Aqueous RAFT Synthesis of Micelle-Forming Amphiphilic Block Copolymers Containing N-Acryloylvaline. Dual Mode, Temperature/pH Responsiveness, and "Locking" of Micelle Structure Through Interpolyelectrolyte Complexation

Document Type


Publication Date



Polymers and High Performance Materials


Temperature- and pH-responsive, micelle-forming, amphiphilic block copolymers were prepared from N,N-dimethylacrylamide (DMA), N-isopropylacrylamide (NIPAM), and N-acryloylvaline (AVAL) utilizing aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. A series of block copolymers were synthesized by employing DMA as a macro-chain transfer agent to mediate the statistical copolymerization of NIPAM with AVAL. Structural organization and solution behavior were investigated utilizing dynamic light scattering, two-dimensional NMR spectroscopy, and transmission electron microscopy. It has been demonstrated that the critical micellization temperature for the block polymers can be tuned to range from approximate to 10 to 36 degrees C by adjusting the solution pH. Micelles with apparent hydrodynamic diameters from 45 to 86 nm are formed between pH 2 and 5. Above pH 5, a sufficient number of the AVAL units are deprotonated which prevents micellization. The extent of pH and temperature changes on the apparent hydrodynamic diameters have been illustrated via 3-D plots. Significantly, micelles assembled within a specified range of pH and temperature can be "locked" by interpolyelectrolyte complexation of anionic AVAL segments with those of a cationic polymer, in this case a RAFT-generated poly([ar-vinylbenzyl]trimethylammonium chloride) (PVBTAC). When the temperature is lowered to room temperature, the polymeric micelles remain "locked" in their multimeric structures which remain dispersed in water. Addition of 0.3 M NaCl to the aqueous solution results in dissociation of the complexes into the respective water-soluble components.

Publication Title






First Page


Last Page


Find in your library