Carboxysome Genomics: A Status Report

Document Type


Publication Date



Chemistry and Biochemistry


Mathematics and Natural Sciences


Carboxysomes, microcompartments that enhance the fixation of carbon dioxide by Rubisco, are found in several chemoautotrophs and in all cyanobacteria thus far examined. The genes for Rubisco large (cbbL) and small (cbbS) subunits (cbb for Calvin-Benson-Bassham), along with the genes (csoS) for the carboxysome shell peptides, are organized in a putative operon in Halothiobacillus neapolitanus in the following order: cbbL,cbbS, csoS2, csoS3, orfA, orfB, csoS1C, csoS1A, and csoS1B. DNA sequencing has revealed essentially the same operon in three other thiobacilli, Acidithiobacillus ferrooxidans, Thiomonas intermedia, and Thiobacillus denitrificans. The carboxysome genes are also clustered inSynechococcus sp. and Synechocystis sp., although in some cases certain genes lie outside the cluster. The genes, labelled ccm for CO2 concentrating mechanism, exist in Synechococcus PCC7942 in the order ccmK, ccmL, ccmM, ccmN, and ccmO, and are located upstream of the Rubisco genes. ccmO is absent, and multiple copies of ccmK exist in some species. The ccmK/ccmO and ccmL genes are homologues of csoS1CAB andorfAB, respectively. The ccmM and ccmN genes have no apparent counterpart in the thiobacilli. More recently, the genome sequence of four additional cyanobacteria has become available. The carboxysome genes in Nostoc punctiforme are clustered like, and are similar to, the genes of the earlier mentioned cyanobacteria. However, the three marine organisms Prochlorococcus marinus MIT9313, P. marinus MED4, and Synechococcus WH8102, possess an operon nearly identical to that found in thiobacilli. Furthermore, the genes exhibit surprising sequence identity to the carboxysome genes of the thiobacilli.

Publication Title

Functional Plant Biology





First Page


Last Page


Find in your library