Laboratory-Infected Ehrlichia chaffeensis Female Adult Amblyomma americanum Salivary Glands Reveal Differential Gene Expression

Shahid Karim, University of Southern Mississippi
Rebecca Browning, University of Southern Mississippi
Laila Ali, University of Southern Mississippi
Rachel Truhett, University of Southern Mississippi

Abstract

Ticks are efficient ectoparasites that are able to steal blood, a rich source of nutrients, from their vertebrate hosts. The nymphal developmental stage of ticks plays an important role for pathogen transmission to human and other animal hosts. In this article, we describe a bloodmeal-based sex differentiation tool to generate adult female ticks infected with Ehrlichia chaffeensis to investigate vector-pathogen interactions (functional genomics and gene expression studies). We demonstrate that there is a correlation between the uptake of blood during nymph attachment and the molting into male or female adult ticks. The data obtained from the bloodmeal experiments suggest that nymphs that molt into females presumably imbibe more blood than those that become male during the nymphal stage. The natural low E. chaffeensis infection rate in female adult Amblyomma americanum (L.) is a major limiting factor to investigate Ehrlichia-Amblyomma interactions. To generate Ehrlichia-infected female adult ticks, we inoculated obligate E. chaffeensis (Arkansas strain) infected DH82 cells into heavier engorged nymphs (>12 mg) and allowed them to molt. Freshly molted adults were used to test the E. chaffeensis infection rate. E. chaffeensis genomic DNA was extracted from individual unfed and partially blood fed tick midgut and salivary gland tissues. The tissue samples were tested for the presence of E. chaffeensis using the nested polymerase chain reaction process. Polymerase chain reaction-amplified fragments were detected in unfed and partially fed tissues, demonstrating successful E. chaffeensis infection of tick tissues. This method was used to successfully show differential expression of selected tick genes in E. chaffeensis-infected midguts and salivary glands.