"Aqueous RAFT Synthesis of Low Molecular Weight Anionic Polymers for De" by Ashleigh N. Bristol, Brooke P. Carpenter et al.
 

Aqueous RAFT Synthesis of Low Molecular Weight Anionic Polymers for Determination of Structure/Binding Interactions with Gliadin

Document Type

Article

Publication Date

8-1-2020

School

Polymer Science and Engineering

Abstract

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Gliadin, a component of gluten and a known epitope, is implicated in celiac disease (CeD) and results in an inflammatory response in CeD patients when consumed. Acrylamide-based polyelectrolytes are employed as models to determine the effect of molecular weight and pendent group on non-covalent interaction modes with gliadin in vitro. Poly(sodium 2-acrylamido-2-methylpropane sulfonate) and poly(sodium 3-methylpropyl-3-butanoate) are synthesized via aqueous reversible addition fragmentation chain transfer (aRAFT) polymerization and characterized by gel permeation chromatography-multiangle laser light scattering. The polymer/gliadin blends are examined via circular dichroism, zeta potential measurements, 8-anilinonaphthalene-1-sulfonic acid fluorescence spectroscopy, and dynamic light scattering. Acrylamide polymers containing strong anionic pendent groups have a profound effect on gliadin secondary structure and solution behavior below the isoelectric point, while polymers containing hydrophobic character only have a minor impact. The polymers have little effect on gliadin secondary structure and solution behavior at the isoelectric point.

Publication Title

Macromolecular Bioscience

Volume

20

Issue

8

Find in your library

Share

COinS