2014

Fairness Means More to Some Than Others: Interactional Fairness, Job Embeddedness, and Discretionary Work Behaviors

Brian J. Collins
University of Southern Mississippi, brian.collins@usm.edu

Kevin W. Mossholder
Auburn University, kwm0003@auburn.edu

Follow this and additional works at: http://aquila.usm.edu/fac_pubs

Part of the Business Administration, Management, and Operations Commons, Human Resources Management Commons, and the Organizational Behavior and Theory Commons

Recommended Citation

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
Fairness Means More to Some Than Others: Interactional Fairness, Job Embeddedness, and Discretionary Work Behaviors

Brian J. Collins
University of Southern Mississippi

Kevin W. Mossholder
Auburn University

We examined when job embeddedness might serve as a boundary condition between interactional fairness and employee behavior. Specifically, we explored whether elements of affective attachment associated with job embeddedness moderated relations of supervisors’ interactional fairness with citizenship behavior and production deviance. Results from a field and a scenario study supported the idea that interactional fairness exerts a stronger effect on these outcomes for employees embedded in their jobs than for their less attached coworkers. We found this result even after controlling for turnover intent. Practical implications and directions for future research are discussed.

Keywords: interactional justice; embeddedness; organizational citizenship behavior; workplace deviance

Fairness continues to be a topic of interest in organizational behavior research (Greenberg, 2011). The literature relates fairness to many positive attitudes and behaviors such as satisfaction, trust, and organizational citizenship (Ambrose & Schminke, 2009; Cohen-Charash & Spector, 2001; Colquitt, Conlon, Wesson, Porter, & Ng, 2001; Colquitt et al., 2013). Empirical evidence suggests that when organizations and their most immediate representatives (i.e., supervisors) treat employees fairly, they respond with positive in-role and discretionary work behaviors (Ambrose & Schminke, 2009). Through fairness, supervisors promote

Acknowledgments: We would like to thank Shelley Davis for her assistance in this research.

Corresponding author: Brian J. Collins, Department of Management, College of Business, University of Southern Mississippi, Box #5077, Hattiesburg, MS 39406, USA.

E-mail: brian.collins@usm.edu
positive relational norms (e.g., integrity, honesty, civility) that encourage subordinates to reciprocate with work behaviors that benefit their supervisors (i.e., “expected reciprocity”: Blader & Tyler, 2005; Korsgaard, Meglino, Lester, & Jeong, 2010).

Scholars have examined various aspects of organizational fairness (e.g., types, outcomes, and formations), but boundary conditions affecting it remain incompletely defined. Brockner, Wiesenfeld, and Diekmann (2009) broadened the fairness landscape, suggesting that more fairness is not always better. They noted that contingencies reflecting individuals’ needs (e.g., positive self-regard, control, meaningfulness, and belonging) could mitigate the assumed benefits of fairness. For example, some employees view work as merely a source of income, deriving meaning and identity from their lives apart from their jobs. Because work is less central to the identities of such employees, on-the-job fairness could be less germane. The larger implication of Brockner and colleagues’ work is that certain conditions can constrain the expected benefits of fairness.

Consistent with Brockner and colleagues’ focus on meaningfulness and belongingness, recent research highlights how the salience of employees’ attachment moderates their response to fairness. Collins, Mossholder, and Taylor (2012) reported that fairness mattered more (or less) to employees depending on the strength of connections with their supervisors and organizations. Utilizing cognitive aspects of attachment, they identified turnover intent as potentially moderating the beneficial effects of fairness. They found the performance of employees with higher turnover intentions was unaffected by supervisors’ process fairness, whereas the performance of those with lower turnover intentions was influenced positively. Employees who thought about leaving may not have reciprocated fairness with performance because its instrumental value for future returns was uncertain.

Although cognitive attachment processes can influence the outcomes of perceived fairness (Collins et al., 2012), scholars recognize that employees can also be emotionally rooted in their organizations (Colquitt et al., 2013; Cropanzano, Stein, & Nadisic, 2011). As such, we suggest using an affective lens to examine fairness–outcome relations. Therefore, the present study explored whether elements of affective attachment moderate relations between fairness and discretionary employee behavior. We used job embeddedness to tap into employee feelings of attachment, framing it as an affective parallel to the more cognitively rooted turnover intent. Job embeddedness refers to forces keeping employees in their positions, focusing on what inspires them to stay rather than what impels them to leave. When operationalized as a global construct indicating the degree employees feel connected to the organization (Crossley, Bennett, Jex, & Burnfield, 2007), it may capture affectivity associated with this connection. Relational cohesion theory suggests that recurring exchanges tether embedded employees with their organizations and create a shared sense of unity (Yoon & Lawler, 2006). Indeed, feeling connected to the organization becomes intrinsically and emotionally rewarding. Consistent with other research (e.g., Allen & Shanock, 2013), we suggest relational mechanisms are integral to job embeddedness and prompt employees to feel the organization will treat them as valued members in the future.

By examining how employees’ global attachment might influence their reactions to supervisory fairness, the current study makes the following contributions. First, in considering the relational underpinnings of job embeddedness (cf. belongingness—Brockner et al., 2009), we propose that the influence of boundary variables may derive from affective as well as cognitive domains. As suggested below, we argue affective and cognitive processes could similarly influence fairness effects although such processes might operate differently. Second, we focus on interactional fairness, which has been examined less frequently in the
literature than procedural or distributive fairness (Bies, 2005). Procedural and distributive forms of fairness are structural in nature and deal with the regulation of behavior within systems (Loi, Yang, & Diefendorff, 2009), whereas interactional justice is social in nature and personally intimate (Bies & Moag, 1986; Greenberg, 2011).

By examining a personal form of attachment (i.e., job embeddedness) in conjunction with a social form of fairness (i.e., interactional), our study broaches the influence of affectivity in connection with fairness. Colquitt et al. (2013) noted that although intuitively related, affect has not been well integrated into the study of fairness. Finally, we examine discretionary reactions embodied in positive (organizational citizenship) and negative (production deviance) behaviors that should be especially sensitive to interactional fairness. The extrarole nature of such behaviors may bring the affective undercurrents of interactional fairness and job embeddedness into specific relief. Figure 1 represents our theoretical model.

Theoretical Background and Hypotheses

A scan of the organizational literature reveals that divergent perspectives have been used to explain the importance of fairness to individuals (Colquitt, Greenberg, & Zapata-Phelan, 2005; Greenberg, 2011). With continuing refinement, a multidimensional view of fairness emerged comprising procedural, distributive, and interactional dimensions. Procedural fairness addresses how supervisors administer organizational policies and rules. Distributive fairness concerns the equitable allocation of valued resources. Interactional fairness connotes the personal tenor of supervisor–subordinate relations, reflecting whether employees perceive that supervisors share information appropriately and treat them respectfully.

Two facets of supervisory treatment are frequently discussed as aspects of interactional fairness (Bies & Moag, 1986). Informational and interpersonal dimensions are the two social forms of fairness (Greenberg, 1993) and are especially relevant when considering relational phenomena (Rupp & Cropanzano, 2002). *Informational* fairness deals with the adequacy of explanations regarding execution of policies (Colquitt, 2001). Supervisors exhibit informational fairness when they clearly explain procedures used to determine employee outcomes. Because they are a primary source of work-related data, supervisors who demonstrate informational fairness help employees understand and contextualize their workplace (Ambrose,
Subordinates should respond positively to supervisors who share information, as employees may associate being “in the know” with social status at work (Colquitt et al., 2001). *Interpersonal* fairness involves treating individuals with respect (Bies, 2005). Supervisors demonstrate interpersonal fairness through politeness, attentiveness, and sincerity when interacting with employees. Subordinates may perceive respectful interpersonal treatment from a supervisor as validating their organizational standing (Bies, 2001). Fair interpersonal treatment by supervisors may also inform subordinates’ daily job attitudes beyond their mood or emotions (Loi et al., 2009).

Scholars differ on whether interactional fairness is best captured as a single social dimension, or as aspects of process (i.e., informational) and outcome (i.e., interpersonal) fairness (Greenberg, 1993). The two dimensions tend to strongly correlate (Ambrose & Schminke, 2009) and are often consolidated under the broader label of interactional fairness (Greenberg, 2011). Because our research focuses on interactional fairness rather than comparative strengths or weaknesses of either subdimension, we combined them.

Distinct from procedural or distributive issues, supervisory adherence to the social aspects of their dealings is important for subordinates (Bies & Moag, 1986). We suggest issues of interactional fairness are more immediate for employees than those arising from structural fairness concerns. Bies (2001) noted that emotional reactions to interactional (in)justice are more intimate than responses to other forms of fairness. The daily work routine presents supervisors with opportunities to foster interactional fairness as they direct, motivate, and support employees’ work efforts (Greenberg, 2011). Loi et al. (2009) found greater daily variability in employee perceptions of social fairness (i.e., interactional) than those determined by organizational policy (i.e., procedural, distributive). This difference likely reflects the continual adjustments that supervisors and subordinates make while adapting to the realities of organizational life.

As noted by Scott, Colquitt, and Paddock (2009), supervisors have more discretion over social encounters with employees, whereas systemic factors may constrain supervisors’ procedural or distributive actions. Presumably, subordinates are sensitive to interactional fairness because it portends the tenor of future relational engagements. Among the types of fairness, interactional unfairness may have greater potential to evoke immediate affective responses from individuals (Umphress, Labianca, Brass, Kass, & Scholten, 2003). Related, Barsky and Kaplan’s (2007) meta-analysis showed interactional fairness negatively related with deleterious emotions (i.e., state negative affectivity). Because of such underlying emotions, instances of interactional unfairness might trigger retaliation or vengeful behavior (Tripp & Bies, 2009).

Healthy interpersonal exchanges between supervisors and subordinates can create close ties and promote attachment. The relational model of fairness (Lind & Tyler, 1988; Tyler & Lind, 1992) posits employees are concerned about their long-term relations with the organization and its representatives. Finding interactional fairness exerted strong effects on organizational citizenship behavior (OCB), Moorman (1991) argued that employees’ interactions with supervisors communicated meaningful information about this relationship. Interactional fairness from supervisors signals that the subordinate is a valued organizational member, fostering feelings of social acceptance and support (Masterson, Lewis, Goldman, & Taylor, 2000). Thus, fair treatment validates employees’ self-worth and identity with the organization (Cropanzano, Byrne, Bobocel, & Rupp, 2001). The assuring nature of interactional fairness may replenish subordinates’ intrinsic resources, providing both immediate and enduring emotional benefits (Bono, Glomb, Shen, Kim, & Koch, 2013).

Consistent with extant research (e.g., Blader & Tyler, 2009; Brockner et al., 2009), we highlight the potential for interactional fairness to improve employee performance. It has...
been well documented that subordinates tend to support supervisors they perceive as fair (Rupp & Cropanzano, 2002). Social exchange theory (SET; Blau, 1964; M. S. Mitchell & Cropanzano, 2005) suggests employees demonstrate positive discretionary behavior (e.g., OCB) to reciprocate the intrinsic value of fair treatment. Through OCB, employees exert workplace effort beyond simply completing their task assignments (Blader & Tyler, 2009). Conversely, employees may respond to a perceived lack of interactional fairness by reducing such efforts. Although they may feel compelled to contribute in-role performance, they can reduce OCB with less risk of incurring sanctions (C. C. Chen, Chen, & Meindl, 1998). With regard to direct relations between interactional fairness and OCB, we thus hypothesize,

Hypothesis 1: Interactional fairness will relate positively with OCB.

Behaviors over which employees exercise discretion can be grouped into two broad categories. Whereas positive discretionary behaviors are frequently described as OCB (Organ, Podsakoff, & MacKenzie, 2006), negative employee discretionary behaviors can be classified as workplace deviance (Robinson & Greenberg, 1998). Bennett and Robinson (2000) described workplace deviance as voluntary behavior that violates norms and threatens employees or the organization. When employees refuse to conform or actively violate the social norms of the workplace, they demonstrate workplace deviance (Bennett & Robinson, 2003).

Research indicates that deviance is not an unusual or unexpected reaction when employees perceive unfair work experiences (Lawrence & Robinson, 2007). In fact, Sackett and DeVore (2001) suggest that bad behavior resulting from injustice exhibits a level of poetic symmetry. Tripp and Bies (2009) note that ordinary employees can be compelled to seek revenge when organizational systems designed to redress unfairness do not operate effectively. Employees may retaliate against the organization or a specific individual. Systemic misuse of power tends to provoke organizationally directed deviance, whereas episodic mistreatment incites retaliation against its originator. Therefore, episodes of supervisory interactional unfairness can elicit employee workplace deviance toward the offending supervisors. However, because supervisors also serve as the organization’s most immediate representatives, employees may direct deviance at the broader organization as well.

As noted above, OCB (a productive behavior) should occur when relational expectations are satisfied. SET also suggests employees will retaliate by demonstrating deviance (an unproductive behavior) when relational expectations are not satisfied. Interactional unfairness simply inverts the character of the exchange process. Related, Dalal (2005) suggested that productive and counterproductive discretionary behaviors should correspond with fairness, albeit in opposite directions. For example, instead of contributing efforts that benefit their supervisors, employees who feel unfairly treated may respond by demonstrating deviant behavior.

A form of workplace deviance, in which employees withhold effort of which they are normally capable, is termed production deviance (Robinson & Bennett, 1995; Stewart, Bing, Davison, Woehr, & McIntyre, 2009). Production deviance implies employees contribute only the minimal amount necessary to avoid sanctions. By withholding effort, employees can exact a measure of revenge for unfairness (Tripp & Bies, 2009) without unduly jeopardizing their employment. We suggest that employees who feel mistreated by their supervisors will reciprocate with less than optimal levels of work effort. With regard interactional fairness and production deviance, we thus hypothesize,

Hypothesis 2: Interactional fairness will relate negatively with production deviance.
Interactional Fairness, Job Embeddedness, and Discretionary Behavior

Introduced to the organizational literature by Mitchell and colleagues, job embeddedness (Crossley et al., 2007; Holtom, Mitchell, Lee, & Eberly, 2008; Lee, Mitchell, Sablynski, Burton, & Holtom, 2004; T. R. Mitchell, Holtom, Lee, Sablynski, & Erez, 2001) reflects forces that tie employees to their work. These forces fall into three categories. The first category, links, refers to employees’ formal or informal connections with the organization and community. Links encompass things such as tenure, length of association, number of connections, and frequency of communication. The second category, sacrifice, concerns perceived material and psychological costs that would accrue should employees leave. For example, employees might consider the impact of nonportable benefits (e.g., stock options or pension plans). The final category, fit, refers to congruence with other employees and the organization in terms of skills, values, and culture.

Job embeddedness is negatively related to both employee turnover intent and actual turnover (Crossley et al., 2007) and is associated with affective work attitudes and behaviors. Although job embeddedness has been described in nonaffective terms (Sekiguchi, Burton, & Sablynski, 2008), extant research shows embeddedness correlates positively with affective variables such as job satisfaction (Lee et al., 2004). Hom et al. (2009) showed that job embeddedness heightened the positive affect of employees who fit in the organization. Crossley et al. (2007) suggested that accumulated experiences with the supervisor, the organization, and the broader community anchor employees to their jobs. These researchers argued that relationships linking job embeddedness and work attitudes (e.g., job satisfaction, affective commitment) reflect strong affective underpinnings. They approached job embeddedness broadly, discussing the web of relational ties that bind employees to their jobs. A recent review of job embeddedness asserted that Crossley and colleagues’ global measure taps emotional and attitudinal components (Zhang, Fried, & Griffeth, 2012). We adopted their conceptualization because it informs our examination of affective attachment on relations between fairness and discretionary behavior.

The relational perspective on fairness also suggests employees care about the welfare of those with whom they identify. As their identities align with their supervisors (and the organization), employees are likely to invest in the success of both parties. Identification impels employees to advance the interests of all parties, encouraging their contribution of discretionary effort (e.g., Blader & Tyler, 2009; Van Dick, Grojean, Christ, & Wieseke, 2006). Therefore, interactional fairness should lead employees to identify with and support their supervisors and organization.

Much research suggests that subordinates’ most critical workplace relationship is with their supervisors (e.g., Z. Chen, Tsui, & Farh, 2002; DiNesich & Liden, 1986). Possessing hierarchical advantage, supervisors control access to resources subordinates need to develop organizational capital (Farmer & Aguinis, 2005). Fair interactional treatment from a supervisor confirms the viability of this social exchange relationship (Hom et al., 2009). The reciprocation process strengthens bonds and expands networks, further rooting individuals into the organization (Ng & Feldman, 2010). Enmeshed in the social fabric of the organization, embedded employees understand the importance of maintaining positive interactions with their supervisors.

Of importance to our research effort, recent work also suggests that job embeddedness may moderate relationships involving fairness and discretionary behavior (Sekiguchi et al.,
2008). Interestingly, research examining the moderating influence of job embeddedness has largely focused on mitigating negative shocks to employees. For example, Trevor and Nyberg (2008) showed that implementing considerate HR policies affectively embedded employees, muting their negative responses to downsizing. Embeddedness can influence how employees interpret negative events, shaping their perceptions of the work context. Burton, Holtom, Sablynksi, Mitchell, and Lee (2010) determined that job embeddedness reduced the impact of common negative workplace events, suggesting embedded employees invest their performance and OCB in ways that help counter the negative events. However, we argue that job embeddedness can amplify the effects of organizational events on employee behaviors rather than only protecting against negative shocks.

Embedded employees should identify with their supervisors and value the positive ties developed through past exchanges. The affective underpinnings of job embeddedness encourage employees to embrace positive relational behavior. Relational cohesion theory suggests that job embeddedness could reflect employees’ attachment to the organization, and this bond would provide both social and cultural capital (Yoon & Lawler, 2006). Accumulating such capital increases cooperation, emotional ties, and a desire to improve the organization (Lawler, Thye, & Yoon, 2000). In essence, embedded employees may be more sensitive to events that harm (or benefit) something with which they identify. Referring to our study, interactional fairness should create goodwill in embedded employees, promoting a desire to reciprocate on behalf of those associated with their organization (Lawler, 2001). As a discretionary act, demonstrating OCB reflects propensities of goodwill contributors feel toward recipients (Organ et al., 2006). Thus, interactional fairness should increase the likelihood that highly embedded employees will exhibit OCB.

We do not expect less embedded employees to respond in the same manner, however. Such employees are apt to disidentify, distancing themselves from the core values of the organization (Elsbach & Bhattacharya, 2001). Less embedded employees will likely have a milder response to workplace events. Estranged from its culture, they may feel indifferent about the organization. Furthermore, their self-image is not contingent on membership. Sluss and Ashforth (2007) noted that the influence of disidentification extends into the relational realm. They asserted that individuals who do not feel a part of the organization will be less loyal, cooperative, and altruistic toward other members. Because they identify less with their supervisors and organizations, interactional fairness is less likely to inspire the same affective response (or prompt reciprocation) from them. We therefore hypothesize,

Hypothesis 3: Job embeddedness will moderate the relationship between interactional fairness and OCB such that the positive relationship will be stronger for employees with higher job embeddedness versus those with lower job embeddedness.

A social exchange perspective (Blau, 1964; M. S. Mitchell & Cropanzano, 2005) also suggests that job embeddedness will moderate relations between interactional fairness and production deviance. Dalal (2005) noted the effects of productive and counterproductive behaviors should similarly relate to fairness but in opposite directions. Recent meta-analytic evidence confirms this notion (Colquitt et al., 2013). In line with above arguments, SET suggests that organizationally entrenched employees should react more negatively to unfairness because they are personally invested in their employer and its representatives (Brockner, Tyler, & Cooper-Schneider, 1992; Sekiguchi et al., 2008).
These invested employees may feel a sense of duty to respond to interactional unfairness. By avenging these affronts they strive to restore a sense of moral meaning and order (Bies & Moag, 1986; Reb, Goldman, Kray, & Cropanzano, 2006). Judge, Scott, and Ilies (2006) suggested the jolt of unfair interpersonal treatment generates an affective reaction that ultimately can lead to workplace deviance. Thus, embedded employees may decide withholding their workplace efforts is a rational and morally valid response (Tripp & Bies, 2009) to perceived interactional unfairness. However, less embedded employees may not react this way. Such individuals will not develop the same affective response because their psyches are not intertwined with the organization. As such, fairness should neither increase nor decrease their production deviance. We therefore hypothesize,

Hypothesis 4: Job embeddedness will moderate the relationship between interactional fairness and production deviance, such that the negative relationship will be stronger for employees with higher job embeddedness versus those with lower job embeddedness.

Overview of the Present Research

We used data from two independent samples to test our hypotheses. Our first sample comprised full-time employees from a large manufacturing organization located in the United States. The second sample comprised student participants in an experimental scenario study. The survey methodology incorporated multiple data sources (employees and supervisors) and collected the data at different time periods to test the hypotheses. This approach reduces common methods bias (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). Research utilizing a scenario format is useful for considering reciprocal causation issues as well as providing additional evidence for our hypothesized interactions.

Study 1

Method

We collected data for Study 1 from employees of a manufacturing firm located in the southern region of the United States. The CEO of the organization agreed to participate in this project and the senior-level leadership facilitated the survey process. The management team announced the project to the employees, introduced the research team, and assured the confidentiality of all responses. A total of 158 employees were identified as potential study participants. We sent these employees an electronic version of the initial survey containing the independent variables.

About a month later, we sent Part 2 of the survey to employees asking them to complete the attachment items (i.e., embeddedness and turnover intent). The following month, we conducted a pencil-and-paper survey with each of their supervisors. These surveys included the name of each subordinate along with the OCB and production deviance items. This method facilitated the rating process for supervisors with many subordinates, in that they did not have to initiate a new electronic survey for each subordinate. The final sample consisted of 140 matched subordinate–supervisor dyads (89% response rate). On average, subordinates were roughly 47 years (Mdn = 47) and in their current job about 11 years (Mdn = 11). The sample was 50% female. A total of 31 supervisors provided ratings of subordinate behavior, an average of 4.5 subordinates per supervisor.
Measures

Respondents used a 5-point Likert-type scale (1 = *strongly disagree*, 5 = *strongly agree*) to rate all items unless otherwise indicated. Because of survey exigencies, we used parsimonious measures of focal constructs. We conducted factor analyses using the full measures on a data set collected for a prior study. From these analyses, we identified the three items with the highest loadings from each scale, and these composed the measures used in this study.

Interactional fairness. We used six items from Colquitt’s (2001) interactional fairness measure to assess subordinate perceptions of interactional fairness. We combined three items from the interpersonal and three items from the informational dimension. Sample items are “My supervisor treats me with respect” and “My supervisor communicates details to me in a timely manner.”

Job embeddedness. We used three items from Crossley et al.’s (2007) scale to measure job embeddedness. Sample items are “I am tightly connected to this organization” and “I’m too caught up in this organization to leave.”

Organizational citizenship behavior. We used Liden, Wayne, Jaworski, and Bennett’s (2004) three-item OCB. Sample items are “This individual volunteers to do things not formally required by the job” and “This individual helps coworkers when their work load increases even though it may not be formally required.”

Production deviance. We used three items from Stewart et al.’s (2009) scale. Sample items are “This individual works on personal matters instead of working for the organization” and “This individual intentionally works slower than he/she could have worked.”

Control variables. We assessed procedural fairness with three items from Colquitt’s (2001) measure. Sample items are “The procedures used to arrive at your outcomes (e.g., performance evaluations, bonuses, disciplinary reviews, etc.) upheld ethical and moral standards” and “I can express my views during my performance evaluation.” We used three items from Colquitt’s measure of distributive fairness. Sample items are “My compensation reflects what I contribute to the organization” and “My compensation is justified, given my performance.” We also controlled for turnover intent using a three-item measure from Cammann, Fichman, Jenkins, and Klesh (1983). Sample items are “I will probably look for a new job in the next year” and “I often think about quitting.” Finally, we controlled for age and years of tenure.

Results

We used confirmatory factor analysis (CFA) to evaluate the factor structure, discriminant validities, and convergent validities of study constructs using IBM SPSS Statistics/Amos 20. Reliabilities for measures were satisfactory and are reported in Table 1. Results indicated that the expected five-factor measurement model for the independent variables was acceptable, $\chi^2(124) = 198.07, p < .01$, comparative fit index (CFI) = .97, incremental fit index (IFI) = .96, root mean square error of approximation (RMSEA) = .07. Alternate models were developed and compared to determine if these variables should be used as
individual scales or grouped factors (see Table 2). The fit of the first alternate model (single factor) was inadequate, $\chi^2(df) = 1509.26$ (134), $p < .01$, CFI = .43, IFI = .42, RMSEA = .26, and the chi-square difference test, $\chi^2_{\text{diff}}(10) = 1311.13$, $p < .01$, was statistically significant, suggesting these items should not be combined into one factor. We also analyzed a model that combined the fairness dimensions into a single factor, and results indicated that the overall model-to-data fit was inadequate, $\chi^2(df) = 1043.77$ (131), $p < .01$, CFI = .62, IFI = .61, RMSEA = .22, and the chi-square difference test, $\chi^2_{\text{diff}}(7) = 845.70$, $p < .01$, was statistically significant, suggesting a less attractive configuration than the measurement model. We also combined the independent variables into other configurations (see Table 2), but none fit the data as well as the proposed five-factor model.

We also examined the factor structure of the criterion measures. We found a negative correlation between OCB and production deviance ($r = -.52$, $p < .01$). We evaluated the expected two-factor criteria model and found an acceptable fit, $\chi^2(df) = 20.88$ (8), $p < .01$, CFI = .98, IFI = .98, RMSEA = .11. Results from a one-factor model that combined the dependent variables indicate the model-to-data fit was inadequate, $\chi^2(df) = 190.95$ (9), $p < .01$, CFI = .62, IFI = .61, RMSEA = .22, and the chi-square difference test, $\chi^2_{\text{diff}}(1) = 170.07$, $p < .01$. These results indicate two distinct variables better represent our criteria rather than a single one.

We analyzed loadings from the expected five-factor measurement model to examine scale discriminant validity and determine the average variance explained (AVE) for each variable. AVE represents the variance measured by the variable as opposed to variance created by measurement error (Fornell & Larcker, 1981), providing evidence of convergent and discriminant validity. Convergent validity is suggested if the AVE of each latent variable exceeds .50, which was the case in this study (procedural fairness = .79, interactional fairness = .65, distributive fairness = .78, turnover intent = .79, and embeddedness = .65). Furthermore, discriminant validity is suggested when a variable’s AVE exceeds the squared correlation between it and our other focal variables. The data in this study met this requirement, pointing toward convergent and discriminant validity of the latent variables. Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Interactional fairness</td>
<td>4.18</td>
<td>0.72</td>
<td>.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Procedural fairness</td>
<td>3.42</td>
<td>0.86</td>
<td>.57**</td>
<td>.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Distributive fairness</td>
<td>3.40</td>
<td>0.95</td>
<td>.30**</td>
<td>.42**</td>
<td>.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Turnover intent</td>
<td>1.79</td>
<td>0.74</td>
<td>.20**</td>
<td>.25**</td>
<td>-.22**</td>
<td>.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Job embeddedness</td>
<td>4.06</td>
<td>0.63</td>
<td>.27**</td>
<td>.23**</td>
<td>.22**</td>
<td>-.59**</td>
<td>.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Age</td>
<td>46.86</td>
<td>10.84</td>
<td>-.12</td>
<td>-.14</td>
<td>.14</td>
<td>-.16</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Tenure</td>
<td>7.86</td>
<td>5.26</td>
<td>.05</td>
<td>.16</td>
<td>.29**</td>
<td>-.12</td>
<td>.25**</td>
<td>.24*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 OCB</td>
<td>4.16</td>
<td>0.59</td>
<td>.20*</td>
<td>.14</td>
<td>.01</td>
<td>-.17*</td>
<td>.12</td>
<td>.11</td>
<td>.08</td>
<td>.86</td>
<td></td>
</tr>
<tr>
<td>9 Production deviance</td>
<td>1.76</td>
<td>0.69</td>
<td>-.12</td>
<td>-.06</td>
<td>.09</td>
<td>.16</td>
<td>-.05</td>
<td>.09</td>
<td>.08</td>
<td>-.52**</td>
<td>.89</td>
</tr>
</tbody>
</table>

Note: $N = 140$. OCB = organizational citizenship behavior. Values on the diagonal are coefficient alpha reliability estimates. Age and tenure measured in years.

*p < .05.

**p < .01.
presents descriptive statistics and intercorrelations among the study variables. As would be anticipated, the fairness dimensions positively correlate with each other \((r = .43, p < .01)\) as well as with embeddedness \((r = .24, p < .01)\). Turnover intent negatively correlated with embeddedness \((r = –.59, p < .01)\) and fairness \((r = –.22, p < .01)\).

On average supervisors rated four subordinates, creating potential for nonindependence in the ratings. We calculated intraclass correlations (ICC1) to test for nonindependence in the data and estimate the proportion of variance in ratings attributable to the effects of shared supervisors (James, 1982). The ICC1 for OCB was .26, and the intercepts of performance across supervisors varied significantly (Wald \(Z = 1.97, p < .05\)). We found a similar result for production deviance (ICC1 = .34, Wald \(Z = 2.12, p < .05\)). These results suggest nonindependence effects (Hox, 2002). Therefore, we developed a random intercept model to account for supervisor nesting effects (Hofmann, 1997; Hofmann & Gavin, 1998). We used hierarchical linear modeling (HLM; Raudenbush, Bryk, Cheong, Congdon, & du Toit, 2004) to analyze the data. In these analyses, we entered the control variables first, interactional fairness second, job embeddedness third, and the interaction term comprising a cross-product of the interactional fairness and job embeddedness in the final step. All measures, excluding demographics, were grand-mean centered in these analyses.

Hypothesis 1 suggests that interactional fairness positively relates to OCB. The interactional fairness coefficient, found in Model 4 in Table 3, is statistically significant \((B = .20, p < .01)\). This result supports Hypothesis 1.

Hypothesis 2 suggests that interactional fairness negatively relates to production deviance. Model 4 in Table 4 shows that interactional fairness is not significantly related to workplace deviance \((B = –.03, ns)\). Thus, Hypothesis 2 is not supported.

Hypothesis 3 suggests job embeddedness moderates the relationship between interactional fairness and OCB. Table 3 shows the interactive effect between interactional fairness and embeddedness on OCB was statistically significant \((B = .15, p < .05)\). This result supports Hypothesis 3. We plotted the relationship between interactional fairness and OCB for high (1 SD above the mean) and low (1 SD below the mean) levels of embeddedness (Stone & Hollenbeck, 1989). Figure 2 indicates that the relationship between interactional fairness

Table 2

Study 1: Alternative Model Test Results

<table>
<thead>
<tr>
<th>Model</th>
<th>(\chi^2)</th>
<th>df</th>
<th>(\chi^2_{df = 1})</th>
<th>df</th>
<th>CFI</th>
<th>IFI</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five-factor expected model (IF, PF, DF, TI, EMB)</td>
<td>198.07</td>
<td>124</td>
<td>97</td>
<td>.96</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four-factor (IF, PF, DF) and (combined TI, EMB)</td>
<td>376.67</td>
<td>128</td>
<td>178.60**</td>
<td>4</td>
<td>.90</td>
<td>.89</td>
<td>.12</td>
</tr>
<tr>
<td>Four-factor (DF, TI, EMB) and (combined IF, PF)</td>
<td>606.59</td>
<td>128</td>
<td>408.52**</td>
<td>4</td>
<td>.80</td>
<td>.80</td>
<td>.16</td>
</tr>
<tr>
<td>Three-factor (TI, EMB) and (combined IF, PF, DF)</td>
<td>1043.77</td>
<td>131</td>
<td>845.70**</td>
<td>7</td>
<td>.62</td>
<td>.61</td>
<td>.22</td>
</tr>
<tr>
<td>Two-factor (combined IF, PF, DF) and (combined TI, EMB)</td>
<td>1124.62</td>
<td>133</td>
<td>926.55**</td>
<td>9</td>
<td>.58</td>
<td>.58</td>
<td>.23</td>
</tr>
<tr>
<td>One-factor (all items load on a single factor)</td>
<td>1509.26</td>
<td>134</td>
<td>1311.13**</td>
<td>10</td>
<td>.43</td>
<td>.42</td>
<td>.26</td>
</tr>
</tbody>
</table>

*Note: N = 140. CFI = comparative fit index; \(\chi^2\) = chi-square; df = degrees of freedom; DF = distributive fairness; diff = difference; EMB = job embeddedness; IF = interactional fairness; IFI = incremental fit index; PF = procedural fairness; RMSEA = root mean square error of approximation; TI = turnover intent. **p < .01.*
Table 3
Study 1: Hierarchical Linear Modeling Results: Dependent Variable—OCB

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Tenure</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>DF</td>
<td>−.08</td>
<td>−.06</td>
<td>−.06</td>
<td>−.03</td>
</tr>
<tr>
<td>PF</td>
<td>.17*</td>
<td>.08</td>
<td>.08</td>
<td>.10</td>
</tr>
<tr>
<td>TI</td>
<td>−.02</td>
<td>.01</td>
<td>.01</td>
<td>−.02</td>
</tr>
<tr>
<td>Independent variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td></td>
<td></td>
<td>.24**</td>
<td>.24**</td>
</tr>
<tr>
<td>Moderator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMB</td>
<td>.00</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
</tr>
<tr>
<td>Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF × EMB</td>
<td>.15*</td>
<td>.15*</td>
<td>.15*</td>
<td>.15*</td>
</tr>
<tr>
<td>R^2 overall</td>
<td>.01*</td>
<td>.07*</td>
<td>.07</td>
<td>.11*</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>.01*</td>
<td>.06*</td>
<td>.00</td>
<td>.04*</td>
</tr>
</tbody>
</table>

Note: $N = 140$. DF = distributive fairness; EMB = job embeddedness; IF = interactional fairness; OCB = organizational citizenship behavior; PF = procedural fairness; TI = turnover intent.

* $p < .05$.
** $p < .01$.

Table 4
Study 1: Hierarchical Linear Modeling Results: Dependent Variable—Production Deviance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>.00</td>
<td>−.00</td>
<td>−.00</td>
<td>−.01</td>
</tr>
<tr>
<td>Tenure</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.02</td>
</tr>
<tr>
<td>DF</td>
<td>.20**</td>
<td>.20**</td>
<td>.20**</td>
<td>.17*</td>
</tr>
<tr>
<td>PF</td>
<td>−.12</td>
<td>−.10</td>
<td>−.10</td>
<td>−.12</td>
</tr>
<tr>
<td>TI</td>
<td>.10</td>
<td>.09</td>
<td>.11</td>
<td>.14</td>
</tr>
<tr>
<td>Independent variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>−.07</td>
<td>−.07</td>
<td>−.07</td>
<td>−.03</td>
</tr>
<tr>
<td>Moderator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMB</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td>.01</td>
</tr>
<tr>
<td>Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF × EMB</td>
<td>.15*</td>
<td>.15*</td>
<td>.15*</td>
<td>.15*</td>
</tr>
<tr>
<td>R^2 overall</td>
<td>.07*</td>
<td>.07</td>
<td>.07</td>
<td>.10*</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>.07*</td>
<td>.00</td>
<td>.00</td>
<td>.03*</td>
</tr>
</tbody>
</table>

Note: $N = 140$. DF = distributive fairness; EMB = job embeddedness; IF = interactional fairness; PF = procedural fairness; TI = turnover intent.

* $p < .05$.
** $p < .01$.

Hypothesis 4 suggests embeddedness moderates the interactional fairness and production deviance relationship. Table 4 shows the interactive effect between interactional fairness and embeddedness on production deviance was statistically significant ($B = −.15, p < .05$). This result supports Hypothesis 4. To interpret the interaction, we plotted the relationship between interactional fairness and production deviance for high (1 SD above the mean) and low (1 SD below the mean) levels of embeddedness. Figure 3 indicates that the relationship between interactional fairness and production deviance was stronger for embedded employees. A simple slope test indicated the relationship between interactional justice and OCB was statistically significant for embedded employees ($B = −.25, t = −1.97, p < .05$), but was not significant for those less embedded ($B = −.07, t = −0.42, ns$).

With the exception of Hypothesis 2, we found support for the expected effects in Study 1. The results reveal stronger relations of interactional fairness with OCB and production deviance for individuals more embedded in their jobs than those less embedded. Although Study 1 included multisource data collected at different times, using supervisors’ performance ratings leaves open the possibility of reciprocal causation. For example, rather than subordinates’ perceptions of interactional fairness affecting their performance, their performance might influence their experience of interactional fairness. Some research has
noted that rating favorability may play a limited role in employees’ fairness assessments (e.g., Pichler, 2012). This may be particularly true for instances of subordinate production deviance, in which supervisors may engage poor performers in a manner that could be interpreted as unfair by those subordinates (i.e., abusive supervision—Tepper, Moss, & Duffy, 2011).

To more thoroughly investigate this issue, Study 2 examined the moderating effect of job embeddedness on interactional fairness–performance relations using scenarios in which we manipulated levels of interactional fairness and job embeddedness. Expressing our Study 1 hypotheses within an experimental perspective, we expected that OCB would be greater under conditions of high rather than low interactional fairness (Hypothesis 1) and production deviance would be smaller under conditions of high rather than low interactional fairness (Hypothesis 2). Regarding the interaction effects, we anticipated significant interactions would occur between interactional fairness and job embeddedness such that the positive effect of interactional fairness on OCB would be stronger for employees with high rather than low job embeddedness (Hypothesis 3). For production deviance, we anticipated the negative effect of interactional fairness would be stronger for those with high job embeddedness rather than low job embeddedness (Hypothesis 4).
Study 2

Method

We designed a scenario experiment incorporating data from students in upper-level business management courses at a large university in the southern United States. An announcement at the beginning of class invited students to participate in this study. Participation was voluntary and responses were anonymous. We asked students to list their gender, age, and work experience but included no other identifiable information. Of the 256 students invited to participate in this voluntary activity, we obtained 200 useable responses (78% response rate). The sample was primarily male (51%), the average age was 21 (ranged from 19 to 35), and most (85%) had work experience.

Procedure

The scenario experiment used a 2 (high vs. low job embeddedness) × 2 (high vs. low interactional fairness) between-subjects design. In the high job embeddedness condition, participants were told they had become involved in meaningful work projects that heightened their visibility in the company. They also developed a network of coworkers and friends that would be hard to replicate in another organization. Alternatively, the low job embeddedness condition was described as one in which participants were not involved in meaningful projects or coworker relationships. Participants were informed that they took the job just for the paycheck and could readily find equivalent work elsewhere.

The high interactional fairness condition described working with a supervisor who kept them informed on projects and encouraged their work efforts in a professional manner. This supervisor was approachable, willing to talk about work issues, and pleasant in general demeanor. However, in the low interactional fairness condition, participants learned their supervisor considered their interactions not the best use of his time. This supervisor did not keep them informed and acted as if their questions were unwelcome. Due to sometimes sarcastic and demeaning behavior, participants could assume some interactions with this supervisor would be unpleasant.

Participants randomly received one of the four scenarios created by uniquely combining the high/low job embeddedness and interactional fairness conditions. We asked participants to read the scenario presented to them and then answer what they would do in that situation. The survey items assessed the dimensions (i.e., interactional fairness, job embeddedness) underlying the four scenarios, as well as participants’ inclinations to exhibit OCB and production deviance behaviors.

Measures

Respondents used a 5-point Likert-type scale (1 = strongly disagree, 5 = strongly agree) to rate all items, unless otherwise indicated. We coded all items such that higher scores indicate higher levels of the construct. We averaged items within measures to create a composite score. We used the same constructs as in Study 1, but the scenario format of Study 2 permitted us to utilize more lengthy measures in assessing the focal variables.
Interactional fairness. We used all nine informational/interpersonal fairness items from Colquitt’s (2001) organization fairness measure to assess subordinate perceptions of interactional fairness. Sample items are “My supervisor treats me with respect” and “My supervisor communicates details to me in a timely manner.”

Job embeddedness. Crossley et al.’s (2007) seven-item scale measured how deeply entrenched employees are to their organization and how difficult it would be for employees to uproot. Sample items are “I am tightly connected to this organization” and “I’m too caught up in this organization to leave.”

Organizational citizenship behavior. We asked participants to rate the extent they would contribute positive discretionary efforts, after reading the scenario, using Liden et al.’s (2004) three-item OCB scale. For example, we asked participants how likely they would “Volunteer to do things not formally required by the job” and “Help coworkers when their work load increases even though it may not be formally required.”

Production deviance. We asked participants to rate the extent they might withhold effort, after reading the scenario, using four items from Stewart et al.’s (2009) seven-item scale. For example, we asked participants how likely they were to “Work on personal matters instead of working for the organization” and “Intentionally work slower than you could have worked.”

Pilot Study

Prior to data collection for the actual study, we pilot tested the high versus low scenario conditions for both job embeddedness and interactional fairness to insure participants perceived intended differences between them. We recruited participants for the pilot and actual studies in a similar manner. None of the subjects participated in both the pilot and actual study. A total of 100 students participated in the pilot study, 25 for each condition. We conducted one-way analyses of variance (ANOVA s) to test the success of the manipulations. We employed IBM SPSS Statistics/Amos 20 to conduct data analyses reported in our pilot and actual studies. The interactional fairness manipulation significantly impacted participant ratings of interactional fairness, \(F(1, 98) = 905, p < .01 \), where the high (\(M = 4.33, SD = 0.60 \)) and low (\(M = 1.33, SD = 0.38 \)) interactional fairness conditions were significantly different from each other and in the expected direction. We also checked the effectiveness of the job embeddedness manipulation. We found the high (\(M = 4.02, SD = 0.64 \)) and low (\(M = 1.58, SD = 0.73 \)) job embeddedness conditions were significantly different from each other, \(F(1, 98) = 315, p < .01 \), and in the expected direction.

Results

Preliminary results. We ran a manipulation check to verify that the differing levels of job embeddedness and interactional fairness translated from the text of the scenarios to the perceptions of the participants. Again, we ran one-way ANOVA tests that indicated that the high (\(M = 4.23, SD = 0.57 \)) and low (\(M = 1.48, SD = 0.50 \)) interactional fairness conditions were significantly different from each other, \(F(1, 198) = 1315, p < .01 \), and in the expected direction. We also checked the effectiveness of the job embeddedness manipulation. We found the high (\(M = 3.75, SD = 0.63 \)) and low (\(M = 1.94, SD = 0.70 \)) job embeddedness
conditions were significantly different from each other, $F(1, 198) = 373, p < .01$, and in the expected direction.

We evaluated the factor structure of study constructs, and the expected four-factor measurement model including all of the reported measures was acceptable, $\chi^2(df) = 416.73$ (224), $p < .01$, CFI = .96, IFI = .95, RMSEA = .07. We compared alternate models for the best factor structure. The fit of the first alternate model (all variables loading on a single factor) was inadequate, $\chi^2(df) = 2262.39$ (233), $p < .01$, CFI = .55, IFI = .54, RMSEA = .21, and the chi-square difference test, $\chi^2_{\text{diff}}(9) = 1845.66$, $p < .01$, was statistically significant, suggesting these items should not be combined into one factor. We also analyzed a model that grouped the independent (interactional fairness and job embeddedness) and dependent (OCB and production deviance) measures into factors. The results indicated that the overall model-to-data fit was inadequate, $\chi^2(df) = 2056.06$ (231), $p < .01$, CFI = .59, IFI = .58, RMSEA = .20, and the chi-square difference test, $\chi^2_{\text{diff}}(7) = 1639.33$, $p < .01$, was statistically significant, suggesting this configuration was inferior to the hypothesized measurement model. We evaluated the expected two-factor criteria model and found an acceptable fit, $\chi^2(df) = 20.07$ (11), $p < .05$, CFI = .99, IFI = .98, RMSEA = .06. We combined the dependent variables into one factor and the resulting fit was inadequate, $\chi^2(df) = 275.40$ (13), $p < .01$, CFI = .62, IFI = .61, RMSEA = .32, as was the chi-square difference test, $\chi^2_{\text{diff}}(2) = 255.33$, $p < .01$. These results indicate two distinct variables, rather than as a single one, best represent the criteria factor structure. Table 5 presents descriptive statistics and intercorrelations for the Study 2 variables, showing interactional fairness positively related with job embeddedness ($r = .28, p < .01$).

Means for OCB and production deviance across experimental conditions are presented in Table 6. Hypothesis 1 suggests that the level of OCB should be greater under conditions of high versus low interactional fairness. Using a univariate effects model, we found a significant main effect, $F(1, 196) = 227, p < .01, \eta^2 = .54$, which supports Hypothesis 1. Hypothesis 2 posits that the level of production deviance should be lower under conditions of high versus low interactional fairness. We again found a significant main effect, $F(1, 196) = 25, p < .01, \eta^2 = .11$, supporting Hypothesis 2. For Hypothesis 3, concerning OCB, we found a significant interaction effect for interactional fairness and job embeddedness, $F(1, 196) = 104, p < .01, \eta^2 = .35$. A plot of this interaction in Figure 4 indicates the positive relationship between interactional fairness and OCB was stronger for embedded employees, which supports Hypothesis 3. For Hypothesis 4, concerning production deviance, we also found a significant interaction, $F(1, 196) = 5.6, p < .05, \eta^2 = .03$. The plot of this effect is displayed in Figure 5.
Table 6
Comparison of Mean OCB and Production Deviance Across Experimental Conditions in Study 2

<table>
<thead>
<tr>
<th>Conditions</th>
<th>OCB M</th>
<th>OCB SD</th>
<th>PD M</th>
<th>PD SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low EMB, low IF</td>
<td>2.79</td>
<td>0.27</td>
<td>2.22</td>
<td>1.12</td>
</tr>
<tr>
<td>Low EMB, high IF</td>
<td>3.08</td>
<td>0.27</td>
<td>1.87</td>
<td>0.92</td>
</tr>
<tr>
<td>High EMB, low IF</td>
<td>2.57</td>
<td>0.58</td>
<td>2.37</td>
<td>0.94</td>
</tr>
<tr>
<td>High EMB, high IF</td>
<td>4.09</td>
<td>0.49</td>
<td>1.42</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Note: N = 200. EMB = job embeddedness; IF = interactional fairness; OCB = organizational citizenship behavior; PD = production deviance.

Figure 4
Study 2: Interaction of Interactional Fairness and Job Embeddedness on Organizational Citizenship Behavior (OCB)

and indicates the negative relationship between interactional fairness and production deviance was stronger for embedded employees. This result supports Hypothesis 4.

Discussion
The present study further explicates possible boundary conditions of fairness effects on employee behavior. We used a social exchange lens to focus specifically on interactional fairness, examining how employees’ job embeddedness affected their discretionary
behaviors. Dalal’s (2005) meta-analysis suggests employees who are treated fairly will contribute positive efforts (e.g., OCB) and those who feel unfairly supervised will respond with unproductive behavior (e.g., production deviance). Previous research demonstrated that cognitive links (i.e., turnover intent) can moderate the fairness-task performance relationship (Collins et al., 2012). Data collected in both field and scenario contexts suggest more global, affective links (i.e., job embeddedness) moderate associations between interactional fairness and discretionary performance behaviors in comparable fashion.

As seen in Figures 2 and 4, when supervisors treat embedded employees fairly, they demonstrate greater levels of OCB. However, employees less embedded in their jobs did not produce this effect. In addition to positive discretionary behavior, we also discovered that this boundary condition influences undesirable employee work behaviors. Figures 3 and 5 show a negative relation between interactional fairness and production deviance for highly embedded employees, but not for those less embedded. In some respects these results echo Brockner et al.’s (1992) finding that unfairness lowered subsequent commitment levels among the most dedicated employees, but had little effect on the less resolute. We found that among highly embedded employees, low interactional fairness corresponded with higher production deviance as compared to less embedded employees. Our results intimate that among such employees, unfair interactions may heighten undesirable behavior.

This research contributes to the fairness literature by illustrating that although the general appeal of fairness may be universal (cf. Blader & Tyler, 2005; Lind & Tyler, 1988), its effects may not. Our results support the notion that certain conditions can constrain the typically positive effects expected from fairness, underscoring the prescience of Brockner et
al.’s (2009) call to explore circumstances when fairness may not generate typically anticipated outcomes. With the present research we took an affective tack, examining how employees’ job embeddedness influenced the association of supervisors’ interactional fairness with two forms of discretionary behavior. Just as process fairness may motivate employees instrumentally linked to their organizations (Collins et al., 2012), our results show interactional fairness can influence those secured to the organization by a web of relational ties.

Less embedded employees seem unmoved by the normally positive influence of fair treatment. This may occur for various reasons. To the degree that such employees disidentify with the organization (Elsbach & Bhattacharya, 2001), they may remain psychologically distanced to protect their self-image. The social status affirmed by fair treatment (Cropanzano et al., 2001) may mean little to these employees because they tend to have neutral (or critical) feelings toward the organization. Alternatively, less embedded employees could simply have less organizational experience (e.g., tenure), value alignment (e.g., socialization), or accrued social capital (e.g., sparse interpersonal networks). The weak effect of shallow roots may curtail such employees’ motivation to react, positively or negatively, to managerial initiatives.

Employees must respond to the fluid, information-driven, and highly interdependent environment of the contemporary workplace. This reality places a premium on employee flexibility and initiative. Meeting the challenges of unscripted and constantly evolving job activities requires discretionary employee contributions. Because of the increasing importance of such behavior, we focused on OCB and production deviance to illustrate that constraints on fairness effects can extend beyond task performance examined in earlier research (i.e., Collins et al., 2012). Our results support X. Chen, Hui, and Sego’s (1998) suggestion that the level of employees’ discretionary contributions may reflect their feelings about organizational events. Although we advocate that supervisors demonstrate interactional fairness, our study cautions that energy expended in being fair may not necessarily elicit reciprocity from all employees.

Limitations

We used established measures, incorporated multiple data sources and temporal separations, and replicated our findings across a sample of working adults and upper-level university students. However, as with all studies, our research efforts are subject to certain limitations. In Study 1, survey constraints necessitated the use of abbreviated measures of our focal constructs. However, as validity-related analyses (e.g., CFA, AVE, etc.) indicated the measures demonstrated required psychometric characteristics, this issue should not have affected our findings.

We collected our dependent variables from supervisor ratings rather than a formal organizational assessment system, which is another potential limitation. As noted above, prior performance evaluations could have affected subordinates’ assessments of their interpersonal relations with supervisors. Controlling for other forms of fairness (i.e., distributive, procedural) mitigated this possibility to a certain extent, but could not rule it out. However, the scenario experiment conducted in Study 2 supports that interactional fairness and job embeddedness do influence performance-related outcomes. Others have noted that although field and scenario studies each have limitations in terms of investigating fairness effects, combining the two increases confidence in the generalizability of hypothesized effects and their
causal direction (e.g., Greenbaum, Mawritz, & Piccolo, in press; Zapata-Phelan, Colquitt, Scott, & Livingston, 2009).

Future Research

Colquitt et al. (2013) highlighted the promise of examining fairness effects in light of affect-based theories and integrating subsequent findings with exchange-based perspectives. Our research aligns with theories that recognize the affective undercurrents of social exchange and attachment (e.g., Cropanzano et al., 2011). We offer that global job embeddedness entails attachment feelings not easily segmented into a balance sheet of incentives. However, job embeddedness may amplify the salience of workplace events, such as the intrinsic affirmation employees experience when their supervisors treat them with equality, respect, and dignity. The extent to which supervisors enact interactional fairness is largely under their control (Greenberg, 2011). By helping subordinates adapt to dynamic workplace challenges, supervisors may energize employees to go beyond prescribed task roles.

It would be interesting to study the effects of job embeddedness on relations between interactional fairness and performance-related behaviors in more distributed (i.e., remote or virtual) environments (Rico, Bachrach, Sanchez-Manzanares, & Collins, 2011). Distributed environments may inhibit rich communication exchanges between supervisors and employees (Daft, Lengel, & Trevino, 1987). These channel constraints may limit supervisor use of interactional fairness to promote social bonds or clarify relational uncertainty (Lind & Van den Bos, 2002). Research questions relating to such contexts might be, for example, these: What constitutes interactional fairness for remote workers, and what kinds of attachment are meaningful for them in comparison to proximally situated employees? Absent the ability to detect physical cues from the environment, what sort of heuristics would virtual workers use to determine if they receive respectful treatment and accurate information in a timely manner?

In some distributed environments, work units comprise employees from multiple cultures using multiple languages. This could further complicate how fairness is communicated and interpreted (Von Glinow, Shapiro, & Brett, 2004). The data in our study were collected for participants in an individualist culture (i.e., the United States). Ramesh and Gelfand (2010) showed that embeddedness also extends to non-Western cultures (e.g., India) and relates to employee withdrawal. Although individualist–collectivist distinctions can be complex (Oyserman, Coon, & Kemmelmeier, 2002), investigating how fairness and job embeddedness interact to influence discretionary behaviors across cultures could be revealing. Would job embeddedness affect employees in collectivist cultures in a fashion similar to those in individualist cultures? It might be that job embeddedness would not influence fairness effects because under collectivist norms, such employees would feel inhibited in responding to their individual work circumstances.

Practical Implications

Certain human resource (HR) practices may increase employee job embeddedness. For example, researchers note socialization tactics focusing on content and social interaction can further embed employees into their jobs (Allen, 2006; Allen & Shanock, 2013). More generally, commitment-based HR practices such as work designs involving mutual
interdependence and group-oriented reward processes (Mossholder, Richardson, & Settoon, 2011) may also increase job embeddedness. Also, selection processes focusing on individual differences may impact employee job embeddedness and fairness perceptions. Colquitt et al. (2013) noted that selecting and promoting supervisors who are predisposed to follow justice rules (e.g., those high in emotional stability, empathy) might increase overall organizational fairness levels. Similarly, identifying employees predisposed toward job embeddedness (e.g., locus of control, agreeableness, extraversion—Ng & Feldman, 2011) may magnify the beneficial effects of fairness.

Colquitt and Greenberg (2003) and Colquitt et al. (2005) suggested that managers who appreciate how certain boundary conditions moderate the influence of fairness may optimize their supervisory efforts. Although justice is an admirable objective, our results qualify the potential return of supervisory efforts to increase fairness. Being fair requires significant effort from supervisors, especially during times of organizational turmoil (Brockner, 2006). Some supervisors learn about the limitations of acting fairly from their firsthand, personal experience (Brockner et al., 2009). However, helping less seasoned managers set realistic expectations regarding the effects of fairness may lessen the sting of disappointment. A more balanced approach to enacting fairness might help them persevere and maintain perspective in the face of apparent apathy or antagonism. In a seminal observation, Greenberg (1990) noted the importance of supervisors both acting and looking fair. We add to this axiom, suggesting that supervisors should act fair, look fair, and discern to whom fairness matters.

References

Fornell, C., & Larcker, D. F. 1981. Structural equation models with unobservable variables and measurement error: Algebra and statistics. *Journal of Marketing Research*, 18: 382-388.

