Document Type
Article
Publication Date
5-8-2019
Department
Marine Science
Abstract
Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth's climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate-the relative importance of their local versus remote breaking into turbulence-remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models.
Publication Title
Nature Communications
Recommended Citation
Vic, C.,
Garabato, A. C.,
Green, J. M.,
Waterhouse, A. F.,
Melet, A.,
de Lavergne, C.,
Buijsman, M. C.,
Stephenson, G. R.
(2019). Deep-Ocean Mixing Driving by Small-Scale Internal Tides. Nature Communications.
Available at: https://aquila.usm.edu/fac_pubs/16215
Comments
© Nature Communications
Publisher's Version