Date of Award

Summer 8-2-2022

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Ocean Science and Engineering

Committee Chair

Eric Saillant

Committee Chair School

Ocean Science and Engineering

Committee Member 2

Frank Hernandez

Committee Member 2 School

Ocean Science and Engineering

Committee Member 3

James Franks

Committee Member 3 School

Ocean Science and Engineering

Committee Member 4

Leila Hamdan

Committee Member 4 School

Ocean Science and Engineering

Committee Member 5

Kenneth Jones


Effective management and conservation of marine pelagic fishes is heavily dependent on a robust understanding of their population structure, their evolutionary history, and the delineation of appropriate management units. The Yellowfin tuna (Thunnus albacares) and the Blackfin tuna (Thunnus atlanticus) are two exploited epipelagic marine species with overlapping ranges in the tropical and sub-tropical Atlantic Ocean. This work analyzed genome-wide genetic variation of both species in the Atlantic basin to investigate the occurrence of population subdivision and adaptive variation. A de novo assembly of the Blackfin tuna genome was generated using Illumina paired-end sequencing data and applied as a reference for population genomic analysis of specimens from 9 localities spanning most of the Blackfin tuna range. Analysis suggested the presence of four weakly differentiated units corresponding to the northwestern Atlantic Ocean, Gulf of Mexico, Caribbean Sea, and southwestern Atlantic Ocean, respectively. Significant spatial autocorrelation of genotypes was observed for specimens collected within 800 km of each other. A high-quality genome assembly generated for the Yellowfin tuna using PacBio and Illumina sequences was scaffolded by a linkage map developed through analysis of the segregation of genome wide Single Nucleotide Polymorphisms in 164 larvae offspring from a single pair produced by controlled breeding. The genome assembly was used as a reference for population genomic analysis of juvenile specimens from the 4 main nursery areas hypothesized in the Atlantic Ocean basin. Analyses corroborated previously reported population subdivision between the east and west Atlantic Ocean, but also suggested subdivision associated with individual nursery areas within the east and west regions. Draft reference assemblies were generated for Albacore, Bigeye and Longtail tunas and used in combination with the Yellowfin and Blackfin tuna genomes obtained in this work and existing assemblies for bluefin tunas in preliminary analyses of genome wide variation between species of the Thunnus genus. Whole-genome derived SNP-based phylogenetic analysis of the Thunnus genus suggests phylogenetic relationships may be more complex than suggested in earlier work based on Restriction-site Associated DNA sequencing or muscle transcriptome sequencing and prompt for further analysis of the genus using a more comprehensive sampling of taxa in each oceanic basin.

ORCID ID 0000-0003-3823-0373