DeepFakeStack: A Deep Ensemble-Based Learning Technique for Deepfake Detection

Document Type

Conference Proceeding

Publication Date

8-19-2020

School

Computing Sciences and Computer Engineering

Abstract

Recent advances in technology have made the deep learning (DL) models available for use in a wide variety of novel applications; for example, generative adversarial network (GAN) models are capable of producing hyper-realistic images, speech, and even videos, such as the so-called “Deepfake” produced by GANs with manipulated audio and/or video clips, which are so realistic as to be indistinguishable from the real ones in human perception. Aside from innovative and legitimate applications, there are numerous nefarious or unlawful ways to use such counterfeit contents in propaganda, political campaigns, cybercrimes, extortion, etc. To meet the challenges posed by Deepfake multimedia, we propose a deep ensemble learning technique called DeepfakeStack for detecting such manipulated videos. The proposed technique combines a series of DL based state-of-art classification models and creates an improved composite classifier. Based on our experiments, it is shown that DeepfakeStack outperforms other classifiers by achieving an accuracy of 99.65% and AUROC of 1.0 score in detecting Deepfake. Therefore, our method provides a solid basis for building a Realtime Deepfake detector.

Publication Title

2020 7th IEEE International Conference on Cyber Security and Cloud Computing

Find in your library

Share

COinS