Document Type
Article
Publication Date
6-30-2020
Department
Coastal Sciences, Gulf Coast Research Laboratory
School
Ocean Science and Engineering
Abstract
Oyster reefs are vital to estuarine health, but they experience multiple stressors and globally declining populations. This study examined effects of hypoxia and tributyltin (TBT) on adult Eastern oysters (Crassostrea virginica) exposed either in the laboratory or the field following a natural hypoxic event. In the laboratory, oysters were exposed to either hypoxia followed by a recovery period, or to hypoxia combined with TBT. mRNA expression of HIF1-α and Tβ-4 along with hemocyte counts, biomarkers of hypoxic stress and immune health, respectively, were measured. In field-deployed oysters, HIF1-α and Tβ-4 expression increased, while no effect on hemocytes was observed. In contrast, after 6 and 8 days of laboratory-based hypoxia exposure, both Tβ-4 expression and hemocyte counts declined. After 8 days of exposure to hypoxia + TBT, oysters substantially up-regulated HIF1-α and down-regulated Tβ-4, although hemocyte counts were unaffected. Results suggest that hypoxic exposure induces immunosuppression which could increase vulnerability to pathogens.
Publication Title
Scientific Reports
Volume
10
First Page
1
Last Page
13
Recommended Citation
Barnett, A. F.,
Gledhill, J. H.,
Griffitt, R. J.,
Slattery, M.,
Gochfeld, D. J.,
Willett, K. L.
(2020). Combined and Independent Effects On Hypoxia and Tributylin On mRNA Expression and Physiology of the Eastern Oyster (Crassostrea virginica). Scientific Reports, 10, 1-13.
Available at: https://aquila.usm.edu/fac_pubs/18097