Galaxolide and Tonalide Modulate Neuroendocrine Activity In Marine Species From Two Taxonomic Groups
Document Type
Article
Publication Date
5-1-2021
Department
Coastal Sciences, Gulf Coast Research Laboratory
School
Ocean Science and Engineering
Abstract
Galaxolide (HHCB) and tonalide (AHTN) are polycyclic musk compounds (PMCs) used in household and personal care products that have been included on the list as emerging contaminants of environmental concern due to their ubiquity in aquatic and terrestrial environments. There still exists a dearth of information on the neurotoxicity and endocrine disrupting effects of these contaminants, especially for marine and estuarine species. Here, we assessed the neuroendocrine effects of HHCB and AHTN using adult clams, Ruditapes philippinarum, and yolk-sac larvae of sheepshead minnow, Cyprinodon variegatus. The clams were treated with concentrations (0.005–50 μg/L) of each compound for 21 days. Meanwhile, sheepshead minnow larvae were exposed to 0.5, 5 and 50 μg/L of HHCB and AHTN for 3 days. Enzyme activities related to neurotoxicity (acetylcholinesterase - AChE), neuroendocrine function (cyclooxygenase - COX), and energy reserves (total lipids - TL) were assessed in R. philippinarum. Gene expression levels of cyp19 and vtg1 were measured in C. variegatus using qPCR. Our results indicated induction of AChE and COX in the clams exposed to HHCB while AHTN exposure significantly inhibited AChE and COX. Gene expression of cyp19 and vtg1 in yolk-sac C. variegatus larvae exposed to 50 μg/L AHTN was significantly downregulated versus the control. The results of this study demonstrate that HHCB and AHTN might pose neurotoxic and endocrine disrupting effects in coastal ecosystems.
Publication Title
Environmental Research
Volume
196
Recommended Citation
Ehiguese, F.,
Rodgers, M.,
Araújo, C.,
Griffitt, R.,
Martin-Diaz, M.
(2021). Galaxolide and Tonalide Modulate Neuroendocrine Activity In Marine Species From Two Taxonomic Groups. Environmental Research, 196.
Available at: https://aquila.usm.edu/fac_pubs/18863