Date of Award

Spring 2019

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

School

Mathematics and Natural Sciences

Committee Chair

James V. Lambers

Committee Chair School

Mathematics and Natural Sciences

Committee Member 2

Haiyan Tian

Committee Member 2 School

Mathematics and Natural Sciences

Committee Member 3

Zhifu Xie

Committee Member 3 School

Mathematics and Natural Sciences

Committee Member 4

Huiqing Zhu

Committee Member 4 School

Mathematics and Natural Sciences

Abstract

Existing time-stepping methods for PDEs such as Navier-Stokes equations are not as efficient or scalable as they need to be for high-resolution simulation due to stiffness. The failure of existing time-stepping methods to adapt to changes in technology presents a dilemma that is becoming even more problematic over time. By rethinking approaches to time-stepping, dramatic gains in efficiency of simulation methods can be achieved. Krylov subspace spectral (KSS) methods have proven to be effective for solving time-dependent, variable-coefficient PDEs. The objective of this research is to continue the development of KSS methods to provide numerical solution methods that are far more efficient and scalable to high resolution for Navier-Stokes equations. We will utilize these techniques for compressible Navier-Stokes equations on rectangular domains.

Share

COinS