Characterization of Aerosol Parameters Over Ocean From the Ocean Color Satellite Sensors and AERONET-OC Data

Document Type

Conference Proceeding

Publication Date



Ocean Science and Engineering


© 2017 SPIE. Data quality of the satellite sensors for ocean monitoring (Ocean Color -OC) like MODIS, VIIRS, MERIS, and now OLCI sensor on Sentinel-3a are often validated through matchups between normalized water leaving radiances nLw (or remote sensing reflectance Rrs) from satellite data and data from radiometric systems (SeaPRISMs) installed on ocean platforms and which are part of the NASA Aerosol Robotic Network (AERONET) and AERONET-OC networks. While matchups are usually good in open ocean waters, significant discrepancies are observed in coastal areas which are primarily due to the more complex atmospheres near the coast and therefore less accurate atmospheric correction. Satellite-derived water leaving radiances are determined by applying atmospheric correction procedures which include assumptions about the characteristics of atmospheric aerosols. At sea level, SeaPRISM makes direct measurements of nLw from the ocean, as well as observations of sky from which aerosol parameters such as aerosol optical thickness, single scattering albedo, fraction of fine and coarse aerosols, and others are determined. Using NASA SeaDAS software for OC satellite data processing, characteristics of aerosols in atmospheric correction models for VIIRS sensor are explicitly retrieved and compared with the ones from AERONET-OC data, primarily in terms of aerosol optical depth (AOD), thus characterizing the validity of the aerosol models and evaluating possible errors and reasons for discrepancies. Comparisons are presented for the coastal site at CCNY's Long Island Sound Coastal Observatory (LISCO) and a less coastal WaveCIS Gulf of Mexico' AERONET-OC site with variable water and atmospheric conditions.

Publication Title

Proceedings of SPIE - The International Society for Optical Engineering