Semantic Tree-Based 3D Scene Model Recognition
Document Type
Conference Proceeding
Publication Date
8-1-2020
School
Computing Sciences and Computer Engineering
Abstract
© 2020 IEEE. 3D scene recognition is important for many applications including robotics, autonomous driving cars, augmented reality (AR), virtual reality (VR), 3D movie and game production. A lot of semantic information (i.e. objects, object parts and object groups) is existing in 3D scene models. To significantly improve 3D scene recognition accuracy, we incorporate such semantic information into the recognition process by building a semantic scene tree and propose a deep random field (DRF) model-based semantic 3D scene recognition approach. Experiments demonstrate that the semantic approach can effectively capture semantic information of 3D scene models, accurately measure their similarities, and therefore greatly enhance the recognition performance. Code, data and experimental results can be found on the project homepage.
Publication Title
Proceedings - 3rd International Conference on Multimedia Information Processing and Retrieval, MIPR 2020
First Page
85
Last Page
90
Recommended Citation
Yuan, J.,
Wang, T.,
Zhe, S.,
Lu, Y.,
Li, B.
(2020). Semantic Tree-Based 3D Scene Model Recognition. Proceedings - 3rd International Conference on Multimedia Information Processing and Retrieval, MIPR 2020, 85-90.
Available at: https://aquila.usm.edu/fac_pubs/18250