A Modified Method of Approximate Particular Solutions for Solving Linear and Nonlinear PDEs

Document Type

Article

Publication Date

11-2017

Department

Mathematics

School

Mathematics and Natural Sciences

Abstract

The method of approximate particular solutions (MAPS) was first proposed by Chen et al. in Chen, Fan, and Wen, Numer Methods Partial Differential Equations, 28 (2012), 506–522. using multiquadric (MQ) and inverse multiquadric radial basis functions (RBFs). Since then, the closed form particular solutions for many commonly used RBFs and differential operators have been derived. As a result, MAPS was extended to Matérn and Gaussian RBFs. Polyharmonic splines (PS) has rarely been used in MAPS due to its conditional positive definiteness and low accuracy. One advantage of PS is that there is no shape parameter to be taken care of. In this article, MAPS is modified so PS can be used more effectively. In the original MAPS, integrated RBFs, so called particular solutions, are used. An additional integrated polynomial basis is added when PS is used. In the modified MAPS, an additional polynomial basis is directly added to the integrated RBFs without integration. The results from the modified MAPS with PS can be improved by increasing the order of PS to a certain degree or by increasing the number of collocation points. A polynomial of degree 15 or less appeared to be working well in most of our examples. Other RBFs such as MQ can be utilized in the modified MAPS as well. The performance of the proposed method is tested on a number of examples including linear and nonlinear problems in 2D and 3D. We demonstrate that the modified MAPS with PS is, in general, more accurate than other RBFs for solving general elliptic equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1839–1858, 2017

Publication Title

Numerical Methods for Partial Differential Equations

Volume

33

Issue

6

First Page

1839

Last Page

1858

Find in your library

Share

COinS