A Perspective on the History and Current Opportunities of Aqueous RAFT Polymerization

Document Type


Publication Date



Polymer Science and Engineering


Reversible addition-fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups - while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra-high molecular weight polymers, polymerization induced self-assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non-toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future.

Publication Title

Macromolecular Rapid Communications

Find in your library