Pluripotent Stem Cells Are Insensitive To the Cytotoxicity of TNFα and IFNγ
Document Type
Article
Publication Date
10-1-2020
Department
Biological Sciences
School
Biological, Environmental, and Earth Sciences
Abstract
Recent studies have demonstrated that embryonic stem cells (ESCs) have an underdeveloped innate immune system, but the biological implications of this finding are poorly understood. In this study, we compared the responses of mouse ESCs (mESCs) and mESC differentiated fibroblasts (mESC-FBs) to tumor necrosis factor α (TNFα) and interferons (IFNs). Our data revealed that TNFα, IFNα, IFNβ, or IFNγ alone do not cause apparent effects on mESCs and mESC-FBs, but the combination of TNFα and IFNγ (TNFα/IFNγ) showed toxicity to mESC-FBs as indicated by cell cycle inhibition and reduced cell viability, correlating with the expression of inducible nitric oxide synthase (iNOS). However, none of these effects were observed in mESCs that were treated with TNFα/IFNγ. Furthermore, mESC-FBs, but not mESCs, are vulnerable to cytotoxicity resulting from lipopolysaccharide (LPS)-activated macrophages. The insensitivity of mESCs to cytotoxicity in all cases is correlated with their lack of responses to TNFα and IFNγ. Similar to mESCs, human ESCs (hESCs) and iPSCs (hiPSCs) do not respond to TNFα and are not susceptible to the cytotoxicity of TNFα, IFNβ, or IFNγ alone or in combination that significantly affects human foreskin fibroblast (hFBs) and Hela cells. However, unlike mESCs, hESCs and hiPSCs can respond to IFNγ, but this does not cause significant cytotoxicity in hESCs and hiPSCs. Our findings in both mouse and human PSCs together support the hypothesis that attenuated innate immune responses could be a protective mechanism that limits immunologic cytotoxicity resulting from inflammatory and immune responses.
Publication Title
Reproduction (Cambridge, England)
Volume
160
Issue
4
First Page
547
Last Page
560
Recommended Citation
Chen, B.,
Gurung, C.,
Guo, J.,
Kwon, C.,
Guo, Y.
(2020). Pluripotent Stem Cells Are Insensitive To the Cytotoxicity of TNFα and IFNγ. Reproduction (Cambridge, England), 160(4), 547-560.
Available at: https://aquila.usm.edu/fac_pubs/18205