Date of Award

Summer 8-1-2018

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Chemistry and Biochemistry

Committee Chair

Matthew Donahue

Committee Chair Department

Chemistry and Biochemistry

Committee Member 2

Julie Pigza

Committee Member 2 Department

Chemistry and Biochemistry

Committee Member 3

Douglas Masterson

Committee Member 3 Department

Chemistry and Biochemistry

Committee Member 4

Vijay Rangachari

Committee Member 4 Department

Chemistry and Biochemistry

Committee Member 5

Ras Pandey

Committee Member 5 Department

Physics and Astronomy


Natural product total synthesis provides an alternative method for obtaining medicinally relevant compounds in a more efficient process with higher yields than what nature can provide. Natural products pose significant synthetic challenges due to the unique heterocyclic skeletons with fused and spirocyclic ring systems. Therefore, it is paramount to develop efficient reaction methodologies targeting substructures such as cyclic ureas and spiro[4.5]decanes which are prominent among marine natural products and Lycopodium alkaloids, respectively. Presented here is a compilation of research seeking to develop synthetic methods for the construction of cyclic moieties such as those previously mentioned. The objectives that are addressed include: 1) Investigating the vinylogous enolate reactivity of phenols to undergo intramolecular para-allylation with pi-allyl palladium complexes to form functionalized spiro[4.5]decanes 2) The development of synthetic strategies for the preparation of tri-substituted quinoline scaffolds and subsequent derivatization toward establishing a library of heterocyclic candidates for HIV-1 integrase inhibition and 3) Investigating a new synthetic tool for the creation of carbon-nitrogen bonds to afford 1,2-diamines as the protected cyclic urea via vinyl sulfoxide/carbodiimide annulation and sigmatropic rearrangement.