. 1988). These territories contain highly condensed regions of inactive chromatin. Active genes translocate to less dense interchromatin spaces to interact with PML or Cajal bodies for transcription. The resulting RNA is then modified in these regions prior to export or
further processing at the nucleolus (Verschure et al. 1999). Present research in yeast has yet to identify corresponding structures analogous to PML and Cajal bodies or structures resembling chromosomal territories. However, it is becoming clear that subnuclear organization exists and correlates with gene expression (see below).

In yeast, silent chromatin resides at the nuclear periphery (Gotta and Gasser 1996). Though the mechanism of peripheral anchoring remains unknown, yKu80, Esc1 and Sir4 have all been implicated to contribute to this process (Taddei et al. 2004). This example of subnuclear organization led researchers to adopt the reasonable but naïve assumption that the yeast nuclear periphery is a “silenced” compartment. However, as mentioned above, the nuclear pore complex (NPC) has been an intense focus of research in gene activation.

Gene Regulation in Saccharomyces cerevisiae

Transcription of the yeast protein-encoding genes is accomplished by RNA polymerase II (Pol II). The Pol II complex is composed of twelve subunits encoded by the RNA polymerase (RPO) genes. Many of these subunits have homologous counterparts in RNA polymerase I and III; others are common subunits shared between all three polymerases. Additional factors are needed for accurate gene transcription by Pol II: TBP (TATA-binding protein), TFIIB, TFIID, TFIIE, TFIIF and TFIIH. These factors have been reviewed extensively (Hampsey 1998) and will be considered here as part of the general transcriptional machinery referred to as Pol II.

In eukaryotic cells, gene expression has been described as a stepwise process beginning with an activator and culminating in the engagement of the Pol II complex (Figure 1A); however this model has been difficult to verify and is no longer universally
accepted. Additionally other complexes have been identified as global regulators that enhance transcription via chromatin remodeling; these include the Mediator, Swi/Snf and SAGA complexes. The inclusion of these intermediary complexes unique to eukaryotes is thought to enable more complex gene attenuation for processes such as differentiation and development (Kornberg 2005).

Mediator Complex

The Mediator complex was discovered due to its ability to relieve transcriptional squelching, or the interference of an activator caused by overexpression of an unrelated activator (Gill and Ptashne 1988). The interference was originally attributed to the sequestration of a required factor or Pol II itself by the overexpressed activator. However,
this interference could not be overcome in in vitro experiments by an excess of those purified factors, but instead could be overcome by a particular fraction from yeast extracts (Kelleher et al. 1990). This activity was deemed Mediator and the corresponding complex was isolated four years later (Kim et al. 1994). Comprised of twenty-one subunits, Mediator interacts with the C-terminal domain of Pol II’s largest subunit, Rpb1 (Myers et al. 1998). Current models put Mediator as the bridge between the Pol II complex and DNA-bound transcriptional activators, since its effect on transcription was isolated to the upstream activating sequences (UAS) that are known to be activator-bound under induced conditions (Park et al. 2000). Together, the Mediator and Pol II complexes are often collectively referred to as the Pol II holoenzyme (Myers et al. 1998).

SAGA complex

In yeast, Gcn5 along with several Spt and Ada proteins constitute the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex. Sgf73 was recently identified as a new component of SAGA that is required for association with the UAS of target genes in an activator-dependent manner. The SAGA complex utilizes acetyl-CoA for histone acetylation and is required for the proper expression of 10% or more of the yeast genome (Lee et al. 2000). Gcn5 histone acetyltransferase (HAT) performs its enzymatic function by transferring the acetyl group from acetyl-CoA to lysine sidechains of the histone core proteins. This enzymatic activity hyperacetylates the target histones and is often correlated with actively transcribed genes (Sterner and Berger 2000).

Swi/Snf chromatin remodeling complex

The Swi/Snf remodeling complex contains eleven subunits (Sudarsanam and Winston 2000). DNA-bound transcriptional activators (Schwabish and Struhl 2007), as
well as histone acetylation by the SAGA complex, facilitates the interaction of the
Swi/Snf complex with nucleosomes at gene promoters (Chandy et al. 2006). The Swi/Snf
complex is then capable of shifting or evicting local nucleosomes to promote
transcription initiation and elongation (Schwabish and Struhl 2007). A defect in Swi/Snf
function causes a drop in activator-dependent gene expression (Qiu et al. 2004).

Activation by Recruitment

Recruitment has been the generally accepted model to explain how eukaryotic
gene activation occurs. The recruitment model (summarized in Figure 1A) theorizes that
gene activation occurs when a DNA-bound activator attracts components of the general
transcription machinery to the UAS of a target gene in a step-wise fashion (Ptashne and
Gann 1997). Recruitment is based largely upon an experiment that fused the DNA-
binding domain (DBD) of the strong activator Gal4 directly to a component of the Pol II
holoenzyme (Barberis et al. 1995); this fusion could activate high levels of transcription
of the Gal4 target genes. This phenomenon, called activator bypass, supported the idea of
the machinery being recruited to target genes for expression in a DNA-bound activator
dependent fashion. Corresponding fusions of the activation domain (AD) of Gal4 failed
to activate transcription. These results led to the idea that the AD functions as the
recruitment surface for the Pol II holoenzyme, while the DBD provides a specific contact
surface with the DNA (Keaveney and Struhl 1998).

Since the development of the recruitment model in the late 1980's, discrepancies
have been identified. For one, the bypass experiment described above, where it was
presumed that the DNA binding domain was fused to a single holoenzyme subunit was in
fact fused to a Mediator component (Kornberg 2005). However, subsequent experiments
have suggested that Mediator precedes the Pol II complex in associating with the UAS of target genes (Cosma et al. 1999). Another discrepancy with the recruitment model is the Rap1 transcriptional regulator. When the activity of Rap1-Gal4DBD or Rap1-LexA fusion proteins are measured, Rap1 activation appears surprisingly weak (Santangelo 2006). However, this is not representative of Rap1 being a weak activator since mutation of its canonical binding sequence causes a 10 to 20 fold decrease in activation of its native target genes (Tornow et al. 1993). The recruitment model can not easily account for the observations.

Activation by Reverse Recruitment

A growing body of evidence is emerging that supports an alternative to the traditional paradigm of recruitment; this alternative is termed ‘reverse recruitment’ (Brown and Silver 2007; Menon et al. 2005; Santangelo 2006; Sarma et al. 2007). The inspiration of reverse recruitment began with an SGA analysis that showed a genetic link between the glycolytic activator Gcr1 and a dozen nucleoporins (Menon et al. 2005). This result begged the question of how the NPCs might play a role in regulation. Subsequent experiments showed that nucleoporins themselves can activate transcription of a reporter when fused with a LexA DNA-binding domain (Menon et al. 2005). These results allowed us to then develop a new model for gene regulation.

The reverse recruitment model stipulates that to be transcribed DNA is brought to an active region, such as the nuclear periphery, rich in pre-assembled transcriptional machinery (Figure 1B), rather than the machinery components diffusing randomly throughout the nucleoplasm and assembling de novo on each active promoter. Thus, unlike the recruitment model, this model takes into account the relationship between
nuclear substructure and gene regulation. A culmination of work from many labs has shown reverse recruitment to be a viable model of expression for Rap1/Gcr1 (Menon et al. 2005), glucose repressed genes (Sarma et al. 2007), galactose inducible genes (this work; Cabal et al. 2006; Drubin et al. 2006; Taddei et al. 2006) and the unfolded protein response genes (Brickner and Walter 2004).

Glucose repression of SUC2

Glucose repression is a robust and well studied pathway in yeast by which signal transduction blocks the expression of ~1000 genes. As in higher eukaryotes, the Ras/cAMP-dependent protein kinase A (PKA) initiates a transcriptome-wide glucose response (Santangelo 2006). In response to this signal, Hxk2, Ssn6 and DNA-binding Mig1 participate in the transduction pathway that blocks transcription of glucose repressed genes (Carlson 1999). Transcriptional inhibition is relieved in the absence of the glucose signal when Mig1 is evicted from the nucleus as a consequence of phosphorylation by the Snf1 kinase complex (Sarma et al. 2007). *SUC2*, the gene encoding the invertase enzyme, has been a model for the study of repression. Interestingly, despite the wealth of details known about its transcriptional repression in response to glucose, a DNA-bound activator for *SUC2* has yet to be identified.

Inducible expression of GAL1

Although it is unclear whether or not *SUC2* has an exclusive activator, *GAL* gene expression requires the well studied transcriptional activator Gal4. Induction by galactose requires a three component switch mechanism, Gal3, Gal80 and Gal4 (see below). In the absence of galactose this switch works to inhibit activation of the *GAL* genes.
Conversely, in the presence of galactose, this switch allows for the productive interaction of Gal4 with its canonical target genes (Lohr et al. 1995).

Gal80 repressor has been reported to bind directly to a short sequence within the Gal4 activation domain spanning residues 850 to 874 (Ma and Ptashne 1987). This inhibitory complex does not prevent Gal4 from binding its target sequences, but inhibits Gal4 activation of target genes. The addition of galactose to cells is sufficient to overcome Gal80’s sequestration of Gal4. Though the specific mechanism has yet to be elucidated, it has been shown that Gal3 or the homologous Gall (Sil et al. 1999), competitively binds Gal80 in the presence of galactose, releasing Gal4 for gene activation (Pilauri et al. 2005).

Galactose Activator Gal4

General activator components

Transcriptional activators are thought to minimally require the DNA-binding domains (DBD) and activation domain (AD) modules (Ding and Johnston 1997; Ptashne and Gann 1997; Triezenberg 1995). Since the DBD structure in each activator defines the specific sequences it targets in genomic DNA, the initial expectation was that a determination of AD structure would rapidly uncover the mechanism of AD function (Mitchell and Tjian 1989; Ptashne 1988). Unfortunately this has not been straightforward. Although ADs have been shown to adopt secondary structure upon interaction with binding partners (usually an amphipathic α-helix; Ferreira et al. 2005; Sugase et al. 2007), under physiological conditions ADs are intrinsically unstructured, highly flexible random-coil domains (Triezenberg 1995; Wright and Dyson 1999). Thus, though the primary AD of Gal4 (Gal4AD1; Figure 2) functions in all eukaryotes tested (Ptashne and Gann 1990), it
shows no apparent sequence conservation with respect to ADs in other activators, even
within the *S. cerevisiae* Gal4 superfamily (MacPherson *et al.* 2006; Schjerling and
Holmberg 1996).

![Diagram of Gal4 structural anatomy]

Figure 2. The modular structure of Gal4. Separable functions are encoded by the DNA
binding domain (DBD), the DNA-independent dimerization domain (DD) and the C-
terminal activation domain (AD1). Removal of AD1 revealed the existence of a second,
less powerful activation domain (AD2). The region between residues 196 and 768 plays
at most a minor role in Gal4 function (Ding and Johnston 1997; Ma and Ptashne 1987).

Gal4 structural anatomy

Analysis of the transcriptional regulator Gal4 in *S. cerevisiae*, which stimulates
expression of genes required for galactose metabolism, was important in establishing
both the function of DNA-bound activators and the prevalent paradigm of eukaryotic
members of the Gal4 superfamily in *S. cerevisiae* are thought to share the modular
structure of Gal4 (Figure 2). These proteins typically bind a pair of CGG nucleotide
triplets as a homodimer and have separable DNA binding, dimerization (DD), and
activation domains. Gal4 actually contains two ADs. The primary AD (AD1 in Figure 2)
accounts for the majority of its activation, while the secondary AD (AD2 in Figure 2) has
weaker activity. Crystal structures have been determined for the Zn-Cys binuclear
cluster-type DBD in Gal4 (Marmorstein *et al.* 1992) and the other best-characterized
members of the Gal4 superfamily, including Put3, Hap1, Ppr1 and Leu3 (MacPherson *et
al.* 2006). Swapping the zinc cluster motif (residues 8-40 in Gal4) of one activator for
another does not affect DNA targeting; binding specificity is thought to be derived from the adjacent linker region (residues 41-49 in Gal4; MacPherson et al. 2006; Marmorstein et al. 1992). The dimerization domain in Gal4 (Gal4DD; residues 50-97) augments, but is not required for, specific binding of Gal4 dimers to the 17mer target in DNA, UASG (Carey et al. 1989; Keegan et al. 1986).

Fluorescent Proteins in Cell Biology

The Green Fluorescent Protein (GFP) was isolated from the jellyfish *Aequoria victoria* and has become one of the most widely utilized proteins in cell biology (Tsien 1998). Its discovery revolutionized the field as the fundamental cornerstone of *in vivo* fluorescent techniques. The ability of GFP to form a highly visible and stable chromophore is an exceptionally useful tool. Further, since GFP has no special environmental folding requirements, it is amenable to expression in various systems and can be fused to other proteins with minimal effect on a host organism. As a result, GFP has been used for a plethora of cell biology experiments from protein localization (Huh 2003) to the study of chromosome dynamics (Drubin et al. 2006).

Solving the crystal structure of GFP allowed for a closer analysis of the chromophore (Peruzzo et al. 1988). In order to absorb energy and subsequently emit light, the chromophore must undergo fluor maturation. Maturation describes the process that begins with the translation of the mRNA message to its final folded and fluorescing state. Cyclization of the amino acid backbone to form the chromophore is the rate limiting step of this process (Sniegowski et al. 2005). This internal component is encapsulated within an eleven stranded beta barrel. Fully folded, the GFP protein absorbs light at 488nm and emits light at 505nm (Heim et al. 1994).
With the crystal structure of GFP solved, a targeted mutational analysis was begun to identify the components necessary for fluorescence (Li et al. 1997). Through these experiments, many mutant variants were developed with a range of properties: enhanced chromophore brightness, stability and cyclization to name a few (Verkhusha et al. 2001). For example, the original isolates of GFP have a maturation rate of four hours (Kolb et al. 1996), a potential limiting factor for expression reporting (Yeh et al. 1995). The optimization imposed on GFP provided alternatives whose maturation rates were greatly reduced (Verkhusha et al. 2001). These improvements in maturation rate have enabled protocols to be performed that were otherwise impossible. Another development resulting from mutational analysis was variants that emitted at different wavelengths. Today, the fluorescent color palette is rich with over 20 individual fluorescent proteins available, each with their own photo-properties (Stewart 2006).

Photobleaching

Building further upon the growing number of cell biological tools, it was contrived to use bleaching techniques to explore a protein’s Brownian mobility within its cellular compartment (Lippincott-Schwartz et al. 2003). The technique uses excessive excitation to extinguish chromophores within a selected region of a fluorescent population. After bleaching, the rate at which fluorescence is recovered or lost can be measured as the variants equilibrate within their subcellular compartment. The rate and extent to which this occurs can be quantified to elucidate the kinetic properties of a protein (Rabut et al. 2004).

Fluorescence Recovery After Photobleaching (FRAP)
The FRAP technique measures the recovery of fluorescence within a small region of interest (Figures 3A & B). This region is then photo-bleached with a high intensity light source and subsequently observed over time with a corresponding light source of low intensity (Figures 3C & D). The resulting fluorescence recovery curve can be used to quantitate protein properties of diffusion and immobility (Figure 3E). Factors that can affect this recovery include size of the tagged protein, density of organic material and structural interactions. Hence, the FRAP technique is suited to analyze proteins that loosely associate with structures or are constituents of mobile complexes (reviewed in (Lippincott-Schwartz et al, 2003).

inverse Fluorescence Recovery After Photobleaching (iFRAP)

iFRAP represents the converse of FRAP as implied by the name. With iFRAP, the fluorescent population is separated into two regions: the area to be bleached and the area to be observed (Figures 4A & B). The region to be bleached will encompass the majority of the fluorescing population, while the smaller unbleached region will be observed for fluorescence loss over time (Figures 4C & D). Quantitation of the loss of fluorescence yields the rate of structural dissociation (Figure 4E). This resulting curve can be used to determine a protein's 'residence time' within a structure, which is designated as the time it takes for 50% of fluorescence loss to occur. Proteins that are tight constituents of an immobile structure will exhibit a higher residence time as opposed to a loosely bound or freely diffusing protein whose fluorescence diminishes rapidly. Whereas FRAP measures a protein’s freedom of mobility, iFRAP quantitates a protein’s structural retention (describe in (Dundr and Misteli 2003)).
Figure 3. Fluorescence Recovery After Photobleaching. FRAP measures the kinetic diffusion rate of a protein. (A) The process starts with a strain that contains a protein of interest that is fluorescently tagged with GFP (or other fluorescent tag). A nuclear factor fused to GFP is used for this schematic. (B) A region of fluorescence is targeted for bleaching (red box). The region to be bleached is a relatively small area of the viewable signal. (C) The moment of bleaching is t₀ with respect to monitoring of the bleached population. (D) Time lapse microscopy is used to measure recovery over time. (E) The data are graphed relative to the pre-bleached intensity. The sample graph shown in (E) illustrates the kinetics of diffusion of a protein that recovers 50% of its final recovery (i.e. relative intensity) after ~300ms.
Figure 4. inverse Fluorescence Recovery After Photobleaching. iFRAP measures the kinetic dissociation rate of a protein. (A) The process starts with a strain that contains a protein of interest that is fluorescently tagged with GFP (or other fluorescent tag); a nuclear factor fused to GFP is used for this schematic. (B) The region of fluorescence is then divided into two smaller regions: a region to be bleached (red box) and a region to be subsequently monitored (yellow box). At least 60 to 80% of the viewable signal is targeted for bleaching. (C) The moment of bleaching is \(t_0 \) with respect to monitoring of the unbleached population. (D) Time lapse microscopy is used to measure signal degradation over time. (E) The data are graphed relative to the \(t_\) intensity. The sample graph shown in (E) illustrates the kinetics of dissociation of a protein that loses 50% of its fluorescence (i.e. relative intensity) after \(\sim 40 \) seconds.

In vivo gene tracking

Our understanding of chromatin organization and dynamics has progressed by a technique developed to track a single gene locus within a nucleus (Drubin et al. 2006).
By creating an array of binding sites within a host genome for the GFP fused bacterial Lac repressor, it is possible to observe a single locus in vivo (Figure 5). This technique has been utilized most recently to gain insight into gene movement within the nuclear lumen in the context of transcriptional regulation (reviewed in (Akhtar and Gasser 2007).

Figure 5. Gene tracking using LacI-GFP. An array containing 256 copies of the LacI DNA-binding sequence is inserted adjacent to the gene of interest. By expressing a plasmid borne LacI-GFP fusion protein it is possible to monitor the position of the tagged locus within the nucleus through the LacI binding array. Representative images on the right are of the \(\text{GAL1} \) locus. Nsp1-YFP marks the perinuclear compartment.
CHAPTER II
MATERIALS AND METHODS

Yeast Strains and Plasmids

Media preparation and basic yeast methods, such as lithium acetate transformation, were carried out according to standard procedures (Sherman 2002). Cells were grown in synthetic complete (SC) to which 2% glucose, 3% raffinose, 3% galactose or 3% pyruvate was supplemented as the carbon source; amino acids were dropped out as needed for plasmid selection. All cultures were grown at 30°C, unless otherwise noted; liquid cultures were incubated on a rotary wheel or shaking platform set to 200 rpm to maintain aeration. All assays were performed during the log phase growth.

S. cerevisiae strains and plasmids used in this study are listed in Table 1. The KB1017 strain was generated by 5-FOA selection of the PSY3354 strain to yield a *ura3*-strain (KB1016). To insert the GFP-RAS2 reporter gene in place of *GAL1*, GFP-RAS2-*URA3* was amplified from the pWS270 plasmid (generous gift of Walter Schmidt) using oligonucleotides that contained 50 bp of homology to the sequences just upstream of the *GAL1* Start codon and downstream of the Stop codon. The amplified fragment was transformed into KB 1016.*URA+* colonies were checked for proper integration by standard genomic DNA extraction and PCR.

To insert the lacop array downstream of *GAL1* a 200 bp region of sequence that lies at +165 to +365 bp downstream of the *GAL1* Stop codon was amplified with oligonucleotides that each included an SphI restriction site. The resulting PCR product was purified, digested and ligated into the unique SphI site of pAFS59 to yield pAFS59-*GAL1*-int. Digestion with BsaAI was used to linearize pAFS59-*GAL1*-int within this
region, allowing integration of the entire plasmid into the yeast genome approximately 300 bp downstream of \textit{GAL1}. Integrants were selected using SCD-LEU plates and integration of the plasmid was confirmed by standard genomic DNA extraction and PCR. The resulting strain is KB4462. To generate a Δ\textit{gal4} version of this strain, the same exact method was used to insert the lac$_{op}$ array downstream of \textit{GAL1} in the \textit{gal4::KANMX4} strain from the yeast deletion set (Open Biosystems), to yield KB4363. This method was also used to introduce the lac$_{op}$ array downstream of \textit{GAL1} in the \textit{rpbl-1} strain RS240 (generously provided by Dr. Michael Hampsey) to yield DB21. To generate a Δ\textit{gal80} strain, the NATMX4 gene was amplified from the p4339 plasmid using oligonucleotides containing 50 bp of homology to the sequences just upstream of the \textit{GAL80} Start codon and downstream of the Stop codon. The fragment was then transformed into KB4462 and NATR colonies isolated. Knock-out of \textit{GAL80} was confirmed via PCR and the resulting strain is KB1015.

To insert the lac$_{op}$ array upstream of \textit{SUC2} a 300 bp region of sequence that lies at approximately -1500 to -1800 bp upstream of the \textit{SUC2} Start codon was amplified with oligonucleotides that each included KpnI and EcoRI restriction sites. This integration site was chosen because it was significantly far enough from the two Mig1 binding sites (which are located between -500 and -430 bp) in the \textit{SUC2} promoter to avoid altering its regulation. The resulting PCR product was cloned into the TOPO-Blunt vector (Invitrogen) and then digested with KpnI+EcoRI and ligated into pAFS59 in a 3-fragment ligation (pAFS59 was digested with EcoRI+BstEII and BstEII+KpnI). Digestion with NheI was used to linearize pAFS59-SUC2-int, allowing integration of the entire plasmid into the yeast genome approximately -1500 bp upstream of \textit{SUC2}.
Integrants were selected using SCD-LEU plates and integration of the plasmid was confirmed by standard genomic DNA extraction and PCR. The resulting strain is KB38.

To generate a \(\Delta \text{migl} \) and \(\Delta \text{hxxk2} \) versions of this strain, the same exact integration strategy was used to insert the \(\text{lac} \text{op} \) array upstream of \(\text{SUC2} \) in the \(\text{migl}:\text{KANMX4} \) or \(\text{hxxk2}:\text{NATMX4} \) strain from the yeast deletion set (Open Biosystems; the \(\text{hxxk2}:\text{KANMX4} \) was switched to \(\text{hxxk2}:\text{NATMX4} \) using the EcoRI ‘switcher’ fragment from p4339), to yield KB39 and KB40, respectively.

Live Cell, Fluorescent Imaging

\textit{Migl localization}

For Migl localization, cells expressing Migl-GFP, from the yeast GFP clone collection (Invitrogen Life Technologies; see Table 1), and plasmid borne Rapl-CFP (nuclear marker; see Table 1), were imaged by using a Zeiss LSM 510 META confocal laser scanning microscope with a 63x Plan-Apochromat 1.4 NA Oil DIC objective lens. GFP was excited with the 488 nm laser and detected with the 505-530 BP filter. CFP was excited with the 458 nm laser and detected with the 475 LP filter. Pinholes were adjusted to obtain <1.8 \(\mu \)m optical slices. Cells were immobilized onto a 2% agarose pad supplemented with selective SC media containing either 2% glucose or 3% pyruvate for repressing and derepressing conditions, respectively.

\textit{SUC2 gene motion}

For \textit{in vivo} time course microscopy of \(\text{SUC2} \), a Zeiss LSM510 META confocal microscope was used to visualize the nuclei of cells grown on selective SC media plates supplemented with either 2% glucose (repressed conditions) or 3% pyruvate (derepressed conditions). Wild type \((\text{WT}; \text{KB38}) \) cells contained plasmid borne LacI-GFP (probe) and
Nsp1-YFP (peripheral marker), HIS3 and URA3 marked respectively. GFP and YFP were excited using the 488 nm and 514 nm lasers and detected with 505-530BP and 530LP filters, respectively. Imaging was done using an alpha Plan-Fluar 100x/1.45NA objective with a 1 μm depth of focus. Software zoom was utilized so that the resolution is such that 1 pixel = 0.04 μm. Each time lapse was performed over 4 minutes with an image taken every 60 seconds. Cells were immobilized onto a 2% agarose pad supplemented with selective SC media containing either 2% glucose or 3% pyruvate for repressing and derepressing conditions, respectively, and kept at 30°C during imaging by using a stage warmer.

GAL gene behavior and expression analysis in rpb1-1 cells

In vivo time course microscopy of the *GAL* genes was used in combination with Northern blot analysis to monitor gene position and expression during a transcriptional block. A temperature sensitive strain harboring the *rpb1-1* allele (which undergoes normal transcription at the 23°C permissive temperature, but no transcriptional initiation at the non-permissive temperature of 37°C; (Nonet et al. 1987) containing the lacop array adjacent to the *GAL1* locus, a plasmid borne LacI-GFP (to visualize the gene spot) and Nsp1-YFP (nuclear marker; see Table 1) was used. Five 50 ml cultures, inoculated from the same stock, were grown at 23°C to an OD600 of 0.8 in selective SC media containing 3% raffinose. Each culture then underwent a specific treatment:

(A) Cells were grown at the permissive temperature of 23°C in 3% raffinose

(B) same as (A) and the cells were shifted to the non-permissive temperature of 37°C for 1 hour to shut off transcription of *rpb1-1*
(C) same as (B) and galactose was added to a final concentration of 2% while the cells were kept at the non-permissive temperature for 1 hour.

(D) same as (C) with the cells being held at the non-permissive temperature for an additional 3 hours.

(E) same as (D) with the cells being placed back at the permissive temperature of 23°C for 1 hour.

For each treatment, aliquots of the cultures were taken for confocal microscopy and to monitor expression. When viewing the cells on the LSM, permissive and non-permissive temperatures were maintained with the use of a heated stage (ambient temperature of the microscopy facility averages 20-21°C). Fluorescence detection of the gene (via lacI-GFP) and nuclear periphery (via Nsp1-YFP) were done as described for SUC2 (see above). Cells were immobilized by using a 2% agarose pad containing SC media was supplemented with either 3% raffinose (uninduced conditions) or 3% galactose (induced conditions).

Expression was monitored by Northern blot analysis. Briefly, total RNA was isolated by using the previously published triazol method (Wang et al. 2004) and resolved on an agarose gel. The RNA was then transferred from the gel to a nytran membrane by using a Schleicher & Schuell TurboBlotter transfer system. The membrane was then probed with a 32P-labelled oligonucleotide complementary to the GAL1 mRNA or the highly stable HI mRNA (used here as a positive control) by using standard hybridization methods (Brown et al. 2004). The resulting 32P-bound bands were imaged by using a phosphor screen and Typhoon Phosphorimager (GE Healthcare). Northern blot analyses presented here were contributed by Dr. David Buford.
SUC2 and GAL genes localization statistics

For in vivo localization statistics of SUC2 and the GAL genes, a Zeiss LSM 510 confocal microscope was used to visualize cells grown in selective SC media supplemented with 2% glucose (repressed SUC2), 3% pyruvate (derepressed SUC2), 3% raffinose (uninduced GAL1), or 3% galactose (induced GAL1). WT and deletion mutants (KB38, KB39, KB40, KB4462, KB4363, and KB1015) contained the Lac array as described above as well as the corresponding plasmid-borne gene probe (LacI-GFP) and nuclear peripheral marker (Nsp1-YFP). Excitation and detection of GFP and YFP as well as cell immobilization were likewise done as described above. Imaging was done using an alpha Plan-Fluar 100x/1.45NA objective with a 1 μm depth of focus. For each condition at least 30 scans of independent fields, each containing at least 4 cells exhibiting normal nuclear morphology, a discernable nuclear ring and distinct gene spot, were captured. Subnuclear gene location was quantitated by measuring the distance from the center of the nucleus to the fluorescent gene spot and dividing that distance by the radius of the nucleus (determined as the distance from the nuclear center to the peak of Nsp1-YFP fluorescence). Genes that were measured to be equal to or greater than 67% of the distance of the nuclear radius were scored as perinuclear. Those measured to be less than 67% were scored as nucleoplasmic. Excel was used to record these measurements and calculate relevant error. At least 150 determinations were made for each condition.

Gal4 distribution in the nucleus

For in vivo Gal4-GFP distribution, a Zeiss LSM 510 confocal microscope was used to capture images of nuclei of cells grown in 3% galactose. WT cells (KEB3052) contained Nup49-tDimer2 and Nup60-tDimer2 (nuclear marker) along with plasmid
borne WT and variant forms of Gal4 tagged with GFP (see Table 1). Imaging was done using an alpha Plan-Fluar 100x/1.45NA objective with a 1 μm depth of focus. GFP and tDimer2 fusions were excited with the 488 nm and 543 nm lasers and detected with a 505-530BP and 585LP filters, respectively. Quantitation of peripheral Gal4 was measured by subtracting the GFP quantified within the inner 67% of the nucleus from the total nuclear GFP observed.

In vivo single cell analysis of GAL1 gene position and expression

For in vivo localization of the GAL genes in the fluorescent reporter strain containing GFP-RAS2 in place of the GAL1 coding region, a Zeiss LSM 510 confocal microscope was used to capture images of WT cells (KB3052 containing plasmid borne LacI-GFP (gene probe).

Cells were grown at 30°C in selective SC liquid media supplemented with 3% raffinose to an OD600 of 0.8. Localization of the uninduced GAL genes was scored as described above while the cells remained in 3% raffinose. To begin the induction, galactose was added to the growing culture to a final concentration of 2% and incubation at 30°C resumed. At 15, 30, 45, 60, 90 and 120 minutes post-induction, an aliquot of the culture was removed and 2 μl was deposited onto a lysine coated glass slide. For each time point, images of cells were captured within 5 minutes as described above (see SUC2 and GAL localization statistics). In order to collect enough cells for scoring, this experiment was repeated 3 times. This experiment was also repeated with the time points of 30, 35, 40 and 45 minutes post galactose induction. For this reduced time, images for each time point were captured within 2.5 minutes. This additional analysis was repeated 3 times.
Scoring of the gene localization was done as described above (see SUC2 and GAL localization statistics). GFP-RAS2 expression was measured by observing a cross section of the cell that extended from one edge of the cell periphery to the other. Fluorescence levels were exported to Excel for analysis with a file coding system in order to correlate the gene location with expression of the reporter. Cells were determined to be actively expressing GFP-RAS2 if the level of GFP fluorescence intensity at the cell cortex (the well-established location of Ras2, reviewed in (Santangelo 2006)) was equal to at least twice the ambient background levels. Cells were maintained at 30°C using a stage warmer.

GFP Fluorescence Recovery After Photobleaching (FRAP)

FRAP was performed on cells (BY4742) containing plasmid borne native Gal4 fused with GFP (YEpHIS-Gal4-GFP), Gal4 derivatives or chromosomally expressed Htb2-GFP from the yeast GFP clone library (see Table 1).

Cells were grown in 3% raffinose at 30°C to an OD600 of 0.8. For inducing conditions, galactose was added to the culture to a final concentration of 2% and incubation resumed for an additional 2 hours before assaying. FRAP was done with a Zeiss LSM 510 confocal microscope. Assayed cells were placed on a lysine coated slide and kept at 30°C with a stage warmer. For this experiment, GFP was excited and photobleached using the 488 nm laser (see details below) and subsequent recovery was observed with the 505-530BP filter. Imaging was done using an alpha Plan-Fluar 100x/1.45NA objective with a 1 μm depth of focus and the software zoom set to 10.

Live cells expressing the target nuclear protein tagged with GFP were first subjected to a single regional bleaching event of .15 - .2 μm squared area of the
fluorescent population with the 488 nm laser set to 100%. Subsequent images were taken every 250 ms up to 3 seconds. Regions of interest (ROI) were recorded from the region left unbleached (Reference ROI), the bleached region (FRAP ROI), both bleached and unbleached region (Whole cell ROI) and a region outside of the nucleus (Base ROI).

Each fluorescence intensity of each ROI over the course of the experiment was recorded in Excel for calculating the recovery curve. The normalized recovery curve was calculated as follows:

\[
\begin{align*}
\text{FRAP ROI:} & \quad I_{\text{frap}}(t) \\
\text{Reference ROI:} & \quad I_{\text{ref}}(t) \\
\text{Base ROI:} & \quad I_{\text{base}}(t) \\
\text{Whole Cell ROI:} & \quad I_{\text{whole}}(t)
\end{align*}
\]

\[
I_{\text{frap-norm}}(t) = \frac{I_{\text{whole-pre}}}{I_{\text{whole}}(t) - I_{\text{base}}(t)} \cdot \frac{I_{\text{frap}}(t) - I_{\text{base}}(t)}{I_{\text{frap-pre}}}
\]

It should be noted that the reference ROI should not show a significant drop in fluorescence as a result of the bleach event.

Recovery curves were imported into GraphPad Prism 4 where they were fit to a single exponential association equation for the purposes of determining the t_{1/2} of recovery. For each condition, at least 5 FRAP experiments were performed and the average curve is reported.

GFP inverse Fluorescence Recovery After Photobleaching (iFRAP)

Cells assayed by iFRAP were handled identically as for FRAP except proteins tagged with GFP that were not under the GAL regulatory system were grown in either 2% glucose or 3% pyruvate (SSN6-GFP). As in the FRAP analysis, Gal4-GFP was expressed from a plasmid; all other GFP fusions examined are from the yeast GFP.
collection (see Table 1). Imaging done for iFRAP was likewise done with the same equipment setup and slide preparation as described for FRAP (see above).

Live cells expressing the target nuclear protein tagged with GFP were first subjected to a single bleaching event of 65-80% of the fluorescent population with the 488 nm laser set to 100%. Subsequent images were taken on a timescale dependent on the stability of the signal observed: every 0.5, 1.0 or 1.5 seconds. At least 20 images were captured for each condition. Regions of interest (ROI) were recorded from the region left unbleached (iFRAP ROI), the bleached region (Reference ROI) and a region outside of the nucleus (Base ROI). It should be noted that the reference ROI was taken as the inverse of the FRAP reference ROI. The fluorescence intensity of each ROI over the course of the experiment was recorded in Excel for calculating the fluorescence loss curve. In order to calculate the normalized curve:

\[
\begin{align*}
\text{iFRAP ROI:} & \quad I_{\text{iframp}}(t) \\
\text{Reference ROI:} & \quad I_{\text{ref}}(t) \\
\text{Base ROI:} & \quad I_{\text{base}}(t) \\
I_{\text{iframp-norm}}(t) &= \frac{(I_{\text{iframp}}(t) - I_{\text{base}}(t)) - (I_{\text{ref}}(t) - I_{\text{base}}(t))}{(I_{\text{iframp-post}} - I_{\text{base-post}}) - (I_{\text{ref-post}} - I_{\text{base-post}})}
\end{align*}
\]

It should be noted that acquisition bleaching for each condition averaged 0.03% per scan.

Fluorescence loss curves were imported into GraphPad Prism 4 where they were fit to a single exponential dissociation equation for the purposes of determining the \(t_{1/2}\) of recovery. For each condition, at least 3 iFRAP experiments were performed.

Gal4 Variant Cloning

Gal4 variants were produced by replacement of a target domain(s) within the protein with the SV40 nuclear localization sequence (NLS). All derivatives were cloned with a plasmid containing native Gal4, fused with GFP, to be recombined with a linear
fragment comprised of the SV40 NLS flanked by 50 bp of homology to the 50 bp immediately adjacent to the target domain(s) to be replaced. Homologous recombination cloning was done in yeast cells that were deleted for GAL4 to prevent possible chromosomal integration of the desired Gal4 variant.

Each linear fragment was created by PCR of the SV40 NLS sequence from the plasmid pJK202. The 5’ oligo contained 50 bp homology to the 5’ sequence adjacent to the target domain to be replaced and 18 bp of homology to the SV40 NLS sequence. The 3’ oligo contained 50 bp homology to the 50 bp adjacent to the 3’ end of the target domain and again 18 bp homology into the 3’ end of the SV40 NLS sequence. Regions of Gal4 replaced by the NLS sequence were: residues 2-50 (DNA-binding domain; ΔDBD), residues 2-147 (both DNA-binding domain and the dimerization domain; AD), residues 50-97 (dimerization domain; ΔDD), residues 768-881 (primary activation domain; ΔAD1) and residues 147-881 (both primary and secondary activation domains; ΔAD2).

Cells were co-transformed, with linearized YEpHIS-Gal4-GFP (within the domain to be replaced) and accompanying PCR fragment (see above). Transformed cells were then plated onto solid SC media containing 2% glucose selecting for HIS3 and grown for 48 hours at 30°C. Candidate colonies that grew were inoculated into 5mL selective SC media (a maximum of 6 were tested at a time) and grown at 30°C to an OD600 of 0.8. Standard yeast mini-lysate DNA extracts were done for each of the 6 cultures to extract the plasmid DNA. Removal of each targeted region was confirmed by using standard restriction digests. Confirmed plasmid constructs (see Table 1) were transformed into DH5α E. coli for amplification and subsequent purification by using a
standard alkaline lysis method with phenol/chloroform extraction (Engebrecht et al. 2001).

Chromatin Immunoprecipitation (ChIP)

ChIP was done as described below (Sarma 2007). For *SUC2* regulatory system studies, 50 ml TAP tagged strains (see Table 1) were grown in YEP supplemented with either 2% Glucose (Repressed) or 3% Pyruvate (derepressed) at 30°C. The ChIP assays presented here were provided by Dr. Nayan Sarma and were performed as described in Sarma 2007 (Sarma 2007).

Cell Fractionation and Quantitative Fluorescent Protein Detection (QFPD)

Cell Fractionation

Three liters of liquid SC media supplemented with a specific carbon source (i.e. 2% glucose, 3% pyruvate, 3% raffinose or 3% galactose) were inoculated with a yeast strain expressing either a tagged (i.e. GFP or TAP) or WT (in the case of a native antibody being used) target protein (see Table 1). Cultures were harvested at an OD$_{600}$ of 0.8.

Cells were collected by centrifugation at 8,000 x g for 5 minutes at 4°C. After centrifugation, the supernatant was decanted and the cell pellets were thoroughly washed with the following solutions: 50 mL of cold Type I sterile water, 20 mL Tris-DTT (1 M Tris, 0.1M DTT), 20 mL of cold Type I sterile water, and finally, 20 mL of 1.1 M Sorbitol. For each washing step, the cell pellet was resuspended in the solution and then collected by centrifugation at 2,000 x g for 5 minutes at 4°C. Following each wash the supernatants were decanted and discarded.
For spheroplast digestion, cell pellets were resuspended with 12.5 mL of 1.1 M Sorbitol and transferred to a sterile 125 mL flask. To each flask 375 μl of Zymolyase solution (10% Zymolyase, 1.1 M Sorbitol), 500 μl glusulase and 62.5 μl of 1 M DTT was added. All flasks were incubated in a rotating 30°C water bath on a slow setting for 3 hours. Every 15 minutes, the flasks were swirled manually to help keep cells suspended in solution. When the 3 hours of digestion was complete, spheroplasts were confirmed by viewing on a light microscope.

The digested cells were then transferred to Nalgene-30 tubes and collected by centrifugation at 2,000 x g for 5 minutes at 4°C. Each supernatant was carefully removed and discarded and the pellet resuspended in 10 mL of 1.1 M Sorbitol. Next, the samples were carefully poured into Nalgene-30 tubes containing 10 mL Ficoll-Sorbitol (12% Ficoll-400, 1.1 M Sorbitol). The samples were centrifuged at 10,000 x g for 15 minutes at 4°C. Once the centrifugation was complete, the supernatant was carefully discarded from each sample and the pellet was rinsed one time with 10 mL of 1.1 M Sorbitol to remove the remaining Ficoll.

To each tube, 15 mL of the spheroplast lysis solution (8% Polyvinylpyrrolidone [PVP], .25% TritonX-100, 5 mM DTT, 1X PI cocktail 1 mM PMSF) was added and placed on ice. In a cold room (4°C) each pellet was resuspended by sonication using a Polytron (Polytron Devices) set to 3 for 1 minute then placed on ice for 1 minute. Spheroplasts were then ruptured by sonication using the Polytron set to 3.5 for 1 min. Each sample was then underlayed with 10 mL of 0.6 M Sucrose, 8% PVP, 1 mM PMSF, 1X PI solution by slowly pipetting directly into the bottom of the tube. The tubes were then centrifuged at 16,000 x g for 20 minutes at 4°C. After centrifugation 3 mL of the
supernatant (cytosolic samples) were transferred into sterile 15 mL tubes and stored at -80°C.

The pellets (nuclei samples) were then resuspended in 2 mL of 2.1 M Sucrose/PVP. Each of the nuclei samples were gently transferred onto previously prepared sucrose gradient columns. Sucrose gradients were made from 2.3 M, 2.1 M or 2.01 M sucrose solutions containing 8% PVP, protease inhibitor (PI; 0.005 mM Pepstatin A) and 1 mM PhenolMethylSulfonylFluoride (PMSF) respectively. The gradients were formed by slowly layering 1 mL of each solution in Beckman Polyallomer tubes, starting with the most dense layer (2.3 M Sucrose/PVP) and ending with the least dense layer (2.01 M Sucrose/PVP).

The columns were then placed within a SW-55 swinging bucket rotor (Beckman) and ultra-centrifugation was done at 29,300 rpm for 8 hours under 200 µm vacuum at 4°C. Tubes were placed on ice after completion of the spin. The top clear zone and the cloudy interphase fraction were pipetted off and discarded. The beige-colored region containing nuclei was transferred to 5 mL Falcon tubes and placed on ice. The pellet was discarded. Next, 1 mL of each nuclei sample was transferred to Beckman 30 mL TY50 2Ti tubes and overlayed with 8% PVP solution to the neck of the tube (~21 mL). The remaining nuclei samples were stored in the 5 mL Falcon tubes at -80°C.

The Beckman tubes underwent ultra-centrifugation in the 70TI rotor at 48,000 rpm for 1 hour under 200 µm vacuum at 4°C. After centrifugation, the supernatant was removed from each sample by gentle inversion and dabbing on a Kim-Wipe. The pellet was then resuspended in 500 µl of cold nuclear lysis solution (1 M Bis-Tris HCl, pH 6.5, 1 mM PMSF, .005 mM PI, and .002% DNAsel) and mixed by vortexing in 30 second
intervals before letting sit at room temperature for 5 minutes. 500 ml of Sucrose/Nycodenz solution was added to sterile 1.5 mL microfuge tubes and the resuspended pellets were subsequently added and mixed by vortexing. The tubes were then centrifuged at 4,350 x g for 6 minutes at 4°C. After the spin, the supernatant (nuclear envelope sample) was then added to sterile Beckman Polyallomer tubes followed by the addition of 2 mL of Sucrose/Nycodenz (20% Nycodenz, 2.3 M Sucrose, 10 mM Bis-Tris HCl, pH 6.5, 100 mM MgCl\textsubscript{2}). Covering the top of the tubes with parafilm each tube was vortexed for mixing. After removing the parafilm the samples were overlayed first with 1 mL of 2.25 M Sucrose, 100 mM Bis-Tris HCl, pH 6.5, and 0.1 mM MgCl\textsubscript{2} and then 1 mL of 1.5M Sucrose, 100 mM Bis-Tris HCl, pH 6.5, and 0.1 mM MgCl\textsubscript{2}. The tubes were placed within the SW-55 rotor (Beckman) and ultra-centrifuged at 41,000 rpm for 24 hours under 200 μm vacuum at 4°C.

After centrifugation the clear top regions were discarded from the gradient. The beige region, containing the nuclear envelope sample, was pipetted off and transferred to 30 mL Nalgene-30 tubes and placed on ice. The nuclei and cytosolic samples were then thawed on ice and also transferred to 30 mL Nalgene-30 tubes on ice. To each tube, 9 mL of cold Methanol was added and all tubes were placed at -20°C for 1 hour. The samples were then centrifuged at 10,000 rpm for 10 minutes at 4°C. After discarding the supernatant, the pellets were suspended in 300 μl of Buffer C (10% Glycerol, 0.3 M ammonia sulfate, 0.5 M Tris, pH 8.0, 10 mM MgCl\textsubscript{2}, 10 mM EDTA) and placed on ice. Finally, all resuspended samples were transferred to microfuge tubes and centrifuged at 10,000 rpm for 5 minutes at 4°C to pellet debris.
All samples were assayed for protein content using a Bradford Assay using 0, 1, 2, 4, 8 and 16 μg of BSA in 1 mL of Bradford solution (1:5 dilution of the Bradford Reagent [Biorad] in Type I sterile water) to create a standard curve. Protein estimations were measured using 5 mL of each cytosolic, nuclei and nuclear envelope samples with 1 mL of Bradford solution.

Quantitative Fluorescent Protein Detection

Using a 96-well plate, 0, 2, 4, 8 and 16 mg of each fraction (i.e. cytosolic, nuclei and nuclear envelope) were loaded into horizontal adjacent wells. Volume in the wells was standardized by adding Buffer C (200 mM Tris, pH 8, 10 mM MgCl$_2$, 10 mM EDTA, 300 mM (NH$_4$)$_2$SO$_4$, 10% glycerol) to samples where necessary. Each well was then mixed gently by pipetting and the plate was placed on the phosphorimager (GE Healthcare) for scanning. GFP tagged protein was detected by the phosphorimager by exciting the fluorescent protein with the blue2-488 nm laser and detected with a 526SP filter. The sensitivity was set to high and the photo-multiplier tube 800 V. Pixel resolution was set to 200 μm and the focal plane was adjusted to +3 mm above the platen. Densitometry of each well was calculated using ImageQuant software (GE Healthcare). The background fluorescence was calculated from the 0 μg wells and was subtracted from each other well in the corresponding set. Total fluorescence for each set was then added for each fraction that was isolated. The nucleoplasmic signal was normalized by subtracting the nuclear envelope intensity. The QFPD and Co-fractionation assays presented here were contributed by Dr. David Buford.

Co-immunoprecipitation and Western blots
For immunoprecipitation of Mig1, a GFP tagged Mig1 strain with appropriate lexA-tagged plasmids (see Table 1) was grown in 25 ml SC + 2% glucose. In case of immunoprecipitation of Gal4, cells with appropriate lexA-tagged plasmids were grown in SC supplemented with either 3% galactose (induced) or 3% raffinose (uninduced). The co-immunoprecipitation and western blot assays presented here were contributed by Dr. Nayan Sarma and were performed as described in Sarma 2007 (Sarma 2007).

Table 1. Yeast strains and plasmids

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY263</td>
<td>MATa, ade2-107, his3Δ200, leu2-Δ1, trp1Δ63, ura3-52, lys2-801</td>
<td>(Measday et al. 1994)</td>
</tr>
<tr>
<td>BY4742</td>
<td>MATa, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0</td>
<td>(Winzeler et al. 1999)</td>
</tr>
<tr>
<td>DB21</td>
<td>Same as RS420 but GAL1-lac<sub>op</sub>x 256 (LEU2)</td>
<td>This work</td>
</tr>
<tr>
<td>KB1015</td>
<td>Same as KB4462 and gal80::NATMX4</td>
<td>This work</td>
</tr>
<tr>
<td>KB1016</td>
<td>Same as PSY3364 but ura3-</td>
<td>This work</td>
</tr>
<tr>
<td>KB1017</td>
<td>Same as PSY3364 and gal1::GFP-RAS2</td>
<td>This work</td>
</tr>
<tr>
<td>KB3</td>
<td>Same as BY263 but lac<sub>op</sub>x 256 (LEU2)-SUC2</td>
<td>(Sarma et al. 2007)</td>
</tr>
<tr>
<td>KB39</td>
<td>Same as BY4742 but mig1::KANMX4, lac<sub>op</sub>x 256 (LEU2)-SUC2</td>
<td>(Sarma et al. 2007)</td>
</tr>
<tr>
<td>KB40</td>
<td>Same as BY4742 but hxxk2::NATMX4, lac<sub>op</sub>x 256 (LEU2)-SUC2</td>
<td>(Sarma et al. 2007)</td>
</tr>
<tr>
<td>KB4363</td>
<td>Same as BY4742 but gal4::KANMX4 and GAL1-lac<sub>op</sub>x 256 (LEU2)</td>
<td>This work</td>
</tr>
<tr>
<td>KB4462</td>
<td>Same as BY4742 and GAL1-lac<sub>op</sub>x 256 (LEU2)</td>
<td>This work</td>
</tr>
<tr>
<td>KEB3052</td>
<td>Same as KB1017 but his3Δ (for this strain lacI-GFP must be plasmid-borne in order to visualize the GAL1 gene)</td>
<td>This work</td>
</tr>
<tr>
<td>PSY3364</td>
<td>MATa, ade2-1, trp1-1, can1-100, NUP49-tdimer2-URA3, NUP60-tdimer2-KANMX4, lac<sub>op</sub>x 256 intergenic to GAL7 and GAL10, his3::GFP-lacI-HIS3</td>
<td>(Drubin et al. 2006)</td>
</tr>
<tr>
<td>RS420</td>
<td>MATa ura3-53, his4, trp1, leu2-3,112, rpb1-1</td>
<td>(Nonet et al. 1987)</td>
</tr>
<tr>
<td>Esc1-GFP</td>
<td>MATa leu2Δ0, met15Δ0, ura3Δ0, Esc1-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Fhl1-GFP</td>
<td>MATa leu2Δ0, met15Δ0, ura3Δ0, Fhl1-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Gcr1-GFP</td>
<td>MATa leu2Δ0, met15Δ0, ura3Δ0, Gcr1-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Hda1-GFP</td>
<td>MATa leu2Δ0, met15Δ0, ura3Δ0, Hda1-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Protein</td>
<td>Strain Description</td>
<td>References</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Htb2-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Htb2-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Med1-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Med1-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Mig1-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Mig1-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Nup133-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Nup133-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Nup60-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Nup60-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Nup84-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Nup84-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Pom34-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Pom34-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Rap1-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Rap1-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Rpb1-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Rpb1-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Sac3-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Sac3-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Sgf73-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Sgf73-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Ssn6-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Ssn6-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Ste12-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Ste12-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Swi4-GFP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Swi4-GFP-HIS3</td>
<td>(Huh et al. 2003)</td>
</tr>
<tr>
<td>Gal11-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Gal11-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Med1-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Med1-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Mig1-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Mig1-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Nop1-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Nop1-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Nup133-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Nup133-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Nup145-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Nup145-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Nup53-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Nup53-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Pom152-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Pom152-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Rpb1-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Rpb1-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Rpb7-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Rpb7-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Ssn6-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Ssn6-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Ssn8-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Ssn8-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Taf14-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Taf14-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Tbp1-TAP</td>
<td>MATa (leu2A0, met15A0, ura3A0), Tbp1-TAP-HIS3</td>
<td>(Ghaemmaghami et al. 2003)</td>
</tr>
<tr>
<td>Plasmid</td>
<td>Characteristics</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>P4339</td>
<td>pCRII-TOPO (Invitrogen) – natMX4</td>
<td>(Tong et al. 2001)</td>
</tr>
<tr>
<td>pAFS59</td>
<td>pMB1 ori, Amp′, LEU2, 256 Lac operator array</td>
<td>(Straight et al. 1996)</td>
</tr>
<tr>
<td>pAFS59-GAL1-int</td>
<td>Same as pAFS59 plus 200bp of GAL1 flanking sequence (see text for details)</td>
<td>This work</td>
</tr>
<tr>
<td>pAFS59-SUC2-int</td>
<td>Same as pAFS59 plus 300bp of SUC2 flanking sequence (see text for details)</td>
<td>This work</td>
</tr>
<tr>
<td>pHKB</td>
<td>CEN/ARS ori, HIS3, Amp′, pMB1 ori</td>
<td>This work</td>
</tr>
<tr>
<td>pHKB-Rap1-CFP</td>
<td>Derivative of pHKB encoding P_{RAP}Rap1-CFP</td>
<td>(Sarma et al. 2007)</td>
</tr>
<tr>
<td>pHKB-LacI-GFP</td>
<td>Derivative of pHKB encoding P_{RAP}LacI-GFP</td>
<td>(Sarma et al. 2007)</td>
</tr>
<tr>
<td>pHKB-LacI-GFP-GAL1</td>
<td>Derivative of pHKB encoding P_{RAP}LacI-GFP and P_{GAL}GAL1</td>
<td>This work</td>
</tr>
<tr>
<td>pJK202</td>
<td>2-μ ori, HIS3, Amp′, P_{ADH1}lexA-NLS</td>
<td>(Origene)</td>
</tr>
<tr>
<td>pWS270</td>
<td>CEN URA3 P_{GAL}-GFP-RAS2</td>
<td>(Manandhar et al. 2007)</td>
</tr>
<tr>
<td>YCp50</td>
<td>CEN/ARS ori, URA3, Amp′, pMB1 ori</td>
<td>(Rose et al. 1987)</td>
</tr>
<tr>
<td>YCp50-Nsp1-YFP</td>
<td>Derivative of YCp50 encoding P_{NSP}Nsp1-YFP</td>
<td>This work</td>
</tr>
<tr>
<td>YEpHIS</td>
<td>2-μ ori, HIS3, Amp′, pMB1 ori</td>
<td>This work</td>
</tr>
<tr>
<td>YEpHIS-Gal4^{AD}-GFP</td>
<td>Same as YEpHIS plus P_{GAL}^{42-147}-GFP</td>
<td>This work</td>
</tr>
<tr>
<td>YEpHIS-Gal4^{ADD}_1-GFP</td>
<td>Same as YEpHIS plus P_{GAL}^{476-881}-GFP</td>
<td>This work</td>
</tr>
<tr>
<td>YEpHIS-Gal4^{ADD}_2-GFP</td>
<td>Same as YEpHIS plus P_{GAL}^{447-881}-GFP</td>
<td>This work</td>
</tr>
<tr>
<td>YEpHIS-Gal4^{ADD}_3-GFP</td>
<td>Same as YEpHIS plus P_{GAL}^{52-59}-GFP</td>
<td>This work</td>
</tr>
<tr>
<td>YEpHIS-Gal4^{ADD}_4-GFP</td>
<td>Same as YEpHIS plus P_{GAL}^{46-97}-GFP</td>
<td>This work</td>
</tr>
<tr>
<td>YEpHIS-Gal4-GFP</td>
<td>Same as YEpHIS plus P_{GAL}^{447-881}-GFP</td>
<td>This work</td>
</tr>
<tr>
<td>YEpHIS-Rup84-LexA</td>
<td>2-μ ori, TRP1, Amp′ Nup84-lexA</td>
<td>(Sarma et al. 2007)</td>
</tr>
</tbody>
</table>
CHAPTER III

iFRAP ANALYSIS OF YEAST NUCLEAR FACTORS

Our lab has reported that the NPC can be a site of transcriptional activation (Menon et al. 2005). One possible explanation is that activation occurs at bona fide NPCs but an alternative possibility is that components of the nuclear pores activate gene expression when dissociated from NPCs. If this were the case we might observe that a portion of NPC components would have a relatively rapid dissociation rate, as determined by photobleaching techniques. Traditional methods of elucidating protein-protein interactions are performed in vitro. An intrinsic challenge when using this approach is how to relate an in vitro result to an in vivo process. Many proteins are compartmentalized as a feature of their function; for example the repressor Mig1 is evicted from the nucleus in the absence of glucose repression (Sarma et al. 2007). A consequence of in vitro techniques is the disruption of cellular compartments. Because of this drawback, I chose to use inverse fluorescence recovery after photobleaching (iFRAP). This photo-bleaching technique (see Background) measures the dissociation of a GFP-tagged protein from a target complex. Figure 6 shows representative individual iFRAP experiments for relatively stable NPC component Pom34 and highly mobile Fh11.

Nuclear Pore Complex Components Form Stable Structures

The NPC facilitates the transfer of material in and out of the nucleus. Similar to a study on human nucleoporins (Rabut et al. 2004), factors that constitute the membrane embedded NPC exhibited a relatively slow dissociation rate, which can also be described
as structural residence time (t₁/₂ of fluorescence loss), as compared to the other nuclear factors tested (Table 2). An exception to this general observation was the nuclear exportin Sac3 with a residence time of 20s. This mobility difference was most notable in the fluorescence decay curve, in which the Sac3 curve separated from the other four curves (Figure 7A). Sac3 is reported to associate with Nup1 and assists in mRNA export across the nuclear membrane (Lei et al. 2003). The remaining NPC factors Nup60, Nup84,
Nup133 and Pom34 are constituents of the pore structure and resided within the complex at least twice as long as Sac3 (Table 2).

Table 2: Dissociation kinetics of nuclear proteins

<table>
<thead>
<tr>
<th>Nuclear Factor</th>
<th>$k_{o ff}(s^{-1})^a$</th>
<th>Residence Time (s)b</th>
<th>Biological Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Pore Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nup84</td>
<td>1.60 ± 0.21</td>
<td>62.50</td>
<td>Component of Nup84 subcomplex</td>
</tr>
<tr>
<td>Nup133</td>
<td>1.90 ± 0.14</td>
<td>52.63</td>
<td>Component of Nup84 subcomplex</td>
</tr>
<tr>
<td>Nup60</td>
<td>1.90 ± 0.19</td>
<td>52.63</td>
<td>NPC structural component</td>
</tr>
<tr>
<td>Pom34</td>
<td>2.50 ± 0.14</td>
<td>40.00</td>
<td>NPC structural component</td>
</tr>
<tr>
<td>Sac3</td>
<td>5.00 ± 0.45</td>
<td>20.00</td>
<td>Nuclear export factor</td>
</tr>
<tr>
<td>Chromosominal Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Htb2</td>
<td>2.30 ± 0.44</td>
<td>43.48</td>
<td>Core histone component</td>
</tr>
<tr>
<td>Sgf73</td>
<td>10.00 ± 0.49</td>
<td>10.00</td>
<td>SAGA recruitment factor</td>
</tr>
<tr>
<td>Hdal</td>
<td>11.00 ± 1.60</td>
<td>9.09</td>
<td>Histone deacetylase</td>
</tr>
<tr>
<td>Mediator / RNA Polymerase II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rpb1</td>
<td>2.20 ± 0.09</td>
<td>45.45</td>
<td>Large subunit of RNA pol II</td>
</tr>
<tr>
<td>Med1</td>
<td>18.00 ± 0.75</td>
<td>5.56</td>
<td>Mediator subunit</td>
</tr>
<tr>
<td>Transcription Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rap1</td>
<td>2.00 ± 0.47</td>
<td>50.00</td>
<td>RP / Glucose activator</td>
</tr>
<tr>
<td>Gcr1</td>
<td>2.10 ± 1.20</td>
<td>47.62</td>
<td>RP / Glucose activator</td>
</tr>
<tr>
<td>Esc1</td>
<td>2.30 ± 0.30</td>
<td>43.48</td>
<td>Telomere silencing factor</td>
</tr>
<tr>
<td>Swi4</td>
<td>8.70 ± 0.44</td>
<td>11.49</td>
<td>G1 specific activator</td>
</tr>
<tr>
<td>Gal4</td>
<td>Raffinose</td>
<td>9.30 ± 0.93</td>
<td>10.75</td>
</tr>
<tr>
<td></td>
<td>Galactose</td>
<td>3.20 ± 0.56</td>
<td>31.25</td>
</tr>
<tr>
<td>Fhl1</td>
<td>9.70 ± 1.10</td>
<td>10.31</td>
<td>RP activator</td>
</tr>
<tr>
<td>Ste12</td>
<td>11.00 ± 0.89</td>
<td>9.09</td>
<td>Mating activator</td>
</tr>
<tr>
<td>Ssn6</td>
<td>Dextrose</td>
<td>10.00 ± 0.65</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>Pyruvate</td>
<td>14.00 ± 1.20</td>
<td>7.14</td>
</tr>
<tr>
<td>Mig1</td>
<td>17.00 ± 2.40</td>
<td>5.88</td>
<td>Glucose repressor</td>
</tr>
</tbody>
</table>

a Dissociation rates, mean from at least three iterations, were obtained by curve fitting the observed kinetics from individual iFRAP experiments with an exponential decay algorithm (Rabut 2004).

b Structural residence time was calculated via $1/k_{o ff}$ and is the time at which 50% of fluorescence is lost.

Rap1 contributes to telomere silencing.

The integral membrane protein Pom34 was second fastest among the NPC factors exhibiting a structural residence time of 40s. This result was surprising since Pom34 is an integral membrane protein that constitutes a portion of the NPC scaffold. However, this apparent contradictory result has been seen before in a similar study where human hGp210, an integral membrane protein involved in NPC site selection (Rabut et al. 2004),
was also observed to have relatively fast structural dissociation kinetics. Interestingly, the last three NPC components tested, who have all been shown to contribute to gene regulation, exhibited the most stable structural association to the pore complex.

Acetyl Exchange Factors Quickly Dissociate From Their Canonical Nucleosomal Target, Histone 2B

The next nuclear factors I observed were chromatin factors. Since genes relocate to the nuclear periphery, it stood to reason that perhaps factors involved in converting inactive heterochromatin to active euchromatin might also associate with perinuclear structures. Htb2, encodes Histone 2B in yeast, contributes to the formation of the histone complex that constitutes the foundation of nucleosomes. Though Htb2 is largely nucleoplasmic and has been shown not to interact directly with the nuclear periphery (Sarma et al. 2007). I expected Htb2 to exhibit a slow dissociation rate as it is mostly compacted within dense heterochromatin. Conversely, the SAGA component, Sgf73, I hypothesized to interact with more stable structures at the periphery in order to perhaps facilitate remodeling of target promoters for activation. What I observed was that the residence time of Htb2 was indeed relatively high, indicative of a low rate of exchange (Table 2). Interestingly, the observed kinetics suggest that histone incorporation into nucleosomes is as structurally stable as nucleoporins are to the NPC (Figure 7B). Conversely, for the acetylation factors, Hda1 and Sgf73 both exhibited a much lower residence time (Figure 7C and Table 2).
Figure 7. Decay kinetics of nuclear factors. Each curve is the mean of at least three individual iFRAP experiments. Shown are the dissociation kinetics of selected nuclear factors: (A) NPC associated factors, (B) Histone 2B and Nup84 subcomplex subunit Nup133, (C) Histone 2B and associated acetylation factors, (D) largest subunit of Pol II Rpb1 and Mediator component Med1, (E) integral membrane protein Pom34 and Rpb1, (F) Gal4 kinetics in uninduced (raffinose) and induced (galactose) conditions, (G) various transcriptional activators, (H) transcriptional regulator Rap1 and Rpb1 and (I) silencing factor Esc1 and the integral membrane protein Pom34.
Components of the Polymerase II Holoenzyme Show
Distinct Kinetic Differences

We were next interested in looking at components of the transcriptional machinery. If reverse recruitment provides a robust model for gene regulation, we expect that the transcriptional machinery, or at least the core components of Mediator and Pol II, would be predominately immobile. What we observed, however, was that Med1 of the Mediator, and Rpb1 of the Pol II complexes showed a 9 fold difference in structural residence time (Table 2; Figure 7D) despite the fact that they both co-fractionate with the nuclear periphery (see below). The Pol II large subunit Rpb1 showed a very similar kinetic profile to the integral membrane protein Pom34 (Figure 7E). Importantly, this observed structural retention of Rpb1 is consistent with its functional association with the nuclear periphery (see below) and our expectations with the reverse recruitment model. Conversely, Med1, shown to interact with the Mediator core subunits Med4 and Med8 (Balciunas et al. 2003), exhibited a residence time of only 5.5s. It is therefore likely that Med1 is a transient factor in the Mediator complex. In order to clarify this discrepancy a more comprehensive study of the Mediator subunits would be needed.

Transcriptional Regulators Vary Greatly in Their Dissociation Kinetics

The last part of the puzzle that we wanted to address with iFRAP deals with transcriptional regulators. It is unclear as to the fate of the activator or repressor while fulfilling its regulatory role. In the context of the recruitment model, kinetic expectations would be that a regulator would maintain a level of free diffusion in order to efficiently come in contact with its target genes. However, in the reverse recruitment model we predict that activators are capable of slower kinetics while associated with the immobile
transcriptional machinery (see above). Conversely, repressors function to inhibit this productive association between transcriptional machinery and target genes, therefore they are predicted to be generally mobile. What I found is that for cells grown in galactose (induced), the transcriptional activator Gal4 does in fact shift to a more stably bound form (Figure 7F), indicative of structural integration (see below). When cells are grown in raffinose (in uninducing media), Gal4 matched the kinetic profiles of Ste12, Swi4 and Fh1 (Figure 7G), suggesting that the latter three factors may likewise be inactive. However, in order to support this possible correlation between these distinct regulatory pathways, more experimentation would have to be done. I also found that the constitutively active Rap1 and glycolytic activator Gcr1 exhibit a structural residence time nearly identical to that of Rpb1 (Figure 7H; Table 2).

The promoter specific, DNA-binding repressor Mig1 was found to have a very low residence time of 5.88s. Mig1 binds to the co-repressor Ssn6 (Treitel and Carlson 1995) which in part mediates repression via histone deacetylation (Wu et al. 2001). Interestingly, Ssn6 showed a 10s residence time, twice that of Mig1 and similar to the Hda1 residence time of 9s (Table 2). Interestingly, for cells grown in pyruvate (relieving glucose repression) Ssn6 appeared to show a slightly less structural residence time of ~7s. Since glucose repressed genes are only a subset of Ssn6 targets (Huang et al. 1998; Proft et al. 2001; Treitel and Carlson 1995), this minor shift in kinetics is consistent with Ssn6 remaining active, though perhaps to a lesser degree. Lastly, I examined the telomere silencing factor Esc1. Telomere silencing occurs at the nuclear periphery and requires Esc1 to assist in anchoring (Taddei et al. 2004). The Esc1 dissociation profile was
consistent with this reported function as it exhibited a structural residence time comparable to that of the integral membrane protein Pom34 (Table 2; Figure 7I).
CHAPTER IV

CHROMOSOME DYNAMICS OF SUC2

Reverse Recruitment of SUC2 to the Nuclear Periphery

Recent work has clearly demonstrated that transcriptionally active target genes in S. cerevisiae (e.g., those regulated by Rap1/Gcr1, Gal4, and Ino2) physically associate with perinuclear factors (Brickner and Walter 2004; Casolari et al. 2004; Menon et al. 2005). Given the data presented above, we suspected that SUC2, the canonical glucose-repressed locus on chromosome IX, might also be associated with the nuclear periphery when active. We tested this by inserting an array of lac operators upstream of SUC2 in cells that expressed a LacI repressor fused to green fluorescent protein (LacI-GFP); this allowed monitoring of the in vivo subnuclear position of the tagged locus within a confocal optical slice (Figure 5). Co-expression of a YFP-tagged nucleoporin (Nsp1-YFP) allowed simultaneous visualization of the nuclear periphery.

In glucose-grown cells (under repressing conditions), the location of SUC2 in the nucleus appeared to be random; it was present in the perinuclear compartment (taken as the outer third of the nuclear area; see Taddei et al. 2006) in 45% of cells (Table 3; n = 153). In the absence of glucose (under derepressing conditions), when expression is ~100-fold higher, SUC2 localization to the perinuclear compartment increased to 74% (Table 3; n = 143; P < 0.0001). Time lapse fluorescence microscopy revealed a striking carbon source-dependent difference in the intranuclear motility of SUC2. The position of SUC2 was dynamic in glucose-grown cells (Figure 8A). However, in the absence of
Figure 8. *SUC2* exhibits carbon-source-dependent motility and associates with NPCs. Time-lapse analysis (4 min total) of the location of GFP-tagged *SUC2* in either (A) repressed or (B) derepressed cells is shown; the result for each of five different nuclei in either repressing or derepressing conditions is presented horizontally in temporal order from left to right. The cartoon on the right depicts the location of the gene within the nucleus at the time indicated, in seconds: 0 (blue), 60 (green), 120 (yellow), 180 (orange), and 240 (red). A YFP fusion to the essential NPC component Nsp1 marks the nuclear periphery. (C) ChIP analysis of association between *SUC2* and factors that represent different strata of the nuclear periphery. TAP-tagged Nup53 (NPC subunit), Nup133 (NPC subunit), Nup145 (NPC subunit), Pom152 (NPC-specific integral nuclear protein).
membrane protein), or Ssn6 (perinuclear Mig1 corepressor; see Figure 2E), or HA-tagged Mig1, were immunoprecipitated from cells grown on either the presence (R, repressed) or absence (D, derepressed) of glucose. The SUC2 promoter and ACT1 (negative control) promoter were amplified from both immunoprecipitated material and whole-cell extracts (INPUT, positive control). No Ab, no antibody (negative control).

glucose, movement of SUC2 was restricted to the perinuclear compartment, including occasional sliding along the nuclear periphery (Figure 8B). Although the underlying explanation for this lateral perinuclear sliding remains to be determined, similar behavior has also recently been reported for other transcriptionally active genes (Cabal et al. 2006; Taddei et al. 2006).

Chromatin immunoprecipitation (ChIP) data (Figure 8C), which were verified across a three-fold range of PCR template, show that the SUC2 promoter associates with at least four different components of the NPC (Nup53, Nup133, Nup145C, and Pom152; Figure 8C) in both the presence and the absence of glucose; removal of some of these same factors impairs both repression and derepression of SUC2 (see below). SUC2 is also constitutively associated with the corepressor Ssn6 (Figure 8C). In contrast, SUC2 associates with Mig1 only in the presence of glucose; this was expected because Mig1 is exported to the cytoplasm in the absence of glucose (De Vit et al. 1997). Interestingly, Act1, used as our negative ChIP control, is a highly expressed gene but fails to interact with the NPC (Figure 8C). Providing at least one instance where interaction with the NPC appears to be dispensable for gene regulation.

Mig1 repression occurs in the perinuclear compartment

Many glucose-regulated genes are transcriptionally repressed by the DNA-bound factor Mig1 (Lutfiyya et al. 1998). In glucose-grown Δmig1 cells, SUC2 expression was ~20-fold higher than in wild type (Vallier and Carlson 1994). I found that this increase in
expression corresponds with a significant increase in the peripheral localization of the ORF; the gene is localized to the nuclear periphery in 60% of Δmig1 cells (n = 146) vs. 45% of glucose-grown wild-type cells (n = 152, P < 0.01; Table 3). In agreement with previous reports (De Vit et al. 1997), confocal microscopy-based analysis showed Mig1-GFP to be nuclear in the presence of glucose and cytoplasmic in the absence of glucose (Figure 9A). Quantitative fluorescent protein detection (QFPD) analysis, a technique used to measure subcellular protein distribution after biochemical fractionation (Sarma et al. 2007), enables the assaying of theoretically any one of the ~4000 genes tagged with GFP contained with the yeast GFP cloning library. This technique further allowed us to quantitate the presence of a target protein within each of the cytosolic, nucleic and nuclear envelope compartments. QFPD analysis revealed found that Mig1 is nuclear in glucose grown cells (Figure 9B), i.e., when it binds upstream of SUC2 (Figure 8C) and represses transcription (Carlson 1999; Turkel et al. 2003). Interestingly, QFPD analysis further showed that the perinuclear compartment contains a substantial fraction of Mig1 (Figure 9B). This suggests that repression by Mig1 is a dynamic process that requires association with both the promoter DNA and the nuclear periphery (see Discussion). In the absence of glucose (derepressing conditions), Mig1 exited the perinuclear compartment (Figure 9B) a result that agrees with its observed relocation to the cytoplasm (Figure 9A; see above).

Deletion of HXK2, which encodes the predominant form of hexokinase in S. cerevisiae, has long been known to cause defects in glucose repression (Entian 1980). In Δhxk2 cells grown on glucose, invertase activity increased dramatically (Table 3; Neigeborn and Carlson 1984) this increase remains unaltered in Δhxk2 Δmig1 cells
Table 3: Increased SUC2 expression correlates with increased localization of the gene to the nuclear periphery

<table>
<thead>
<tr>
<th>Genotype</th>
<th>SUC2 expression</th>
<th>% cells with peripheral SUC2 ORF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R (glucose<sup>a</sup>)</td>
<td>D (no glucose<sup>a</sup>)</td>
</tr>
<tr>
<td>WT</td>
<td>2.6 ± 0.2</td>
<td>267.2 ± 31.3</td>
</tr>
<tr>
<td>Δmig1</td>
<td>52.8 ± 8.8</td>
<td>148.4 ± 1.8</td>
</tr>
<tr>
<td>Δhxk2</td>
<td>65.4 ± 8.2</td>
<td>164.1 ± 36.6</td>
</tr>
</tbody>
</table>

^a SUC2 expression was measured with invertase assays as described in Neigeborn and Carlson (1984). Error denotes the standard deviation of four determinations.

^b Percentage of cells where the SUC2 ORF is localized to the outer third of the nucleus. P-values, calculated on the basis of a two-tailed Student’s t-test, represent a significant difference in the localization of the ORF in glucose-grown WT cells relative to glucose-grown Δmig1 or Δhxk2 cells. *Significant (P < 0.01); **highly significant (P < 0.0005). At least 115 cells were measured for each condition.

(Sarma 2007). Thus, despite its presence in the nucleus of glucose-grown Δhxk2 cells (Figure 9A), Mig1 has lost its function as a repressor. Strikingly, QFPD analysis of Mig1-GFP demonstrated that nuclear Mig1 is depleted from the perinuclear fraction of glucose-grown Δhxk2 cells (Figure 9B), indicating that the repressor function of Mig1 requires its presence in the perinuclear compartment. Consistent with this result, SUC2 is retained at the nuclear periphery in 60% (n = 150) of glucose-grown Δhxk2 cells (Table 3), a significant increase over that in glucose-grown wild type cells (P < 0.0005). In the absence of glucose, SUC2 is retained at the periphery in 72% of Δhxk2 cells (n = 158); thus in derepressed conditions, both the perinuclear localization of the gene and expression levels (Neigeborn and Carlson 1984) are comparable in the presence and absence of Hxk2.
Figure 9. Perinuclear localization is required for repression by Mig1. (A) Confocal laser scanning microscopy of Mig1-GFP in wild-type or Δhxxk2 cells grown in either the presence or the absence of glucose, as indicated; coexpressed Rap1-CFP is shown as a nuclear marker. GFP and CFP signals were captured by using a Zeiss LSM 510 META confocal laser scanning microscope with a 63x Plan-Apochromat 1.4 NA oil DIC objective lens. (B) Graphs show the fraction of total Mig1-GFP fluorescence present in cytoplasmic (Cyto), nucleoplasmic (Nuc-P, total nuclear fluorescence minus perinuclear fluorescence), and perinuclear (Perinuc) fractions, as determined by QFPD analysis. Open bars, glucose; shaded bars, no glucose. Error bars represent the standard error of the mean.
CHAPTER V

CHROMOSOME DYNAMICS OF GAL1

Peripheral Anchoring of GAL1 is Induction Dependent

Using the GFP gene tagging technique, GAL genes have been shown to move to the nuclear periphery upon galactose induction (Figure 10; Cabal et al. 2006; Dieppois et al. 2006). Several lines of evidence suggest that the Gal4 activator is responsible for this directed gene relocation. An interaction between Nups and the GAL1, 10 promoter (Nup-PI) requires Gal4 and its binding site in DNA (Schmid et al. 2006). Chromatin immunoprecipitation confirms that the GAL1, 10 promoter, but not the adjacent GAL1 or GAL10 ORFs, contact several nucleoporins (including Nup84; our unpublished data). Measurement of the nuclear position of GFP-tagged GAL genes (the GAL1, GAL10 and GAL7 cluster on chromosome 2), as well as time lapse analyses (not shown), indicated that movement of GAL genes to the nuclear periphery is eliminated in the absence of Gal4, whereas perinuclear anchoring of GAL genes is constitutive in gal80A cells (Figure 10B). The latter result is consistent with the well-established role of Gal80 repressor, which binds to and inhibits the primary Gal4 activation domain, thereby blocking GAL gene transcription in wild type cells grown in the absence of galactose (Pilauri et al. 2005).

Movement of GAL1 to the Periphery Precedes Expression

As stated previously, induced or derepressed genes move to the nuclear periphery. However, an important aspect of this movement remained unaddressed: whether or not gene relocation precedes or follows expression. Traditionally, it was only possible to observe either the gene localization or expression independently. To answer this question
Figure 10. *In vivo* localization of GFP-tagged *GAL1*. (A) Confocal laser scanning microscope images for typical nuclei in raffinose-grown cells (Nucleoplasmic), versus typical nuclei in galactose-grown (Perinuclear). The area of the nucleus captured in each confocal slice is divided into thirds; the GFP-tagged GAL1 gene (green spot) is counted as perinuclear if it appears in the outermost third of the nuclear area. Nsp1-YFP (yellow ring) marks the nuclear periphery. (B) *In vivo* localization of GFP-tagged *GAL1* in wild type or mutant cells grown on uninducing media (raffinose, open bars) or inducing media (galactose, +Gal, filled bars). Bars represent the proportion of *GAL1* loci found in the peripheral third of the nucleus; the number of cells analyzed for each condition is indicated below each bar.

however, we needed a way of monitoring both simultaneously. To do this, I augmented the GFP gene tagging technique, by replacing the *GAL1* ORF with a fluorescent cell membrane protein (GFP-Ras2) that would serve as a galactose regulated expression reporter (Figure 11). We chose Ras2 as our reporter because it is located within a separate cell compartment than the gene tracking probe. Additionally, these cells contained Nup49 and Nup60 both fused with tDimer2, which is a homodimeric variant of DsRed, to mark the nuclear periphery.

Фigure 11. Galactose induction drives the cellular membrane fluorescent reporter GFP-R4S2. Gene tagging was accomplished as previously described (Figure 2). Replacement of the *GAL1* coding region (*GAL1:GFP-RAS2*) was accomplished by recombination cloning. Expression of *GFP-R4S2* is regulated by the native Gal4/Gal80 mechanism.
This "single cell" assay allowed us to monitor simultaneously both GAL gene location and GFP-Ras2 expression levels in individual cells. Preliminary observations with this technique were consistent with previous findings: cells grown in the absence of galactose (uninduced) showed random GAL gene mobility, whereas in the presence of galactose (induced) the GAL genes were both peripheral and transcriptionally active, indicated by GFP fluorescence at the cell surface (Figure 12).

![Raffinose and Galactose Images](image)

Figure 12. GFP-tagged GAL1 promoter (green spot) drives galactose-induced expression of the GFP-R4S2 product, which is tightly localized to the plasma membrane (outer green ring). The nuclear periphery of strain KB12 is marked with Nup49-tDimer2 and Nup60-tDimer2 (red ring); GFP tagging of the GAL1:GFP-R4S2 locus was done as described (Figure 8). Left panel, uninducing media (SC+Raffinose). Right panel, inducing media (SC+Galactose). CLSM images for six KB12 cells in each panel, left panel: tDimer2, GFP, Merge (tDimer2+GFP), DIC.

This single cell assay could be used to examine the timing involved in expression and peripheral localization of the GAL genes, which was exactly our goal in order to address our question of when does active gene expression correlate with peripheral
localization. I grew cells in 3% raffinose to an OD$_{600}$ of 0.8, at time zero added galactose to a final concentration of 3% and at intervals after the addition of galactose I harvested cells and imaged them for the location of the GAL genes and GFP-$RAS2$ expression and found that GAL gene localization to the periphery occurs within 15 minutes of exposure to galactose, increasing to 65% ± 1% ($n = 98$; Figure 13A) at 60 minutes, which is in agreement with previous work (Brickner et al. 2007; Drubin et al. 2006). It has been shown that $GAL1$ mRNA transcripts increase slightly between 30 and 60 minutes following galactose induction, then accumulate sharply (Brickner et al. 2007). In this assay we saw fluorescence of GFP-Ras2 quickly increases from 30 minutes to steady state levels at 120 minutes (blue dashed line in Figure 13A), again in agreement with previous work.

The reverse recruitment model postulates that genes move to the nuclear periphery to become transcriptionally active. This predicts that translocation to the nuclear periphery is required prior to expression. If this is true, using the single cell assay, we expect that cells exhibiting perinuclear GAL genes will become active sooner than those found to be nucleoplasmic. What we observed is that between 30 and 60 minutes the number of cells with an active peripheral gene increased sharply in comparison to the cells with genes located in the nucleoplasm (Figure 13B). Interestingly, at 90 minutes there was a peak in the accumulation of nucleoplasmic expressors, perhaps indicating an attenuation of expression through feedback in the pathway. The data in Figure 13B suggests that those cells in which the GAL genes are located near the nuclear periphery exhibit an overrepresentation in active GFP-$RAS2$ expression compared to nucleoplasmic GAL genes. To investigate this possibility in more detail, we repeated the experiment and
Figure 13. Analysis of timing of GAL1 promoter induction and movement to the nuclear periphery. A strain containing GFP-tagged GAL1:GFP-RAS2 (see Figure 9) was grown overnight in raffinose and switched to galactose to induce expression. Images were taken every 15 minutes up to one hour, then every 30 minutes up to two hours (A & B). To better see the inflection that occurs at 30 minutes, additional time points were taken (C). Gene proximity to the nuclear periphery was determined as previously described (see Figure 7A) and classified as being Perinuclear (A; gray bar) or Nucleoplasmic (A; black bar). The blue dashed line represents the percentage of cells exhibiting GFP-Ras2 fluorescence. The appearance of GFP-Ras2-expressing perinuclear genes (gray line) or nucleoplasmic genes (black line) was monitored during the first two hours following the appearance of galactose (B). This analysis was repeated with additional timepoints during the first 40 minutes (C).

looked at 5 minute time intervals after 30 minutes. Strikingly, we see that at 30 minutes, all expressing cells were observed to contain perinuclear GAL genes (Figure 13C) suggestive of pre-expression anchoring. Further, active nucleoplasmic GAL genes were not observed until 10 minutes later.

Anchoring of GAL1 is Independent of Transcription

The above experiment suggested that perinuclear gene localization occurs prior to expression of the gene product. While the result is clear and in agreement with a reverse
recruitment mechanism, the single cell analysis does not directly address the activity of the transcriptional machinery itself or its subnuclear localization. We attempted to answer this question by observing the motility of GAL genes upon inducing conditions during a transcriptional block. For this experiment we utilized the *rpbl-1* temperature sensitive mutant (Nonet *et al.* 1987). In this mutant, transcription occurs at the permissive temperature (30°C) but is completely blocked at the non-permissive temperature (37°C). If *GAL* genes relocate to the nuclear periphery following galactose induction in *rpbl-1* cells held at the non-permissive temperature, then transcriptional activity is most likely not a prerequisite for perinuclear anchoring. This is exactly what we observed (Figure 14A-D); perinuclear anchoring occurs identically in the presence and absence of *GAL* gene transcription. Cells grown in raffinose at the permissive temperature were observed to have highly mobile *GAL1* gene and no detectible transcript (determined through Northern analysis; Figure 14A). When switched to the non-permissive temperature for 1 hour, the *GAL1* continues to be highly mobile and uninduced (Figure 14B). In order to maintain this strict shutoff of *rpbl-1* while performing microscopy, all cells were kept at 37°C using a stage warmer. Next, while kept at the non-permissive temperature and exposed to galactose, cells exhibited perinuclear *GAL1* even in the absence of transcription (Figure 14C). Strikingly, we can observe this intermediate state of activation for 4 hours (Figure 14D). Finally, a subsequent shift to the permissive temperature permitted *GAL1* transcription to initiate normally while the gene remains anchored (Figure 14E). These data are consistent with the observation that *GAL* gene anchoring at the periphery precedes the appearance of the corresponding transcript (Brickner *et al.* 2007). Similar evidence, including gene anchoring upon induction in *rpbl-1* cells held at
the non-permissive temperature, has also been reported for *INO1* (Brickner *et al.* 2007), a gene that is transcriptionally regulated in response to inositol levels.

![Figure 14](image)

Figure 14. Perinuclear anchoring of *GAL1* in the absence of transcription. The left panel shows five time lapse series of representative nuclei from temp.-sensitive *rpb1-1* cells; the cartoon to the right of each series of images indicates the position of the *GAL1* gene spot (see text) within each nucleus at each of the four time points (0, 1, 2, 3 and 4 minutes). The right panel shows the corresponding Northern blot analysis for each condition; the stable mRNA encoding histone H1 was included as a control. Cells were initially grown at the permissive temp. in synthetic complete media supplemented with the uninducing sugar raffinose (A; 23C/Raf). As in wild type cells (Cabral *et al.* 2006), the uninduced *GAL1* gene is highly mobile in the *rpb1-1* strain. A one hour shift to the non-permissive temp. (B; 37C) results in complete shutoff of transcription (Nonet *et al.* 1987). The inducing sugar galactose was added while maintaining the cells at the non-permissive temp. (+Gal); anchoring of *GAL1* at the nuclear periphery was observed after one hour (C) and persisted for more than four hours (D) despite maintenance of the transcriptional block. Finally, after a shift back to the permissive temp. (E; 23C) the gene remains anchored at the nuclear periphery while transcription of *GAL1* commences.

Components of the Pre-initiation Complex (PIC) Co-fractionate with NPC Components

Taken together these data suggest that perinuclear anchoring may be a common feature of gene induction. If this is true, there should be a functional and potentially physical association of the general transcriptional machinery, particularly RNA
polymerase II (Pol II), with the NPC; we therefore used a nuclear envelope purification protocol (Kipper et al. 2002) to test directly for co-fractionation of components of the Pol II pre-initiation complex (PIC; comprised of Mediator, TFIID and Pol II) with NPCs. This technique allowed us to examine the enrichment of the tested proteins specifically within the nuclear envelope. For our positive and negative controls, we chose the nuclear membrane NPC component Pom152 and nucleolar factor Nop1, respectively. All observed protein enrichment to the nuclear envelope was quantified by densitometry and then normalized as a percentage of Pom152.

Using this technique, each of the seven PIC components we have thus far attempted to detect in nuclear envelope fractions, including Ssn8/Srb11, co-fractionated efficiently with the nuclear membrane-embedded NPC component Pom152 (Menon et al. 2005; Sarma et al. 2007), and was at >50-fold higher levels in perinuclear fractions than the negative control (Nop1; Figure 15A). This apparent tethering of the transcriptional machinery to NPCs does not respond to changes in carbon source, for example growth on glucose vs. galactose (Buford and Santangelo; unpublished data). However, as mentioned above regarding perinuclear tethering of the induced genes themselves, it is possible to argue that concentration of the transcriptional machinery at the nuclear periphery is not a prerequisite for, but is instead a consequence of, gene activation. This seems unlikely because our fractionation protocol includes a DNase step, which should release transcription factors that are tethered to the nuclear periphery only as a consequence of their interaction with actively transcribing genes (Menon et al. 2005; Sarma et al. 2007). Nevertheless, we tested this possibility further by repeating the nuclear fractionation experiment with rpb1-1 cells held at the non-permissive temperature for four hours,
reasoning that a prolonged transcriptional block would result in a detectable reduction in steady-state levels of perinuclear PIC components if their presence in nuclear envelope fractions was merely a consequence of active gene transcription. Representative results are shown in Figure 15B; transcriptional shutoff has little or no effect on the co-fractionation of PIC components with perinuclear factors.

Figure 15. Components of the Pol II pre-initiation complex (PIC) co-fractionate with NPCs. PIC components were detected in nuclear envelope fractions via epitope tags or native antibodies. (A) Amount of protein in the nuclear envelope fraction, relative to the total nuclear fraction, was determined densitometrically and normalized to the value for the integral nuclear membrane protein Pom152, which was set to 100%. The nucleolar protein Nop1 is shown as a negative control. (B) Western analysis of PIC components Tbp1, Taf14 and Rpb7 in total nuclear fractions (Input) and nuclear envelope fractions (NE); *rpbl-1* cells were harvested either immediately before (23C) or four hours after a shift to the non-permissive temp. (37C).
The previous chapter suggested the intriguing new possibility that association of Gal4 with the nuclear periphery might play an important role in the induction of target genes by this classical yeast activator. We therefore also tested Gal4 co-fractionation with perinuclear factors. We found that wild type Gal4 does indeed associate with NPCs in induced (galactose-grown) but not in uninduced (raffinose-grown) cells (Figure 16A). Similar to the tethering of \textit{GAL} target genes at the nuclear periphery, upon removal of Gal80, this co-fractionation of Gal4 with NPCs becomes constitutive (Figure 16A).

We next reasoned that stable association between Gal4 and a very large membrane-embedded structure like the NPC (>60 MDa in \textit{S. cerevisiae}; Kiseleva \textit{et al.} 2004) might result in a detectable change in the mobility of Gal4. As mentioned above, FRAP analysis
determines the strength of \textit{in vivo} binding interactions by measuring protein mobility (i.e. the molecular dynamics of diffusion; (Sprague and McNally 2005; van Drogen and Peter 2004). We hypothesize that the incorporation of a nuclear protein such as Gal4 into a multi-subunit complex that is freely diffusing would have only a small effect on mobility. Conversely, larger effects would indicate possible interactions with an immobile component of the nucleus (Misteli 2001), such as the NPC. FRAP analysis was performed on cells grown in either uninducing (3% raffinose) or inducing conditions (3% galactose). Representative images of the fluorescent recovery are shown in Figure 17A & B. FRAP analysis of Gal4-GFP, which is fully functional (see below), exhibited a galactose-dependent reduction in diffusion rate (Figure 17C). Quantitation of the FRAP data collected with the Zeiss CLSM indicated that structural association of Gal4-GFP in the presence of galactose is comparable to the constitutive, stable incorporation of histone H2B into chromatin (Figure 17E), a major immobile component in the nucleus (see above; Misteli 2001). Diffusion of the GFP protein by itself is rapid (i.e. post bleaching, GFP was fully redistributed in under 250ms) and unaffected by carbon source. Further, in cells lacking Gal80, structural association of Gal4, similar to its co-fractionation with NPCs, becomes constitutive (Figure 17D, E).

Perinuclear anchoring of the Gal4 protein, and the failure of \textit{GAL} genes to do so in \textit{Δgal4} cells, suggested that Gal4 might mediate movement of target genes to the nuclear periphery upon induction. This is the predicted function of a “perinuclear shuttling factor”, a class of transcriptional regulators whose existence we postulated based upon the mechanism of Snfl/Mig1 glucose repression (Sarma \textit{et al.} 2007). However, an alternative explanation was that an as yet unidentified factor is primarily responsible for
Figure 17. In vivo association of Gal4 with nuclear structures. A Zeiss confocal laser-scanning microscope was used to do fluorescence recovery after photobleaching (FRAP) analysis of wild type Gal4-GFP in the nuclei of live cells. The above microscopy was performed as described in Figure 3 using a 488nm laser for excitation and a 505-530BP filter for detection. The representative time lapse series shown in (A) and (B) are examples of images captured of Gal4-GFP in WT cells. The above ‘pre’ frame represents the total fluorescent signal prior to bleaching. The ‘post’ frame is the scan immediately following the bleach event. Subsequent images are points taken every second thereafter under inducing (SC+Gal; A) and uninducing conditions (SC+Raf; B), respectively. (C) Wild type Gal4-GFP in GAL80 (WT) cells is diffusally constrained in inducing (SC+Gal) media but not in uninducing (SC+Raf) media. (E) Values for $t_{1/2}$ of association were calculated from FRAP data shown in (C) and (D) by using GraphPad Prism software.

the shuttling function, and that both Gal4 and its target genes are mutually dependent partners in perinuclear anchoring. If so, tethering of Gal4 to the nuclear periphery should
require its DNA-binding domain. We therefore tested GFP-tagged Gal4 (Δ1-50), designated ΔDBD (Figure 18A), in the FRAP and NPC co-fractionation assays. The results indicated that Gal4 does not require its DNA binding domain, either to co-fractionate with NPCs (Figure 19A) or to undergo slower diffusion in the presence of galactose (Figure 19B). These data suggest that peripheral anchoring of Gal4 occurs independently of its target genes.

![Figure 18. Gal4 derivatives missing one or more key domains. (A) Each diagram (ΔDBD, ΔDD, ΔAD1, ΔAD2, AD) depicts the residues that remain present in the corresponding Gal4 derivative. Each of these derivatives contains the SV40 NLS and a GFP tag at the C-terminus (not shown). (B) Each derivative from (A) was introduced into Δgal4 cells to test complementation of impaired growth on galactose. Synthetic complete (SC) agar was supplemented with either glucose or galactose as indicated. Pictures were taken after 72h at 30°C.](image)

We wondered what if any role the other well-established domains of Gal4, the dimerization domain and the activation domains (Figure 2), might play in the galactose-induced, DNA-independent perinuclear anchoring of Gal4. We therefore tested fluorescently tagged, mutated Gal4 derivatives lacking each of these domains; Western blot analysis and fluorescence quantitation indicated that expression of each C-terminally tagged GFP variant depicted in Figure 18A is roughly equivalent to wild type Gal4-GFP.
Figure 19. Interaction between Gal4 and perinuclear factors. Wild type Gal4 and deletion derivatives, tagged with GFP and NLS moieties (see Figure 18A) were moderately overexpressed from a multicopy plasmid: DNA binding domain removed (DDBD), primary activation domain removed (DAD1), both activation domains removed (DAD2), dimerization domain removed (DDD), both DBD and DD removed (AD). (A) Cells expressing deletion derivatives of wild type GAL4 were grown in inducing (SC+Gal) media; co-fractionation with NPCs was determined for the corresponding products: DDBD, DDD, DAD1, DAD2 and AD (see Figure 18A). (B) A Zeiss confocal laser-scanning microscope was used to do fluorescence recovery after photobleaching (FRAP) analysis of mutated Gal4-GFP in the nuclei of live cells. Values for t1/2 of association were calculated for deletion derivatives of Gal4-GFP in cells grown in inducing (SC+Gal) media. (C) Plasmids were introduced into a strain harboring chromosomal NUP49-tDimer2 and NUP60-tDimer2 alleles; representative merged GFP+tDimer2 CLSM images of mid-log galactose-grown cells are shown for each transformant. Quantitation (see text) indicated that these GFP variants were expressed at equivalent
steady-state levels; (D) Perinuclear Gal4-GFP fluorescence is defined for each transformant as the percentage of total GFP fluorescence that is localized to the outer one-third of the nuclear area; note that a value of 33% is equivalent to a random distribution. (E) Plasmids were introduced into a strain harboring a gene encoding epitope-tagged Nup84; α-GFP antibody was used to immunoprecipitate Gal4-GFP from extracts of each transformant. Western blot shows co-immunoprecipitation of Nup84 (IP) relative to input levels. Vector, transformant containing empty multicopy plasmid.

Since Gal4 is required for growth in galactose, each mutant can be tested for function by complementation analysis in Δgal4 cells. Cells lacking native Gal4, expressing plasmid borne Gal4 variants were grown on selective SC media supplemented with either 2% glucose or 3% galactose for 72 hours at 30°C. Impairment of growth on galactose (Figure 18B) upon deletion of Gal4DD (the ΔDD mutant), Gal4AD1 (the ΔAD1 mutant), or combined deletion of both activation domains (the ΔAD2 mutant), is consistent with the classical analysis of mutations in Gal4 (Ma and Ptashne 1987). As expected, ΔAD1 cells are only partially defective (Figure 18B) due to the presence of the second, weaker activation domain. Strikingly, in galactose-grown cells there is a correlation between impairment of growth and co-fractionation of Gal4 with NPCs. The removal of DD (ΔDD or AD), or removal of both ADs (ΔAD2), eliminated Gal4 from perinuclear fractions (Figure 19A) though it remained in the nucleus (Figure 19C). These data suggest that a functional DD and AD are essential for galactose-dependent perinuclear co-fractionation of Gal4 with the NPC.

FRAP analysis confirmed the conclusions drawn from perinuclear co-fractionation data; Gal4 derivatives that lacked either the dimerization domain (the ΔDD and ΔAD mutants; Figure 18A), or both activation domains (the ΔAD2 mutant), failed to exhibit in vivo structural association in the nuclei of galactose-grown cells (Figure 19B). We noted
that the Gal4 derivatives lacking either the DNA binding domain (ΔDBD) or the primary activation domain (ΔAD1) exhibited even greater diffusional constraint than wild type Gal4; this might be a consequence of eliminating the myriad of non-specific interactions mediated by Gal4DBD and Gal4AD, respectively (see below). Overall the data in Figure 19 indicate an important role for the dimerization and activation domains, but not the DNA binding domain, in perinuclear anchoring of the Gal4 activator.

While doing FRAP analysis we noticed that the nuclear distribution of ΔDBD differed from wild type and also differed from the other Gal4 derivatives lacking one or more key domains; ΔDBD exhibited a distinct perinuclear pattern (Figure 19C). This does not result from a nuclear import defect, since each Gal4 derivative contains an identical, well-characterized NLS (Figure 18A). We verified the perinuclear localization of the ΔDBD derivative by using the Zeiss LSM510 imaging software to quantitate the distribution of fluorescent Gal4 molecules in the nuclei of live cells (Figure 19D). These data suggest that perinuclear localization of Gal4 is normally blurred by its DNA binding domain; presumably this is a consequence of the multitude of non-specific binding interactions between Gal4DBD and the large amount of chromatin that is distributed throughout the yeast nucleoplasm. These weak interactions might also explain the greater mobility of wild type Gal4 relative to ΔDBD that was detected by FRAP analysis of galactose-grown cells (Figures 17E & 19B). A similar phenomenon presumably explains the FRAP result for ΔAD1, since the capacity of the primary Gal4 AD to undergo promiscuous weak interactions with a variety of targets (Melcher 2000) might serve to increase the overall mobility of wild type Gal4.
Further confirmation of perinuclear tethering was obtained by testing for a physical interaction with co-immunoprecipitation between Gal4 and components of the NPC. We found a robust interaction between Gal4 and Nup84 (Figure 19E), the eponymous subunit of the Nup84 subcomplex that mediates transcriptional induction of both Rap1/Gcr1 and Snf1/Mig1 targets (Menon et al. 2005; Santangelo 2006; Sarma et al. 2007).

Interestingly, Gal4AD1 is required for this interaction, whereas Gal4DBD and Gal4DD are dispensable (Figure 19E; note that the AD mutant=ΔDBD+ΔDD; see Figure 18A). Though we do not fully understand the details of this interaction, it does provide compelling evidence that Gal4 may play a significant role at the nuclear periphery.
CHAPTER VII
DISCUSSION

This work suggests that the function of classically described positively and negatively acting regulators can be explained by their movement into and out of the perinuclear compartment and that the transcriptional regulation of genes occurs as a consequence of translocation to the nuclear periphery. This is consistent with the previously proposed reverse recruitment model of gene regulation (Menon et al. 2005). Further, this and previous work demonstrates that the NPC, in particular the Nup84 subcomplex, plays an important role in transcriptional regulation of at least two classes of glucose-regulated genes, Rap1/Gcr1 and Snf1/Mig1 targets (Menon et al. 2005; Sarma et al. 2007) as well as the galactose-induced Gal4 targets. A connection between transcriptional activity and the nuclear periphery can be observed directly by tagging NPC-regulated genes with green fluorescent protein (GFP). Insertion of an array of lac operators at a single chromosomal site, in cells that express LacI-GFP, results in the appearance of a bright green spot in the nucleus. This spot marks the position of loci that are tightly linked to the lac\textsubscript{op} array (see above). The \textit{in vivo} subnuclear position of such GFP-tagged genes can be monitored within a confocal optical slice of the nucleus. Several labs including ours have used this technique to observe regulated yeast genes moving to, and becoming anchored at, the nuclear periphery when they are transcriptionally active (Brickner et al. 2007; Casolari et al. 2004; Sarma et al. 2007; Taddei et al. 2006).

Glucose Regulation of SUC2 Occurs at the Nuclear Periphery
To examine glucose repression we used the well-studied invertase encoding gene \(SUC2 \). In order to elucidate possible connections between gene localization and expression we took a closer look at the relevant regulators. Expression of \(SUC2 \) is inhibited through a collaboration of DNA-bound Mig1, Hxk2 and the Ssn6/Tup1 complex. I show here that the Mig1 repressor is present in the perinuclear compartment and bound to the \(SUC2 \) promoter only in the presence of glucose (Figure 8C & 9B), its co-repressor Ssn6 is also perinuclear and bound to \(SUC2 \) during repression (Figure 8C; Sarma et al. 2007). Conversely, in the absence of glucose Mig1 is phosphorylated by the Snf1 kinase complex and evicted from the nucleus. This phosphorylation of Mig1 may also occur at the nuclear periphery where we see an enrichment of Snf1 (Sarma et al. 2007). Importantly, it appears that removing Hxk2 from cells causes a defect in glucose repression of \(SUC2 \) at least in part, by causing Mig1 to be unable to localize the nuclear periphery. Derepression caused by this failure of Mig1 to become peripheral is equivalent to removing Mig1 from cells altogether (Table 3; Figure 9B). This suggests that the nuclear periphery is a host to a number of regulatory actions which facilitates both active expression and repression.

The presence and proposed significance of these regulators at the nuclear periphery provides some explanation for our previously observed glucose dependent nucleoporin activation (Menon et al. 2005; Sarma et al. 2007). In our previous reports, we have found that glucose regulation is deranged upon removal of structurally immobile perinuclear factors. For example, in \(\Delta nup133 \) cells \(SUC2 \) expression, as measured by invertase activity, is at least twofold reduced, as compared to \(WT \) cells, in the absence of glucose. Likewise, in the presence of glucose, \(SUC2 \) expression is approximately fivefold
derepressed again compared to WT cells (Sarma and Santangelo; our unpublished data). We observe these changes in regulation despite normal nucleocytoplasmic shuttling of Mig1 and Snf1 in $\Delta nup133$ cells (Sarma 2007; Sarma et al. 2007). Taken together, these data suggest that regulation of glucose-repressed yeast genes takes place at the nuclear periphery and further suggest that the Nup84 subcomplex, an essential structure within NPCs, plays a critical role.

Consistent with the perinuclear location of its regulators (Mig1, Ssn6, and Snf1), as well as the loss of glucose derepression in the absence of genes encoding perinuclear factors, $SUC2$ is tightly constrained the periphery when active and exhibits greatly increased mobility when repressed (Figure 8A, B). However, despite the increased mobility during repressing conditions, a physical interaction between $SUC2$ and NPCs can still be detected using ChIP (Figure 8C). One simple explanation for this result might be that a transient random interaction is sufficient to produce a strong ChIP signal; alternatively, the gene may periodically revisit the site of regulatory action in the perinuclear compartment. We favor the latter explanation, that the repressed $SUC2$ gene occasionally makes physical contact with one or more perinuclear sites of activation but is unable to establish a productive interaction due to Hxk2-mediated interference by the perinuclear Mig1/ Ssn6 repressor. Additionally, the $SUC2$ ORF was found at the nuclear periphery in 45% of wild-type cells under repressing conditions. This is significantly above the 33.3% expected by chance, indicating that the distribution of the gene under these conditions is not random.

The above suggests that the glucose-repressed $SUC2$ gene will localize to the nuclear periphery periodically, perhaps by random motion. The determining factor for
peripheral constraint and subsequent expression rests with the regulatory elements the
gene comes into contact with proximal to the NPC. This behavior is consistent with a
reverse recruitment model of gene regulation (Figure 1B). Though this work adds
significant insight into glucose regulation of SUC2 at the nuclear periphery, much
remains to be discovered in the details of gene constraint for activation and the role Mig1
plays at the periphery.

GAL Genes Move to the Nuclear Periphery Prior to Expression

Like SUC2, induction of GAL1 gene expression has effects on its subnuclear gene
localization. Using the GFP gene tagging technique (see above) we observed the
movement of the GAL genes to the nuclear periphery upon galactose induction (Figure
10B). This relocalization of GAL1 has been observed previously via cell biology in both
fixed (Casolari et al. 2004) and live cells (Drubin et al. 2006). By utilizing ChIP analysis
as described above, we found that components of the Nup84 subcomplex constitutively
interact with the promoter region of GAL1 (i.e. in both induced and uninduced
conditions; Sarma and Santangelo; our unpublished data). This result is reminiscent of
the interaction we observed for SUC2 (see above), suggesting that this gene-NPC
interfacing may be a common feature of gene regulation.

In this study we have added a new component to GFP-gene tracking system for
the GAL genes, by adding the ability to monitor expression. In replacing GAL1 with
fluorescent GFP-RAS2, it is possible to simultaneously visualize the GAL genes nuclear
location coordinately with expression (Figures 12A & B). This modified assay to track
gene location served to address an important question. Does gene relocation to the
periphery occur prior to expression of the product? This does indeed appear to be the case
as we saw an increase in perinuclear \textit{GAL1} expressors, in this case represented by GFP-Ras2, prior to the appearance of nucleoplasmic \textit{GAL1} expressors (Figure 13B & C). This strongly suggests that perinuclear localization of the gene occurs prior to its expression. Interestingly, we also found that the fraction of nucleoplasmic expressors peak at ninety minutes, suggesting that if \textit{GAL} genes are exclusively activated at the nuclear periphery, they can be temporarily released to the nucleoplasm (Figure 13B). Though this aspect has not been explored directly, one idea is that this may be related to an oscillatory progression of expression following gene induction that we have previously observed in transcriptomic analyses (Barbara and Santangelo; our unpublished data). As cells respond to a transcriptomic signal, a high spike in target gene expression could be followed by attenuation through feedback in the signal, releasing the gene from the periphery.

Our observations in the timing of expression are consistent with what has been reported by Brickner \textit{et al.} who examined the timing of \textit{GAL1} and \textit{INO1} expression, using RT-PCR, following induction. Since we observe that the gene relocates to nuclear periphery prior to the detection of expression, this makes an additional supporting argument for reverse recruitment. However, neither RT-PCR nor our \textit{GFP-RAS2} reporter strain is sufficient to completely rule out the possibility that a “pioneer round” (see Background and Significance) of transcription precedes gene movement to the nuclear periphery. Since chromophore maturation (this work) and the sensitivity of RT-PCR (Brickner \textit{et al.} 2007) require an accumulation of transcript product, these limitations must be taken into account.

We attempted to address this issue by observing the mobility and localization of the \textit{GAL1} gene when induced by galactose during a transcriptional block. To accomplish
this we added the \textit{GAL1} GFP-gene tracking system into cells expressing only the temperature sensitive allele of the Pol II large subunit (\textit{rpb1-1}). If the \textit{GAL1} gene relocates to the nuclear periphery following galactose induction in \textit{rpb1-1} cells held at the non-permissive temperature (Nonet \textit{et al.} 1987), then transcriptional activity is most likely not a prerequisite for perinuclear localization. This is exactly what we observed (Figure 14). Interestingly, we can maintain the anchored \textit{GAL1} gene with the transcriptional block for at least four hours without detriment to the cell (Figure 14D). However, only after addition of galactose and being shifted to the permissive temperature do we see the gene constrained to the nuclear periphery and detect the gene product (Figure 14E). Similar evidence using the \textit{rpb1-1} allele has been reported for \textit{INO1} (Brickner \textit{et al.} 2007).

These data provide further insight into the reverse recruitment mechanism on the part of timing. Genes relocating to the nuclear periphery prior to expression is consistent with this model of regulation. What these data do not rule out is the possibility that a partially transcribed product may be produced even at the non-permissive temperature and that this initial portion of the mRNA product is sufficient for movement to the periphery. Since the exact nature of transcriptional shutoff imposed by the \textit{rpb1-1} allele is unknown, further work will still need to be done to determine once and for all the sequence of events that leads to gene movement to the nuclear periphery.

Components of the Pre-initiation Complex at the Nuclear Periphery

Taken together the above data suggest that perinuclear anchoring prior to transcription initiation/elongation may be a common feature of yeast gene induction. If this is true, it is likely that components of the transcriptional machinery, in particular Pol
II itself, should exhibit both functional and physical association with NPCs and other perinuclear factors. Evidence for a functional link includes the observation that activator bypass, for example by the Mediator subunit Ssn8/Srb11, is impaired by removal of Nup84 complex subunits and the perinuclear transcription factor Gcr1 (Menon et al. 2005). Also, transcriptional regulation at many loci—e.g. SUC2, other glucose-repressed genes, Rap1/Gcr1 targets and GAL genes—is impaired by the removal of NPC subunits. For each of these systems we have found that the regulatory defects are independent of the NPC role in nuclear import/export (Menon et al. 2005; Santangelo 2006; Sarma et al. 2007; our unpublished data). Further, we have previously reported that a number of nucleoporins are able to activate transcription of a reporter gene when fused to a DNA-binding domain (Menon et al. 2005).

A physical link between yeast Pol II and NPCs was first suggested by a large body of proteomic data (Menon et al. 2005). In this study, we attempted to co-fractionate components of the Mediator, TFIID and Pol II complex with the integral membrane protein Pom152. Interestingly, all factors tested were found to co-fractionate with the NPC (Figure 15A) and this localization was independent of carbon source (Sarma and Santangelo; our unpublished data). This co-fractionation we observed could have been due to these factors being associated with active genes found at the nuclear periphery. However, this scenario is unlikely as a DNAse step is used in the process of fractionation. Considering that this DNA-independent peripheral localization could be intrinsic to active transcription, we repeated the fractionation in rpb1-1 cells under transcriptional shutoff (Figure 15B). After four hours at the non-permissive temperature we were still able to detect these factors at the nuclear periphery.
These data contribute another piece of the puzzle facing the regulation of genes at the periphery. According to our observations, components of the transcriptional machinery do in fact localize to the nuclear periphery and this localization occurs in the absence of transcription. This allows us to make a more firm statement regarding the "pioneer round" of transcription preceding gene movement to the periphery. If the "pioneer round" of expression occurred prior to peripheral gene localization that would postulate that these transcription factors are tethered to the nuclear periphery in a DNA dependent fashion. However, as mentioned above, these factors are retained to the periphery in both the absence of DNA association (Figure 15A) and active transcription (Figure 15B). This implies that at least some components of the transcription machinery are localized to the nuclear periphery at all times.

Gal4 Contacts its Target Genes and NPCs When Active

With the data presented here with previous reports, it is clear that the GAL genes likely move to the nuclear periphery in order to become active. The GFP-RAS2 reporter assay showed that genes at the nuclear periphery start to express the gene product sooner after galactose induction than genes that reside in the nucleoplasm. Additionally, we’ve shown that the GAL genes can relocate to the periphery in response to galactose, even during a transcriptional block. Since we observe components of the transcriptional machinery in the perinuclear compartment, regardless of transcriptional state, it stands to reason that the genes are moving to the nuclear periphery to contact the transcriptional machinery, along with other factors, and become active. The question then remains, what role do the transcriptional regulators (i.e. the activator Gal4, and the repressor Gal80) play in this process?
It was previously reported that in order to detect an interaction between NPCs and the promoter of \textit{GAL1}, cells required a functional Gal4 (Schmid \textit{et al.} 2006). Consistent with this report, we show here that in the absence of Gal4, the \textit{GAL1} gene fails to become constrained and remains highly mobile in inducing conditions (Figure 7B). It is unclear exactly what effect removing Gal4 actually has on \textit{GAL1} and its inability to interact with the nuclear periphery. A couple of possibilities include but are not limited to: Gal4 is a tethering factor that functions in \textit{GAL1} retention to the periphery or Gal4 is involved in the shuttling of \textit{GAL1} to the periphery for activation. Conversely, in the absence of the repressor Gal80, \textit{GAL1} becomes constitutively perinuclear (Figure 7B). These data demonstrate that localization of \textit{GAL} genes to the nuclear periphery is governed by the normal Gal4/Gal80 regulatory mechanism.

In order to examine the possibility that Gal4 assists in anchoring the \textit{GAL} genes to the periphery for activation, we attempted to co-fractionate Gal4 with the NPC. We found that Gal4 co-fractionates with the NPC only in galactose, clearly exhibiting an inducible functional link to the nuclear periphery (Figure 16). We further show that in galactose Gal4 interacts physically with the essential Nup84 subcomplex via co-immunoprecipitation (Figure 19E). This interaction likely explains the reduction in Gal4 mobility seen by performing either iFRAP or FRAP analyses (Figure 7F & 17C). By removal of the Gal4 inhibitor Gal80, this peripheral localization and slower form of Gal4 becomes constitutive (Figure 16 & 17D). These data suggest that Gal4, like its target genes, anchors at NPCs upon galactose induction. Since Gal4 is found to be contacting its promoter sequence constitutively, Gal80 appears to inhibit expression of the \textit{GAL} genes by preventing Gal4 from interacting with the nuclear periphery through an alternate
contact surface. This provides some evidence that Gal4 facilitates the anchoring of its target genes to the nuclear periphery for activation.

The above observations seemingly place Gal4 as the common factor shared by active GAI and the NPC. Since Gal4 has been characterized into well characterized modular domains, it was likely one or more of these domains common to transcriptional activators may participate in these separate interactions (i.e. DNA-binding and peripheral tethering). We therefore undertook an analysis of domain deletion mutants to examine each known functional domain of Gal4. First, we examined the DNA binding domain and found that its absence was irrelevant to Gal4 peripheral co-fractionation (Figure 19A), interaction with Nup84 (Figure 19E) or its mobility (Figure 19B). Therefore, galactose-dependent anchoring of the Gal4 activator at the nuclear periphery is independent of its interaction with DNA. This result is consistent with our hypothesis of Gal80 inhibition through a separate contact surface. Interestingly, we observed that in the absence of the Gal4 DBD, distribution of the protein was mostly punctate and perinuclear (Figures 19C & D) as opposed to the wild type distribution, in which the punctuate foci are less constrained to the nuclear periphery. The difference is most likely the result of non-specific DNA-binding interactions between Gal4 and nuclear DNA (see Background).

Further mutational analysis explored the remaining domains of Gal4 (Figure 18A). Removal of the dimerization domain or both activation domains eliminates Gal4 from the nuclear periphery (Figure 19A). This was recapitulated by the FRAP experiments, which illustrated that deletion of the dimerization domain or both activation domains resulted in the failure of Gal4 to shift to a slower-diffusing form upon inducing conditions (Figure 19B). This indicated that the galactose-dependent perinuclear co-
fractionation of Gal4 requires both a functional dimerization domain and a functional activation domain. Interestingly, removal of the primary activation domain was sufficient to cause a loss of Gal4 interaction with Nup84 (Figure 19E). Despite this loss of contact, Gal4-ΔAD1 remains at the nuclear periphery and is able to partially compliment cells grown on galactose (Figure 19A & 18B). This observation suggests that the secondary, weaker activation domain is still able to contact perinuclear factors for activation of its target genes.

From these data we can postulate distinct contributions of the dimerization domain and primary activation domain in Gal4. The Gal4 dimerization domain (DD) is required for anchoring interaction(s) with one or more nuclear structures as shown with co-fractionation and FRAP, however it is dispensable for a physical interaction with the Nup84 subcomplex; the reverse is true for the Gal4 primary activation domain (AD1; Figures 19A, B & E).

All of these data expanding on what is known about the domains of Gal4 in the context of perinuclear gene activation are consistent with a straightforward reverse recruitment model (Figure 20). In uninducing conditions, Gal80 interacts DNA-bound Gal4, preventing productive contact with the nuclear periphery, thus inhibiting GAL gene expression. In cells exposed to galactose, Gal80 is sequestered away from Gal4 into the cytoplasm, freeing the contact surface required for peripheral association. This allows the DNA-bound Gal4 dimer to interact with components at the NPC, tethering its target genes to the nuclear periphery which facilitates transcriptional activation.
Figure 20. GAL gene expression occurs via a reverse recruitment mechanism. When transcription of the GAL genes is OFF, they reside primarily in the nucleoplasm; Gal4 may bind DNA in the uninduced state but a productive interaction with the transcriptional machinery is prevented by the Gal80 repressor, which masks the Gal4AD. When the genes are induced by galactose (ON), Gal80 dissociates and is exported to the cytoplasm. The Gal4AD then interacts with the transcriptional machinery at the nuclear periphery and the GAL genes are expressed.

Gene Movement by Chromatin Remodeling

It is tempting to conclude that transcriptional activators simply bridge their target genes with the perinuclear transcriptional machinery. However, there are many known levels of gene regulation which may also contribute to such a 3D model. Another such input into gene translocation to the perinuclear compartment, involves the well characterized correlation between euchromatin and active genes. The process of chromatin remodeling through histone acetylation and nucleosomal rearrangement is a conserved feature in most organisms (Bendich and Drlica 2000). Though many exceptions have been identified, the current view of chromosome architecture is that hyper-acetylated histones or chromatin regions depleted of nucleosomes mark a locus as
transcriptionally active. Conversely, tightly compacted chromatin comprised of hypo-acetylated histones and nucleosome dense regions indicate silenced loci (Figure 21A). A handful of complexes that are largely conserved in eukaryotes are attributed to this action of chromatin conversion.

Figure 21. Conceptual model of active gene remodeling. (A) Chromatin exists as the dense compacted and repressed heterochromatin (red) or the often looped out and less dense induced euchromatin (blue). (B) When the gene is induced, nearby histones are acetylated by SAGA (or another histone acetyltransferase complex) and the local chromatin is remodeled by the Swi/Snf ATP-dependent complex. Finally, the DNA-bound activator and gene can establish a productive interaction with the transcriptional machinery at the nuclear periphery.

In *S. cerevisiae*, histone acetylation is accomplished, in part, by the Gcn5 transacetylase subunit of the SAGA complex. Through Sgf73, SAGA associates with the target promoter and acetylates the histone 2B subunits of the local histones (Chandy *et al.* 2006) converting the region to a less dense euchromatin state. Following the acetylation of histones by SAGA, the ATP dependent Swi/Snf complex contacts the region and translocates or evicts proximal nucleosomes (Chandy *et al.* 2006). This action is postulated to mark the gene for activation (Figure 21B). The unanswered question remains, how does the active gene mobilize to the nuclear periphery?
In order to address this question, it's important to consider the inactive heterochromatin. An in vitro study found that heterochromatin will accumulate intrinsically and is sufficient to repress transcription (Tse et al. 1998). Our data suggest that Htb2 exists within a largely immobile population within the nucleus (Figure 7B); consistent with the notion that chromatin defaults to a transcriptionally silent state. Energetically, this makes sense since remodeling by the Swi/Snf complex for activation requires energy in the form of ATP. If we assume that highly condensed heterochromatin accounts for the majority of the unexpressed portion of the genome, we can speculate a model for gene movement to the periphery based on the architectural dichotomy of hetero- and euchromatin.

This model postulates that remodeling will create a chromatin “loop” of lower density that will conflict with the surrounding compacted heterochromatin; resulting in an innate relocalization of the gene to less dense regions of the nucleus (Figure 22). This work and reports from many other labs have shown that the destination of induced genes is the nuclear periphery, specifically the NPC. The question remains, what targets the NPC as a destination for remodeled promoters? The answer again may lie within the inactive heterochromatin. It can be theorized that the heterochromatin creates a network of subnuclear architecture arranged as a dense central core with extending regions of silent chromatin that contact the nuclear periphery in the space between NPCs (Figure 22; Taddei et al. 2004). These regions of perinuclear silent chromatin are conserved in higher eukaryotes (Chambeyron and Bickmore 2004).
Figure 22. The difference in density between active and inactive chromatin could be an organizational feature of gene expression. Tightly packed heterochromatin (red) is dense; active euchromatin (blue) is less dense and often 'looped out'. This can create bubbles of low density (white speckled area) within the densely packed nucleus (light red). Bubbles can aggregate into a low density pocket at the nuclear pore complex (NPC) to contact the transcriptional machinery that resides there. Adjacent heterochromatin can still contact silencing factors, such as the SIR proteins and Esc1, which reside at the periphery between NPCs and help to establish long-term gene silencing.

Once an active gene reaches the NPC, the promoter is able to interact with the NPC components as well as the general transcription machinery and transcriptional activation can commence. Recent work has suggested that further remodeling of active genes can occur with the incorporation of the histone 2A variant H2A.Z, encoded by Htz1 in yeast, for the purpose of transcriptional memory (Brickner et al. 2007). Memory postulates that recently transcribed genes whose activating signal is depleted are able to
reinitiate transcription more quickly. It's been shown that H2A.Z mimics properties of hyper-acetylation and is resistant to nucleosomal condensation (Fan et al. 2002). Thus, the incorporation of H2A.Z may also contribute to the peripheral constraint observed for active genes.

Additional to this work, there are several questions that I'd like to see answered: (A) Where does the 'pioneer round' of transcription occur in the nucleus? (B) What are the specific contact points between Gal4 and peripheral factors? (C) Using rpb1-1 cells also containing temperature sensitive chromatin remodeling factors; do the GAL genes still localize to the nuclear periphery at the non-permissive temperature when exposed to galactose?

Though much remains to be done in elucidating the mechanistic details and order of events, it is clear that transcriptional regulators and chromatin architecture play a role in gene movement to the nuclear periphery. Since the GAL regulatory system and the Gal4 activator in particular were used to establish the original paradigm for gene regulation, together, my work suggests that the reverse recruitment model (Menon et al. 2005) may explain how transcriptional activation works in many eukaryotic regulatory systems.
REFERENCES

