Shared and Unique Morphological Responses of Stream Fishes to Anthropogenic Habitat Alteration

Nathan R. Franssen
Jared Harris
Scott R. Clark
Jacob F. Schaefer, University of Southern Mississippi


Understanding population-level responses to novel selective pressures can elucidate evolutionary consequences of human-altered habitats. Stream impoundments (reservoirs) alter riverine ecosystems worldwide, exposing stream fishes to uncommon selective pressures. Assessing phenotypic trait divergence in reservoir habitats will be a first step in identifying the potential evolutionary and ecological consequences of stream impoundments. We tested for body shape divergence in four stream-adapted fishes found in both habitats within three separate basins. Shape variation among fishes was partitioned into shared (exhibited by all species) and unique (species-specific) responses to reservoir habitats. All fishes demonstrated consistent significant shared and unique morphological responses to reservoir habitats. Shared responses were linked to fin positioning, decreased body depths and larger caudal areas; traits likely related to locomotion. Unique responses were linked to head shape, suggesting species-specific responses to abiotic conditions or changes to their trophic ecology in reservoirs. Our results high-light how human-altered habitats can simultaneously drive similar and unique trait divergence in native populations.