Title

Variability of Total and Pathogenic Vibrio parahaemolyticus Densities in Northern Gulf of Mexico Water and Oysters

Document Type

Article

Publication Date

12-1-2007

Department

Coastal Sciences, Gulf Coast Research Laboratory

Abstract

Vibrio parahaemolyticus is indigenous to coastal environments and a frequent cause of seafood-borne gastroenteritis in the United States, primarily due to raw-oyster consumption. Previous seasonal-cycle studies of V. parahaemolyticus have identified water temperature as the strongest environmental predictor. Salinity has also been identified, although it is evident that its effect on annual variation is not as pronounced. The effects of other environmental factors, both with respect to the seasonal cycle and intraseasonal variation, are uncertain. This study investigated intraseasonal variations of densities of total and pathogenic V. parahaemolyticus organisms in oysters and overlying waters during the summer of 2004 at two sites in the northern Gulf of Mexico. Regression analyses indicated significant associations (P < 0.001) between total V parahaemolyticus densities and salinity, as well as turbidity in water and in oysters at the Mississippi site but not at the Alabama site. Pathogenic V. parahaemolyticus organisms in Mississippi oyster and water samples were detected in 56% (9 out of 16) and 78% (43 out of 55) of samples, respectively. In contrast, 44% (7 out of 16) of oyster samples and 30% (14 out of 47) of water samples from Alabama were positive. At both sites, there was greater sample-to-sample variability in pathogenic V. parahaemolyticus densities than in total V. parahaemolyticus densities. These data suggest that, although total V. parahaemolyticus densities may be very informative, there is greater uncertainty when total V parahaemolyticus densities are used to predict the risk of infection by pathogenic V. parahaemolyticus than previously recognized.

Publication Title

Applied and Environmental Microbiology

Volume

73

Issue

23

First Page

7589

Last Page

7596