Revealing the Role of Polaron Distribution on the Performance of n-Type Organic Electrochemical Transistors

Document Type

Article

Publication Date

1-6-2022

School

Polymer Science and Engineering

Abstract

Organic electrochemical transistors (OECTs) have shown great potential in bioelectronics and neuromorphic computing. However, the low performance of n-type OECTs impedes the construction of complementary-type circuits for low-power-consumption logic circuits and high-performance sensing. Compared with their p-type counterparts, the low electron mobility of n-type OECT materials is the primary challenge, leading to low μC* and slow response speed. Nevertheless, no successful method has been reported to address the issue. Here, we find that the charge carrier mobility of n-type OECTs can be significantly enhanced by redistributing the polarons on the polymer backbone. As a result, 1 order of magnitude higher electron mobility is achieved in a new polymer, P(gPzDPP-CT2), with a simultaneously enhanced μC* value and faster response speed. This work reveals the important role of polaron distribution in enhancing the performance of n-type OECTs.

Publication Title

Chemistry of Materials

Volume

34

Issue

2

First Page

864

Last Page

872

Find in your library

Share

COinS