Document Type
Article
Publication Date
9-3-2018
Department
Computing
School
Computing Sciences and Computer Engineering
Abstract
Silicon Physical Unclonable Functions (sPUFs) are one of the security primitives and state-of-the-art topics in hardware-oriented security and trust research. This paper presents an efficient and dynamic ring oscillator PUFs (d-ROPUFs) technique to improve sPUFs security against modeling attacks. In addition to enhancing the Entropy of weak ROPUF design, experimental results show that the proposed d-ROPUF technique allows the generation of larger and updated challenge-response pairs (CRP space) compared with simple ROPUF. Additionally, an innovative hardware-oriented security algorithm, namely, the Optimal Time Delay Algorithm (OTDA), is proposed. It is demonstrated that the OTDA algorithm significantly improves PUF reliability under varying operating conditions. Further, it is shown that the OTDA further efficiently enhances the d-ROPUF capability to generate a considerably large set of reliable secret keys to protect the PUF structure from new cyber-attacks, including machine learning and modeling attacks.
Publication Title
Information
Volume
9
Issue
224
First Page
1
Last Page
15
Recommended Citation
Amsaad, F.,
Niamat, M.,
Dawoud, A.,
Kose, S.
(2018). Reliable Delay Based Algorithm to Boost PUF Security Against Modeling Attacks. Information, 9(224), 1-15.
Available at: https://aquila.usm.edu/fac_pubs/15541
Comments
Published by 'Information' at 10.3390/info9090224.