Going for Distance and Going for Speed: Effort and Optical Variables Shape Information for Distance Perception From Observation to Response.

Document Type


Publication Date





Visually guided distance perception reflects a relationship of geometrical optical variables with the effort required when traversing the distance. We probed how the representations encoding optical variables might define this relationship. Participants visually judged distances on sloped surfaces and reproduced these distances over flat terrain by walking while blindfolded. We examined the responses for the effects of optical variables (i.e., angular declinations from eye height) and tested whether four measures of trial-by-trial effort moderated the use of the represented optical variables. We predicted that observation time and response speed relative to the observed distance would accentuate the effects of encoded optical variables, and that response time and response speed relative to the traversed distance would reduce the effects of those variables. The results confirmed all of the effects except those of observation time. Given the benefits of longer study for strengthening a memory trace, the failure of observation time to predict the use of optical variables raises questions about the representational encoding of visual traces for distance perception. Relationships among optical variables and other effort measures implicate the interaction of processes across multiple time scales, as in cascade dynamics. Cascade dynamics may provide new directions for accounts of visually guided distance perception.

Publication Title

Attention, Perception & Psychophysics



First Page


Last Page


Find in your library