Eruptive Flow Response In a Multi-Component Driven System By An Interacting Lattice Gas Simulation
Document Type
Article
Publication Date
8-15-2006
Department
Physics and Astronomy
School
Mathematics and Natural Sciences
Abstract
An interacting lattice gas model is used to study flow of immiscible components A and B (molecular weights MA and MB, MA < MB) by Monte Carlo simulations. Concentration gradients and hydrostatic pressure bias (H) drive these constituents from their source at the bottom against gravitational sedimentation in an effective medium. Response of their flux densities (jA, jB) to the hydrostatic bias H are examined. If both constituents are released with equal probabilities (a non-interacting source), their flux densities respond linearly to bias with jA > jB except at the extreme bias H → 1 where jA → jB. Flow response becomes complex if the constituents from their source are released according to their current lattice concentrations (an interacting source): a crossover occurs from jA > jB at low bias (H ≤ 0.4) to jB > jA at higher bias (H > 0.4). Constituent with the lower molecular weight (A) responds linearly on increasing the bias except at very high bias (H ≥ 0.8) where the response becomes negative. The heavier component (B) responds non-linearly: a high response at low values of H is followed by a linear response before the onset of eruptive response at high range of H. The volatility parameter diverges as eruption occurs at H → 1.
Publication Title
Physica A-Statistical Mechanics and Its Applications
Volume
368
Issue
2
First Page
416
Last Page
424
Recommended Citation
Pandey, R. B.,
Gettrust, J.
(2006). Eruptive Flow Response In a Multi-Component Driven System By An Interacting Lattice Gas Simulation. Physica A-Statistical Mechanics and Its Applications, 368(2), 416-424.
Available at: https://aquila.usm.edu/fac_pubs/2297