Title

Antimicrobial Poly(methacrylamide) Derivatives Prepared via Aqueous RAFT Polymerization Exhibit Biocidal Efficiency Dependent Upon Cation Structure

Document Type

Article

Publication Date

8-13-2012

Department

Polymers and High Performance Materials

Abstract

Antimicrobial peptides (AMPs) show great potential as alternative therapeutic agents to conventional antibiotics as they can selectively bind and eliminate pathogenic bacteria without harming eukaryotic cells. It is of interest to develop synthetic macromolecules that mimic AMPs behavior, but that can be produced more economically at commercial scale. Herein, we describe the use of aqueous reversible addition–fragmentation chain transfer (RAFT) polymerization to prepare primary and tertiary amine-containing polymers with precise molecular weight control and narrow molecular weight distributions. Specifically, N-(3-aminopropyl)methacrylamide (APMA) was statistically copolymerized with N-[3-(dimethylamino)propyl]methacrylamide (DMAPMA) or N-[3-(diethylamino)propyl]methacrylamide (DEAPMA) to afford a range of (co)polymer compositions. Analysis of antimicrobial activity against E. coli (Gram-negative) and B. subtilis (Gram-positive) as a function of buffer type, salt concentration, pH, and time indicated that polymers containing large fractions of primary amine were most effective against both strains of bacteria. Under physiological pH and salt conditions, the polymer with the highest primary amine content caused complete inhibition of bacterial growth at low concentrations, while negligible hemolysis was observed over the full range of concentrations tested, indicating exceptional selectivity. The cytotoxicity of select polymers was evaluated against MCF-7 cells.

Publication Title

Biomacromolecules

Volume

13

Issue

8

First Page

2472

Last Page

2482

Find in your library

Share

 
COinS