Factorial Analysis of Error Correction Performance Using Simulated Next-Generation Sequencing Data
Document Type
Conference Proceeding
Publication Date
1-17-2017
School
Computing Sciences and Computer Engineering
Abstract
© 2016 IEEE. Error correction is a critical initial step in next-generation sequencing (NGS) data analysis. Although more than 60 tools have been developed, there is no systematic evidence-based comparison with regard to their strength and weakness, especially in terms of correction accuracy. Here we report a full factorial simulation study to examine how NGS dataset characteristics (genome size, coverage depth and read length in particular) affect error correction performance (precision and F-score), as well as to compare performance sensitivity/resistance of six k-mer spectrum-based methods to variations in dataset characteristics. Multi-way ANOVA tests indicate that choice of correction method and dataset characteristics had significant effects on performance metrics. Overall, BFC, Bless, Bloocoo and Musket performed better than Lighter and Trowel on 27 synthetic datasets. For each chosen method, read length and coverage depth showed more pronounced impact on performance than genome size. This study shed insights to the performance behavior of error correction methods in response to the common variables one would encounter in real-world NGS datasets. It also warrants further studies of wet lab-generated experimental NGS data to validate findings obtained from this simulation study.
Publication Title
Proceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
First Page
1164
Last Page
1169
Recommended Citation
Akogwu, I.,
Wang, N.,
Zhang, C.,
Choi, H.,
Hong, H.,
Gong, P.
(2017). Factorial Analysis of Error Correction Performance Using Simulated Next-Generation Sequencing Data. Proceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, 1164-1169.
Available at: https://aquila.usm.edu/fac_pubs/17930