Document Type

Article

Publication Date

9-2016

Department

Computing

School

Computing Sciences and Computer Engineering

Abstract

The dynamics of surface and sub-surface water events can lead to slope instability, resulting in anomalies such as slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We have implemented a supervised Mahalanobis distance classification algorithm for the detection of slough slides on levees using complex polarimetric Synthetic Aperture Radar (polSAR) data. The classifier output was followed by a spatial majority filter post-processing step that improved the accuracy. The effectiveness of the algorithm is demonstrated using fully quad-polarimetric L-band Synthetic Aperture Radar (SAR) imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the southern USA. Slide detection accuracy of up to 98 percent was achieved, although the number of available slides examples was small.

Comments

Published by 'Journal of Imaging' at 10.3390/jimaging2030026.

Publication Title

Journal of Imaging

Volume

2

Issue

3

First Page

1

Last Page

12

Find in your library

Share

COinS