Myocardial Stunning-Induced Left Ventricular Dyssynchrony On Gated Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging

Document Type


Publication Date





Objectives Myocardial stunning provides additional nonperfusion markers of coronary artery disease (CAD), especially for severe multivessel CAD. The purpose of this study is to assess the influence of myocardial stunning to the changes of left ventricular mechanical dyssynchrony (LVMD) parameters between stress and rest gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI).

Patients and methods A total of 113 consecutive patients (88 males and 25 females) who had undergone both stress and rest 99mTc-sestamibi gated SPECT MPI were retrospectively enrolled. Suspected or known patients with CAD were included if they had exercise stress MPI and moderate to severe myocardial ischemia. Segmental scores were summed for the three main coronary arteries according to standard myocardial perfusion territories, and then regional perfusion, wall motion, and wall thickening scores were measured. Myocardial stunning was defined as both ischemia and wall dysfunction within the same coronary artery territory. Patients were divided into the stunning group (n=58) and nonstunning group (n=55).

Results There was no significant difference of LVMD parameters between stress and rest in the nonstunning group. In the stunning group, phase SD and phase histogram bandwidth of contraction were significantly larger during stress than during rest (15.05±10.70 vs. 13.23±9.01 and 46.07±34.29 vs. 41.02±32.16, P<0.05). Phase SD and phase histogram bandwidth of relaxation were also significantly larger during stress than during rest (21.21±13.91 vs. 17.46±10.52 and 59.03±37.82 vs. 52.38±36.89, P<0.05).

Conclusion Both systolic and diastolic LVMD parameters deteriorate with myocardial stunning. This kind of change may have incremental values to diagnose CAD.

Publication Title

Nuclear Medicine Communications





First Page


Last Page