Durability Enhancement of Nafion (R) Fuel Cell Membranes Via In Situ Sol-Gel-Derived Titanium Dioxide Reinforcement
Document Type
Article
Publication Date
9-1-2009
Department
Polymers and High Performance Materials
Abstract
To improve durability of Nafion(R) membranes, samples were modified via an in situ sol-gel polymerization Of titanium isopropoxide to generate titania quasi-networks in the polar domains. The incorporated titania reduced water uptake but equivalent weight was essentially unchanged. Fuel cell performance of the modified membrane was inferior to that of the unfilled membrane although these were considered as model Studies with focus on mechanical durability. Mechanical analysis of contractile stress buildup during drying from a swollen state in samples clamped at constant length demonstrated considerable reinforcement of Nafion(R) by the titania Structures. Tensile Studies showed that at 80 degrees C and 100%) relative humidity the dimensional change of the composite membrane is one half and the initial modulus is three times higher than that Of the unmodified membrane. During an open circuit voltage decay test the voltage decay rate for the modified membrane is 3.5 times lower than that of control Nafion(C). Fluoride emission for the composite is at least In order of magnitude lower than that of the control Nafion(R) membrane indicating reduced chemical degradation. These model Studies indicate that this in situ inorganic modification offers a way to enhance fuel Cell membrane durability by reducing both physical and chemical degradation. (C) 2009, Wiley Periodicals, Inc. J Appl Polym Sci 113:3269-3278, 2009
Publication Title
Journal of Applied Polymer Science
Volume
113
Issue
5
First Page
3269
Last Page
3278
Recommended Citation
Patil, Y. P.,
Mauritz, K. A.
(2009). Durability Enhancement of Nafion (R) Fuel Cell Membranes Via In Situ Sol-Gel-Derived Titanium Dioxide Reinforcement. Journal of Applied Polymer Science, 113(5), 3269-3278.
Available at: https://aquila.usm.edu/fac_pubs/1352