Document Type

Article

Publication Date

7-19-2017

Department

Biological Sciences

School

Biological, Environmental, and Earth Sciences

Abstract

Halomonads are moderately halophilic bacteria that are studied as models of prokaryotic osmoadaptation and sources of enzymes and chemicals for biotechnological applications. Despite the progress in understanding the diversity of these organisms, our ability to explain ecological, metabolic, and biochemical traits of halomonads at the genomic sequence level remains limited. This study addresses this gap by presenting draft genomes of Salinicola socius SMB35T, Salinicola sp. MH3R3–1 and Chromohalobacter sp. SMB17, which were isolated from potash mine tailings in the Verkhnekamsk salt deposit area of Russia. The analysis of these genomes confirmed the importance of ectoines and quaternary amines to the capacity of halomonads to tolerate osmotic stress and adapt to hypersaline environments. The study also revealed that Chromohalobacter and Salinicola share 75–90% of the predicted proteome, but also harbor a set of genus-specific genes, which in Salinicola amounted to approximately 0.5 Mbp. These genus-specific genome segments may contribute to the phenotypic diversity of the Halomonadaceae and the ability of these organisms to adapt to changing environmental conditions and colonize new ecological niches.

Publication Title

Standards in Genomic Sciences

Volume

12

Issue

39

First Page

1

Last Page

13

Find in your library

Included in

Biology Commons

Share

COinS