Title

The Role of Particle Surface Functionality and Microstructure Development in Isothermal and Non-Isothermal Crystallization Behavior of Polyamide 6/Cellulose Nanocrystals Nanocomposites

Document Type

Article

Publication Date

12-19-2016

Department

Chemistry and Biochemistry

Abstract

Polyamide 6 (PA6)/cellulose nanocrystal (CNC) and aminopropyl triethoxy silane (APS) - modified CNC nanocomposites were prepared by in situ anionic ring opening polymerization and subsequent melt extrusion. The morphological observation of these hybrid systems revealed that the non-modified nanocrystals developed a network-like fibrillar structure while the APS-modified CNCs were finely dispersed mostly as individual whiskers. The isothermal and non-isothermal crystallization kinetics was extensively studied with emphasis on the effects of CNC surface functionality and the subsequent microstructure development on crystallization behavior of these novel nanocomposite systems. The non-modified CNC particles with corresponding fibrillar microstructure were found significantly hinder the crystallization process and spherultic growth of polyamide 6 chains under both isothermal and non-isothermal conditions. On other hand, the surface modified cellulose nanocrystals with improved sub-micron dispersion enhance crystal nucleation in early stages of crystallization while imposing opposite effect in later stages of crystallization resulting in development of relatively smaller defective spherulitic structures.

Publication Title

Polymer

Volume

107

First Page

316

Last Page

331

Find in your library

Share

 
COinS