Complete Commuting Solutions of the Yang-Baxter-like Matrix Equation for Diagonalizable Matrices

Document Type

Article

Publication Date

7-2016

Department

Mathematics

Abstract

Let A be a square matrix that is diagonalizable. We find all the commuting solutions of the quadratic matrix equation AXA = XAX, by taking advantage of the Jordan form structure of A, together with the help of a well-known theorem on the uniqueness of a solution to Sylvester's equation. Two special classes of the given matrix A are further investigated, including circular matrices and those that are equal to some of their powers. Moreover, all the non commuting solutions are constructed when A is a Householder matrix, based on a spectral perturbation result. (C) 2016 Elsevier Ltd. All rights reserved.

Publication Title

Computers and Mathematics with Applications

Volume

72

Issue

1

First Page

194

Last Page

201

Find in your library

Share

COinS