Document Type


Publication Date



Geography and Geology


The effects of meltwater percolation on pollen in snow, firn and glacial ice are not fully understood and currently hamper the use of pollen in ice-core studies of paleoclimate. Several studies have suggested that, due to grain size, pollen is not mobilized by meltwater transport. However, these findings contradict many ice-core pollen studies that show pollen concentrations in snow and firn are much higher than concentrations found in the ice layers they eventually form. This study addresses one aspect of this question by investigating whether meltwater percolation can effectively transport pollen within a snowpack. We used nine Styrofoam coolers filled by natural snow accumulation. The coolers were tested in three groups of three replicates each to simulate different glacier snowpack conditions, and spiked at the surface with a known amount of Lycopodium marker spores. The snow was melted to two-thirds the original volume, sampled stratigraphically and tested for spore concentrations. Meltwater effluent was also collected and examined. Results show substantial vertical and horizontal spore transport during the experiment. Peak spore concentrations were found in the bottommost snow layer or in the meltwater effluent in eight of nine coolers, indicating that the majority of surface spores were transported through the snowpack via meltwater percolation and/or runoff.

Publication Title

Journal of Glaciology





First Page


Last Page


Find in your library

Included in

Glaciology Commons