Structure of Transition Metal Clusters: A Force-Based Monte Carlo Approach

Document Type

Conference Proceeding

Publication Date

2-20-2017

Department

Physics and Astronomy

School

Mathematics and Natural Sciences

Abstract

We present a force-biased Monte Carlo (FMC) method for structural modeling of transition metal clusters of Fe, Ni, and Cu with 5 to 60 atoms. By employing the Finnis-Sinclair potential for Fe and the Sutton-Chen potential for Ni and Cu, the total energy of the clusters is minimized using a method that utilizes atomic forces in Monte Carlo simulations. The structural configurations of the clusters obtained from this biased Monte Carlo approach are analyzed and compared with the same from the Cambridge Cluster Database (CCD). The results show that the total-energy of the FMC clusters is very close to the corresponding value of the CCD clusters as listed in the Cambridge Cluster Database. A comparison of the FMC and CCD clusters is presented by computing the pair-correlation function, the bond-angle distribution, and the distribution of atomic-coordination numbers in the first-coordination shell, which provide information about the two-body and three-body correlation functions, the local atomic structure, and the bonding environment of the atoms in the clusters.

Publication Title

Journal of Physics: Conference Series

Volume

921

First Page

1

Last Page

5

Find in your library

Share

COinS