Target-Specific Toxicity Knowledgebase (TsTKb): A Novel Toolkit for In Silico Predictive Technology

Document Type

Article

Publication Date

11-14-2018

Department

Computing

School

Computing Sciences and Computer Engineering

Abstract

As the number of man-made chemicals increases at an unprecedented pace, efforts of quickly screening and accurately evaluating their potential adverse biological effects have been hampered by prohibitively high costs of in vivo/vitro toxicity testing. While it is unrealistic and unnecessary to test every uncharacterized chemical, it remains a major challenge to develop alternative in silico tools with high reliability and precision in toxicity prediction. To address this urgent need, we have developed a novel mode-of-action-guided, molecular modeling-based, and machine learning-enabled modeling approach for in silico chemical toxicity prediction. Here we introduce the core element of this approach, Target-specific Toxicity Knowledgebase (TsTKb), which consists of two main components: Chemical Mode of Action (ChemMoA) database and a suite of prediction model libraries.

Publication Title

Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews

Volume

36

Issue

4

First Page

219

Last Page

236

Find in your library

Share

COinS