Localized Method of Fundamental Solutions for Solving Two-Dimensional Laplace and Biharmonic Equations
Document Type
Article
Publication Date
4-1-2019
Department
Mathematics
School
Mathematics and Natural Sciences
Abstract
The localized method of fundamental solutions (LMFS) is proposed in this paper for solving two-dimensional boundary value problems, governed by Laplace and biharmonic equations, in complicated domains. Traditionally, the method of fundamental solutions (MFS) is a global method and the resultant matrix is dense and ill-conditioned. In this paper, it is the first time that the LMFS, the localized version of the MFS, is proposed. In the LMFS, the solutions at every interior node are expressed as linear combinations of solutions at some nearby nodes, while the numerical procedures of MFS are implemented within every local subdomain. The satisfactions of governing equation at interior nodes and boundary conditions at boundary nodes can yield a sparse system of linear algebraic equations, so the numerical solutions can be efficiently acquired by solving the resultant sparse system. Six numerical examples are given to demonstrate the effectiveness of the proposed LMFS.
Publication Title
Engineering Analysis with Boundary Elements
Volume
101
First Page
188
Last Page
197
Recommended Citation
Fan, C.,
Huang, Y.,
Chen, C.,
Kuo, S.
(2019). Localized Method of Fundamental Solutions for Solving Two-Dimensional Laplace and Biharmonic Equations. Engineering Analysis with Boundary Elements, 101, 188-197.
Available at: https://aquila.usm.edu/fac_pubs/15994