Unilateral, Bilateral, and Alternating Muscle Actions Elicit Similar Muscular Responses During Low Load Blood Flow Restriction Exercise

Document Type

Article

Publication Date

1-1-2021

Abstract

Purpose: Compare acute muscular responses to unilateral, bilateral, and alternating blood flow restriction (BFR) exercise.

Methods: Maximal strength was tested on visit one. On visits 2–4, 2–10 days apart, 19 participants completed 4 sets of knee extensions (30% one-repetition maximum) with BFR (40% arterial occlusion pressure) to momentary failure (inability to lift load) using each muscle action (counterbalanced order). Ultrasound muscle thickness was measured at 60% and 70% of the anterior thigh before (Pre), immediately (Post-0), and 5 min (Post-5) after exercise. Surface electromyography and tissue deoxygenation were measured throughout. Results, presented as means, were analyzed with a three-way (sex by time by condition) Bayesian RMANOVA.

Results: There was a time by sex interaction (BFinclusion: 5.489) for left leg 60% muscle thickness (cm). However, changes from Pre to Post-0 (males: 0.39 vs females: 0.26; BF10: 0.839), Post-0 to Post-5 (males: − 0.05 vs females: − 0.06; BF10: 0.456), and Pre to Post-5 (males: 0.34 vs females: 0.20; BF10: 0.935) did not differ across sex. For electromyography (%MVC), there was a sex by condition interaction (BFinclusion: 550.472) with alternating having higher muscle excitation for females (16) than males (9; BF10: 5.097). Tissue deoxygenation (e.g. channel 1, µM) increased more for males (sets 1: 11.17; 2: 2.91; 3: 3.69; 4: 3.38) than females (sets 1: 4.49; 2: 0.24; 3: − 0.10; 4: − 0.06) from beginning to end of sets (all BFinclusion ≥ 4.295e + 7). For repetitions, there was an interaction (BFinclusion: 17.533), with alternating completing more than bilateral and unilateral for set one (100; 56; 50, respectively) and two (34; 16; 18, respectively).

Conclusion: Alternating, bilateral, and unilateral BFR exercise elicit similar acute muscular responses.

Publication Title

European Journal of Applied Physiology

Find in your library

Share

COinS