Document Type
Article
Publication Date
7-26-2018
Department
Chemistry and Biochemistry
School
Mathematics and Natural Sciences
Abstract
HIV-1 integrase (IN) inhibitors represent a new class of highly effective anti-AIDS therapeutics. Current FDA-approved IN strand transfer inhibitors (INSTIs) share a common mechanism of action that involves chelation of catalytic divalent metal ions. However, the emergence of IN mutants having reduced sensitivity to these inhibitors underlies efforts to derive agents that antagonize IN function by alternate mechanisms. Integrase along with the 96-residue multifunctional accessory protein, viral protein R (Vpr), are both components of the HIV-1 pre-integration complex (PIC). Coordinated interactions within the PIC are important for viral replication. Herein, we report a 7-mer peptide based on the shortened Vpr (69–75) sequence containing a biotin group and a photo-reactive benzoylphenylalanyl residue, and which exhibits low micromolar IN inhibitory potency. Photo-crosslinking experiments have indicated that the peptide directly binds IN. The peptide does not interfere with IN-DNA interactions or induce higher-order, aberrant IN multimerization, suggesting a mode of action for the peptide that is distinct from clinically used INSTIs and developmental allosteric IN inhibitors. This compact Vpr-derived peptide may serve as a valuable pharmacological tool to identify a potential new pharmacologic site.
Publication Title
Molecules
Volume
23
First Page
1
Last Page
15
Recommended Citation
Zhao, X. Z.,
Métifiot, M.,
Kiselev, E.,
Kessl, J.,
Maddali, K.,
Marchand, C.,
Kvaratskhelia, M.,
Pommier, Y.,
Burke, T. R.
(2018). HIV-1 Integrase-Targeted Short Peptides Derived from a Viral Protein R Sequence. Molecules, 23, 1-15.
Available at: https://aquila.usm.edu/fac_pubs/15369
Comments
Published by Molecules at 10.3390/molecules23081858.