Nodal Superconvergence of the Local Discontinuous Galerkin Method for Singularly Perturbed Problems
Document Type
Article
Publication Date
3-1-2018
Department
Mathematics
School
Mathematics and Natural Sciences
Abstract
In this paper, a superconvergence of order (lnN∕N)2k+1" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">(lnN∕N)2k+1 for the numerical traces of the LDG approximation to a one dimensional singularly perturbed convection–diffusion–reaction problem is proved. The LDG method is applied on a Shishkin mesh with 2N" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">2N elements, and we use polynomials of degree at most k" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">k on each element. This result puts the numerical finding reported in Xie and Zhang (2007), Xie et al. (2009) on firm mathematical ground.
Publication Title
Journal of Computational and Applied Mathematics
Volume
330
First Page
95
Last Page
116
Recommended Citation
Zhu, H.,
Celiker, F.
(2018). Nodal Superconvergence of the Local Discontinuous Galerkin Method for Singularly Perturbed Problems. Journal of Computational and Applied Mathematics, 330, 95-116.
Available at: https://aquila.usm.edu/fac_pubs/14922