Performance Evaluation of Imputation Methods For Incomplete Datasets

Document Type

Article

Publication Date

2-1-2007

Department

Computing

School

Computing Sciences and Computer Engineering

Abstract

In this study, we compare the performance of four different imputation strategies ranging from the commonly used Listwise Deletion to model based approaches such as the Maximum Likehood on enhancing completeness in incomplete software project data sets. We evaluate the impact of each of these methods by implementing them on six different real-time software project data sets which are classified into different categories based on their inherent properties. The reliability of the constructed data sets using these techniques are further tested by building prediction models using stepwise regression. The experiment results are noted and the findings are finally discussed.

Publication Title

International Journal of Software Engineering and Knowledge Engineering

Volume

17

Issue

1

First Page

127

Last Page

152

Find in your library

Share

COinS