Document Type
Article
Publication Date
10-25-2011
Department
Chemistry and Biochemistry
School
Mathematics and Natural Sciences
Abstract
Novel tetra-functional hydrolyzing monomers were prepared from the reaction of TEOS and select alkene-containing alcohols, ethylene glycol vinyl ether or 2-allyloxy ethanol, and combined with trimethylolpropane tris(3-mercaptopropionate) (tri-thiol) in a thiol-ene “click” polymerization reaction to produce clear, colorless thiol-ene networks using both radiation and thermal-cure techniques. These networks were characterized for various mechanical characteristics, and found to posses Tg’s (DSC), hardness, tack, and thermal stability (TGA) consistent with their molecular structures. A new ene-modified urethane oligomer was prepared based on the aliphatic polyisocyanate Desmodur® N 3600 and added to the thiol-ene hydrolyzable network series in increasing amounts, creating a phase-segregated material having two Tg’s. An increase in water absorption in the ene-modified urethane formulations leading to a simultaneous increase in the rate of hydrolysis was supported by TGA data, film hardness measurements, and an NMR study of closely related networks. This phenomenon was attributed to the additional hydrogen bonding elements and polar functionality brought to the film with the addition of the urethane segment. SEM was utilized for visual analysis of topographical changes in the film’s surface upon hydrolysis and provides support for surface-driven erosion. Coatings prepared in this study are intended for use as hydrolyzing networks for marine coatings to protect against ship fouling
Publication Title
Polymers
Volume
3
Issue
4
First Page
1849
Last Page
1865
Recommended Citation
Mackey, N.,
Confait, B.,
Wynne, J.,
Buchanan, J.
(2011). Preparation of Novel Hydrolyzing Urethane Modified Thiol-ene Networks. Polymers, 3(4), 1849-1865.
Available at: https://aquila.usm.edu/fac_pubs/17915